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Abstract

The goal of top-k ranking is to rank individuals so that the best k of them can be determined.

Depending on the application domain, an individual can be a person, a product, an event,

or just a collection of data or information for which an ordering makes sense. The problem

of top-k ranking has profound commercial and social implications.

In the context of databases, top-k ranking has been studied in two distinct directions,

depending on whether the stored information is certain or uncertain. In the former, since

there is little dispute on what top-k ranking is, the past research has focused on efficient

query processing. In the latter case, a number of semantics based on possible worlds have

been proposed and computational mechanisms investigated for what are called uncertain

databases or probabilistic databases, where a tuple is associated with a membership prob-

ability indicating the level of confidence on the stored information.

In this thesis, we study top-k ranking with uncertain data in two general areas. The first

is on pruning for the computation of top-k tuples in a probabilistic database. We investi-

gate the theoretical basis and practical means of pruning for the recently proposed, unifying

framework based on parameterized ranking functions. As such, our results are applicable

to a wide range of ranking functions. We show experimentally that pruning can generate

orders of magnitude performance gains. In the second area of our investigation, we study

the problem of top-k ranking for objects with multiple attributes whose values are mod-

eled by probability distributions and constraints. We formulate a theory of top-k ranking

for objects by a characterization of what constitutes the strength of an object, and show

that a number of previous proposals for top-k ranking are special cases of our theory. We

carry out a limited study on computation of top-k objects under our theory. We reveal the

close connection between top-k ranking in this context and high-dimensional space studied

in mathematics, in particular, the problem of computing the volumes of high-dimensional

polyhedra expressed by linear inequations is a special case of top-k ranking of objects, and

as such, the algorithms formulated for the former can be employed for the latter under the

same conditions.
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Chapter 1

Introduction

In the real world, we often need to rank things. For example, when a search engine searches

something on the Internet, it often needs to rank a large number of web pages and return

the most relevant ones as the result. When querying a database, there could be many tuples

satisfying a given requirement, which need to be ranked and the most relevant ones returned.

In general, when many things satisfy a given requirement, we are interested only in the most

relevant ones; in particular, we typically do not care about the ranks of the rest.

The general problem of top-k ranking is to rank individuals so that the top-k of them

can be determined. In an application, any top-k individual should be at least as desirable

as anyone not in the top-k list. Here, individuals can be anything on which an ordering

makes sense. They can be objects (concrete or abstract), events, tuples in a database; e.g.,

candidates for a job or an election, leads in a criminal case investigation, patients waiting

for treatment, commercial products of a certain kind, popularity of actors/actresses, movies,

songs, performance in a sport or artistic competition, etc.

Apparently, the problem of top-k ranking has profound commercial and social implica-

tions. It should also be clear that top-k ranking is often problem-specific, due to the fact

that a reasonable ranking must heavily involve domain knowledge and ranking results are

subject to interpretations.

When restricted to databases, that is, if we assume that the information for a particu-

lar ranking problem can be suitably represented as database objects, the problem of top-k

ranking becomes manageable. In this context, an object may have one or more grades, or

scores, one for each attribute. For example, an object may have a color grade to tell how red

it is and a size grade to tell how large it is. Each object can be assigned an overall grade by

combining the attribute grades using an aggregation function. Then, the top-k objects are

the k objects with the highest overall grades. Here, the definition of top-k objects is clear,
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and the main challenge is to compute top-k objects efficiently in a database context, e.g., by

using the Threshold Algorithm [1] and its variants [2, 3].

The data above is certain. However, when the data in a database is uncertain, or diffi-

cult to be characterized quantitatively, the problem of top-k ranking presents an additional

challenge - the semantics of top-k ranking. For instance, we may not know the exact price

of a car, but a probability distribution of the prices may be available; we may be uncertain

about a person’s height which is known to be between 1.7m and 1.8m; we may know that

a professional is more experienced than another one, and so on. It is in general difficult to

translate this kind of knowledge into quantities.

The general problem of top-k ranking with uncertain data is highly complex and chal-

lenging. It involves knowledge representation and reasoning with uncertain data; it may

require the use of machine learning techniques to generate useful information, such as rela-

tions, from raw data; and the computational problem could be infeasible in general.

One recent approach in databases is to assume a limited form of uncertain data, repre-

sented by tuples, each with a membership probability to indicate the level of confidence of

the stored information (in the literature sometimes this is also explained as the probability

of the physical existence of the tuple in a database). This form of uncertain data often arises

in real applications. For example, due to various factors, we may know the probability of

an event, such as the probability of a certain speed of a certain car at a certain location.

Information organized this way is called an uncertain database, or an uncertain table, or a

probabilistic database. There are in general two problems involved. One is the semantics

of top-k ranking, namely how top-k objects are determined semantically, and the other is

how to compute the top-k tuples/objects according to the semantics.

Uncertain data can be described in different forms, e.g., by a probability distribution.

For example, we may know the probability distribution of the heights of the group of per-

sons in an application domain. Uncertain data may also be described by relations. For

example, we may know that one actor is more popular than another one.

In this thesis, we study two important issues in top-k ranking. One is how to improve

the computational efficiency of top-k ranking in probabilistic databases through pruning.

This is studied in the context of tuple ranking where the semantics is defined by what are

called parameterized ranking functions. A number of algorithms have been proposed for

this semantics. We show how these algorithms can be improved by pruning, in a systematic

fashion. We will also study object ranking, where objects are defined by one or more

attributes whose values are expressed by probability distributions and constraints. In the
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rest of this chapter, we will provide a more detailed account of these two topics.

1.1 Pruning for Top-k Ranking in Uncertain Databases

Uncertain databases, also called probabilistic databases, are proposed to deal with uncer-

tainty in a variety of application domains, such as in sensor network, data cleaning, informa-

tion retrieval, text analytics and social networks analysis [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

Some system are built to manage uncertain data [15, 16, 17, 18]. An uncertain database

consists of a set of tuples each of which comes with a numeric value representing the score

of the tuple and a membership probability. Uncertainty may be due to incompleteness of

data, limitation of equipment, or loss in data transfer, etc. Different uncertain data models

have been proposed for uncertain databases [19, 20, 21, 22, 23, 24, 25, 26, 27], some adopt-

ing the possible world semantics. As a reasonable approximation to the uncertain nature of

data, the data model based on x-tuples is often adopted in the study of uncertain databases,

where mutual exclusive correlations between tuples are specified in terms of generation

rules – two tuples involved in the same generation rule cannot be true simultaneously in the

real world, and thus should not appear in the same possible world.

The problem of top-k ranking in this context is to rank tuples in a database so that the

best k of them can be determined. In uncertain databases, the interaction of the information

associated with a tuple – the score representing the importance of the tuple, and the likeli-

hood of a tuple representing the true information (or its existence), has made top-k ranking

an intriguing issue.

Different semantics of top-k tuples in uncertain databases have been proposed [28, 29,

30, 31, 32]. In [29]1 however, a general framework of top-k ranking, based on param-

eterized ranking function (PRF) is formulated, which generalizes many of the previously

proposed ranking functions. Two classes of parameterized ranking functions, under the

names PRFω and PRF e, are proposed, and their computational properties studied under

the probabilistic and/xor tree model [33], of which x-tuples is a special but a dominating

case. One can say that the framework of PRF is currently the most powerful one for top-k

ranking in uncertain databases, where x-tuples serves as one of the most important data

models.

Depending on the underlying ranking function, a top-k algorithm generally runs quadratic

time or higher, which is considered too expensive for large databases. There are generally
1The paper won the best paper award of VLDB2009.
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two ways to improve the performance. On the one hand, we may design approximation al-

gorithms, and on the other we can try to safely omit the computation of the ranking function

values of some tuples that are guaranteed not to be in top-k. The latter is called pruning. In

general, pruning does not improve the complexity, since in the worst case nothing may be

pruned. Some pruning techniques have been proposed in the past, but they are formulated

only for some fixed semantics (e.g., [28]).2 As a result, it is often not clear whether they are

applicable to different ranking functions.

In [29], methods are proposed to compute the PRF value (for PRFω as well as PRF e)

of a tuple in an uncertain table. The algorithms based on these methods compute all PRF

values of all the tuples and then choose the k tuples with largest PRF values to be the top-k

tuples. In general, to get top-k tuples we may not need to compute the PRF value of every

tuple. This is the case where we know that some upper bound of the PRF value of a tuple

t is smaller than the kth largest PRF value found so far (so that it is guaranteed that t is not

a top-k tuple). In this case, we say that the computation of the PRF value of t is pruned.

Apparently, we need a mechanism to compute an upper bound of the PRF value of a tuple,

with two distinct features. First, the cost of computing an upper bound of a tuple should be

substantially smaller than the cost of the computing its PRF value. Second, such an upper

bound should be sufficiently tight, as there can be useless, trivial upper bounds (e.g., some

sufficiently large number). In this way, a top-k algorithm with pruning may improve the

efficiency of computing top-k tuples.

In this thesis we present a general approach to pruning for the framework based on

PRFω and PRF e. We reveal a series of relationships among tuples and show how they

can be used to derive efficient pruning methods. Our results are applicable to the x-tuple

model for a wide range of ranking functions. As a result, it is now possible to augment a

top-k algorithm for an instance of PRFω with pruning, in a systematic fashion. Our exper-

iments show orders of magnitude speedup over algorithms without pruning, and substantial

improvement over the existing pruning methods. The theoretical development of these re-

sults will be presented in Chapter 3 and the practical pruning methods presented in Chapter

4. The pruning method for PRF e is studied in Chapter 5. The experiments are reported in

Chapter 6.
2Pruning was also studied for a ranking function called Expected Ranks in [34], which does not belong to

the family of PRFs, and therefore does not apply to the latter in general.
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1.2 Theory of Top-k Ranking for Objects with Uncertain Data

The top-k ranking above is to rank tuples in an uncertain database. Even if in some cases

a tuple may be viewed as an object,3 there is only one attribute represented by score. In

general, we would like to consider the general problem of top-k ranking for objects, where

an object in this context is an entity which consists of a number of attributes, whose roles

in the object are determined by an aggregation function. The problem of top-ranking in this

case is conceptually simple for data that are complete and certain - the aggregation value

of an object represents its strength and therefore its rank. For uncertain data, however, the

problem becomes challenging, as the basis of such a theory is unclear.

As an example, let us consider the problem of renting an apartment from a group of the

best k choices, based on a number of factors. For simplicity, let us consider two attributes,

prices and location. The uncertainty of the former may be described by a probability dis-

tribution in a range of dollar values. The judgement of location could be fuzzy too; say we

have 4 ranks for location: excellent, good, fair, poor, and we may know that a location

is good or excellent but not sure which one it should be. Assuming that the user provides

the weights of the factors on prices and location (i.e., an aggregation function), we should

be able to generate the top-k apartments from the uncertain data.

In the presence of uncertain data, the central question is to how to determine the strength

of an object, or what constitutes the strength of an object. For technical insights, let us

consider a simple example. Suppose there are two objects, A and B, with only one attribute

α, and we do not know the exact values of A and B under α.; we only know that the domain

of the values of A under α is {2, 4} and that of B under α is {1, 3}. Let us assume that the

probability distribution of values of A and B under α are both uniform. That is,

Pr(A = 2) = 0.5, P r(A = 4) = 0.5, P r(B = 1) = 0.5, P r(B = 3) = 0.5

At the first it appears unclear as how to rank A and B. If A takes value 4 and B takes value

1, then A should rank before B. If A takes value 2 and B takes value 3, then A should rank

after B. The two different ranks are both possible. It looks like we cannot rank A and B in

this case. But we may consider the likelihood of which one would get the most support, by
3In general, this may not the case, e.g., two different tuples may represent the same car at two different

locations at the same time.
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listing all the possible combinations of the values:

{A = 2, B = 1}
{A = 2, B = 3}
{A = 4, B = 1}
{A = 4, B = 3}

Since the probability distributions of values of A and B under α are both uniform, these

four combinations have the same probability so that they have the same weights in the final

ranking results. In all four possible combinations, A ranks before B in three and B ranks

before A in one. Then we can say that A has more supports to be ranked ahead of B. So

we can conclude that A is a better choice.

Constraints may change the ranking result. For example, suppose there are two objects

A and B, with the domain of the values of A under attribute α being {2, 4, 6, 8} and the

domain of the values of B under attribute α being {1, 3, 5, 7}. Let us assume that the

probability distributions of values of A and B under α are both uniform. If we list all the

combinations, we can see that A has more supports to be ranked before B. Now let us

assume a constraint between them: B > A − 2. In this case we can see that it is B that is

supported by more combinations to be on top.

In the literature, probability distributions have been employed in top-k ranking. In [34],

the authors propose what is called top-k ranking for attribute-level uncertainty model, in

which an uncertain database is a table of tuples, each possessing one attribute whose value

is uncertain. Here, a tuple can be thought of as an object with one attribute. The value of an

object under this attribute is represented by a discrete probability distribution. In [35], the

authors propose to rank records with uncertain scores in databases. In some applications,

the score of a record is modeled as a probability density function and we want to find the

top-k records. Here, a record can be viewed as an object.

As illustrated earlier, uncertain information may be presented in forms different from

probabilities, for example, by relations. A noticeable example is the practice of getting

a short list. Consider a simple popularity contest: Given three contestants A,B, and C,

suppose we know that A is more popular than B; but there is no information as how A is

compared to C, neither B to C. Most observers will conclude that A is the top choice;

however, the question of the top-2 contestants seems not so obvious.

Relations have been employed in top-k ranking. For example, in [36] a type of top-k

queries is proposed, in which we do not know the exact value of an object, yet information

about some relations between objects may be available. For instance, we may want to judge

the popularity of some actors, but we do not know the score of popularity of an actor. We
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only know some actors are preferred over some others. In [36] a method is proposed to find

the top-k favorable objects based on preference relations.

As another example of the use of relations in top-k ranking, the well-known algorithm,

PageRank [37], is to rank web pages on the Internet. The information used in ranking is the

reference relation between web pages (i.e. linkages between web pages). The link structure

can be captured by a system of linear equations, from which the page rank of a web page

can be computed.

In this thesis, we study the semantics of top-k ranking for objects modeled by uncer-

tain data, where the values of an object’s attributes are expressed by probability distribu-

tions and constrained by some stated constraints. Under this setting, we present a theory

of top-k ranking for objects so that their strengths can be determined in the presence of

uncertain data. We show that top-k ranking for objects under some restrictions is closely

related to high-dimensional space, in particular, the problem of computing volumes of a

high-dimensional polyhedron represented by a system of inequations can be viewed as a

subproblem of top-k object ranking in our theory. This ranking theory will be described in

Chapter 7.

1.3 Organization

This thesis is organized as follows. Chapter 2 introduces the background on top-k ranking,

including different top-k ranking semantics in uncertain databases and some other ranking

problems. Chapter 3 develops a theory of how to generate an upper bound of PRF values

in uncertain databases. We study the relations of PRF values of tuples and use these

relations to compute an upper bound of a tuple’s PRF value. Then we can use this upper

bound for pruning. Chapter 4 derives practical pruning methods based on the upper bound

theory of Chapter 3 and provides algorithm and complexity analysis for PRFω, followed by

practical pruning method for PRF e in Chapter 5. Chapter 6 reports experimental results for

our pruning methods, which show a significant improvement on computational efficiency.

Chapter 7 presents a ranking theory for objects with uncertain data. We present our theory in

three stages. The first deals with discrete domains, which is extended ro include continuous

domains. We further extend this theory to add weights to objects’ positions and aggregation

values in determination of ranking results. Chapter 8 concludes this thesis and comments

on the future directions.

Here is a summary of the main contributions of this thesis:
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• We formulate a general framework of pruning for top-k ranking in uncertain databases

based on parameterized ranking functions. This formulation addresses the issues such

as, what is an upper bound, how to determine it in principle, what is an optimal upper

bound, and if an upper bound is not optimal how to improve it.

• Based on the general framework of pruning, we derive practical pruning methods and

show experimentally that they generate significant improvement in the computation

of top-k tuples. The experiments provide insights in the effectiveness of pruning in

the process of determining top-k tuples.

• We formulate a theory of top-k ranking for objects with multiple attributes, and reveal

that the problem studied in mathematics, namely the problem of determining the

volumes of high-dimensional polyhedra expressed by linear inequations is a special

case of top-k ranking for objects in our theory.

Here is a summary of publications related to this thesis:

• The work in Chapters 3,4,5, and 6 has been submitted to VLDB2011 and we are

invited to submit a revised version for the 2nd round review. We have submitted the

revised version.

• The work in Chapter 7 has been accepted by the Journal of Computers and Mathe-

matics with Applications.
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Chapter 2

Background

This chapter provides a brief review of the previous work on the topic of top-k ranking

and familiarizes the reader with the main concepts and terminologies needed in the rest of

this thesis. Much of the material in this chapter can be read briefly, without affecting the

understanding of the main results of the thesis.

Here is a road map for how this chapter may be read. Section 2.1 is about top-k rank-

ing for objects with complete data, which can be processed by the well-known Threshold

algorithm of Fagin and its variants. The concept of object here is relevant, as it motivated

us to formulate top-k ranking for objects with uncertain data later in this thesis. Section 2.2

introduces the notion of possible world, based on which various semantics of top-k ranking

are defined. The concept of possible world and related terminologies are important, but the

reader need not understand the full detail of every semantics, e.g., Subsections 2.2.2 and

2.2.3 can be safely skipped in the first reading. The definition of parameterized ranking

functions is essential, both for discrete domains (Section 2.2.4) and continuous domains

(Section 2.3). But the latter becomes technically relevant only in Chapter 7, so it can be

read as needed. Then, one can go through the later sections of this chapter briefly.

2.1 Threshold Algorithm

This is the case of top-k ranking with data that are complete and certain in a database

context.

We assume that the objects in a database possess the same attributes and the availability

of an aggregation function. Then a top-k query is to determine the top-k objects, i.e., the

k objects with highest aggregation values. In [1], Fagin proposes the Threshold Algorithm

(TA) to compute the top-k objects. For each attribute, the algorithm maintains a sorted

list of the values for all the objects. In each round, the algorithm retrieves a value from
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each attribute and calculate the overall grade of the corresponding object. The algorithm

maintains a virtual object. The value of each attribute of this virtual object is the lowest

value retrieved from the sorted list for each attribute. Fagin proves that the overall grade

of this virtual object is greater than the overall grade of any object which has not been

retrieved. After some rounds, when the algorithm finds k objects with higher overall grades

than the overall grade of the virtual object in the last round, it halts. The threshold algorithm

provides an efficient way to find top-k objects in a database.

Many variants of TA have been proposed and their properties studied [2, 3, 38, 39, 40,

41, 42, 43, 44, 45].

2.2 Ranking in Uncertain Databases

Under the x-tuple model, an uncertain database (or an uncertain table) T contains a set of

tuples, each t of which is associated with a membership probability, denoted by Pr(t), such

that Pr(t) > 0. Each tuple t is associated with a score, score(t), which is determined by a

scoring function: T → < . A generation rule r of an uncertain database T is an exclusive

relation of one or more tuples in T , written as r = t1⊕t2⊕...⊕te (as an alternative notation,

we will also use r as the set of these tuples), and the sum of the membership probabilities of

the involved tuples, denoted by Pr(r), is less than or equal to 1. We assume each tuple in T

appears in one and only one generation rule. When Pr(r) < 1, to represent the probability

of the missing information, we define Pr(r̄) = 1−Pr(r). A tuple involved in a single-tuple

generation rule is called an independent tuple. Table 2.1 below shows an uncertain table

with eight tuples. The score of a tuple is “Drifted Days” and the membership probability of

a tuple is shown on the last column. We will explain the intended application shortly.

Location Time Drifted Days Member Prob
t1 a1 b1 22 0.5
t2 a1 b1 9 0.5
t3 a2 b2 16 0.5
t4 a2 b2 15 0.5
t5 a3 b3 18 0.6
t6 a3 b3 10 0.4
t7 a4 b4 14 0.3
t8 a4 b4 11 0.7

Table 2.1: An uncertain table
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The notion of generation rules intuitively corresponds to events that cannot take place

simultaneously. For example, in the real world, the same car cannot appear in two distant

places at the same time. But different sensor equipments may report the spotting of the car

at different locations at about the same time, each with some certainty which is represented

by a probability.

Let T be an uncertain database. A possible world W is a set of tuples in T , such that

for each generation rule r on T , W consists of exactly one tuple in r if Pr(r) = 1, and zero

or one tuple in r if Pr(r) < 1. The probability of W , denoted by Pr(W ), is the product

of the membership probabilities of all the tuples in W and all of Pr(r̄), for each r where

W contains no tuples from it. Note that Pr(W ) > 0. Let Λ be the set of all the possible

worlds. It is clear that
∑

W∈Λ Pr(W ) = 1, where Λ denotes the set of all possible worlds

for T . Table 2.2 shows the possible worlds for the uncertain table in Table 2.1 .

Let us consider the following example of an uncertain database.

Example 2.2.1 Consider a database that stores the sighting information about drifted ice-

bergs. We can get the sighting information of icebergs from different sources: radar, visual,

satellite, etc. Each source has different confidence. Each tuple in this database contains the

sighting time, sighting location, number of drifted days and the confidence. If some tuples

have the same time and location, we will think they refer to the same iceberg and these

tuples are involved in the same generation rule. Table 2.1 is such an uncertain database.

There are 8 tuples in the table. The generation rules are:

r1 = t1 ⊕ t2
r2 = t3 ⊕ t4
r3 = t5 ⊕ t6
r4 = t7 ⊕ t8

The possible worlds and their probabilities are given in Table 2.2.

The tuples of an uncertain database may have many attributes. We are interested in

ranking one of its numerical attributes. Top-k ranking for certain data of one attribute is

obvious. The k tuples with highest values of this numerical attribute are top-k tuples. But

in an uncertain world, there has been no such definitive agreement. The results of the

top-k ranking depend on both the values of the numerical attribute and the membership

probabilities of tuples.

Top-k ranking has been studied for uncertain databases with different semantics pro-

posed [28, 29, 30, 31, 34, 46]. We note that, except the top-k ranking semantics proposed
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Possible World Prob
PW 1 = {t1, t3, t5, t7} 0.045
PW 2 = {t1, t3, t5, t8} 0.105
PW 3 = {t1, t3, t6, t7} 0.03
PW 4 = {t1, t3, t6, t8} 0.07
PW 5 = {t1, t4, t5, t7} 0.045
PW 6 = {t1, t4, t5, t8} 0.105
PW 7 = {t1, t4, t6, t7} 0.03
PW 8 = {t1, t4, t6, t8} 0.07
PW 9 = {t2, t3, t5, t7} 0.045
PW 10 = {t2, t3, t5, t8} 0.105
PW 11 = {t2, t3, t6, t7} 0.03
PW 12 = {t2, t3, t6, t8} 0.07
PW 13 = {t2, t4, t5, t7} 0.045
PW 14 = {t2, t4, t5, t8} 0.105
PW 15 = {t2, t4, t6, t7} 0.03
PW 16 = {t2, t4, t6, t8} 0.07

Table 2.2: Possible worlds for uncertain table in Table 2.1

in [29], all the other semantics are defined under the x-tuple model. In this section, we will

introduce the core formulations of top-k ranking and associated algorithms.

2.2.1 U-Topk and U-kRanks

In [30], the authors define top-k query answer for uncertain databases based on possible

worlds semantics. To motivate their approach, they provide the following example 1.

Example 2.2.2 Consider a radar-controlled traffic, where car speed readings are stored in

a database. Radar units detect speed automatically, while car identification, e.g., by plate

number, is usually performed by a human operator. In this database, multiple sources of

errors (uncertainty) exist. E.g., radar readings can be interfered by high voltage lines, close-

by cars cannot be precisely distinguished, or human operators might make identification

mistakes. Suppose Table 2.3 is a snapshot of a radar database in the last hour. Each reading

is associated with a confidence field “Conf” indicating its membership probability. Based

on radar locations, the same car cannot be detected by radars at two different locations

within 1 hour interval. This constraint is captured by the exclusiveness rules: (t2⊕t3), (t4⊕
t5), (t6⊕ t7). Table 2.4 lists all the possible worlds and their probabilities.

1We slightly change the example.
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Time Radar Car Model Plate No Speed Prob
t1 11:45 L1 Honda X-123 120 1.0
t2 11:50 L2 Toyota Y-245 130 0.7
t3 11:35 L3 Toyota Y-245 95 0.3
t4 12:10 L4 Mazda W-541 90 0.4
t5 12:25 L5 Mazda W-541 110 0.6
t6 12:15 L6 Chevy L-105 105 0.5
t7 12:20 L7 Chevy L-105 85 0.4

Table 2.3: A sample uncertain database

World Prob
PW 1 = {t1, t2, t4, t6} 0.14
PW 2 = {t1, t2, t4, t7} 0.112
PW 3 = {t1, t2, t4} 0.028

PW 4 = {t1, t2, t5, t6} 0.21
PW 5 = {t1, t2, t5, t7} 0.168
PW 6 = {t1, t2, t5} 0.042

PW 7 = {t1, t3, t4, t6} 0.06
PW 8 = {t1, t3, t4, t7} 0.048
PW 9 = {t1, t3, t4} 0.012

PW 10 = {t1, t3, t5, t6} 0.09
PW 11 = {t1, t3, t5, t7} 0.072
PW 12 = {t1, t3, t5} 0.018

Table 2.4: Possible worlds for sample uncertain database in Table 2.3

Two different definitions of top-k query answer are given in [30]. One is called Uncer-

tain Top-k Query (U- Topk), and it is defined as follows.

Definition 2.2.3 Uncertain Top-k Query (U-Topk): Let D be an uncertain database

with possible worlds space PW = {PW 1, ..., PWn}. Let T = {T 1, ..., Tm} be a set

of k-length tuple vectors, where for each T i ∈ T : (1) Tuples of T i are ordered ac-

cording to their scores, and (2) T i is the top-k answer for a non-empty set of possible

worlds PW (T i) ⊆ PW . A U-Topk query, based on scores, returns T ∗ ∈ T , where

T ∗ = argmaxT i∈T (
∑

w∈PW (T i)(Pr(w))).

An U-Topk query answer is a tuple vector with the maximum aggregated probability of

being top-k across all possible worlds. The U-Top2 query answer for the example above is

{t2, t1} with probability 0.7.

Another notion of top-k query answer is called Uncertain k Ranks Query (U-kRanks).

The definition is as follows.
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Definition 2.2.4 Uncertain k Ranks Query (U-kRanks): Let D be an uncertain database

with possible worlds space PW = {PW 1, ..., PWn}. For i = 1...k, let{x1
i , ..., x

m
i }

be a set of tuples, where each tuple xj
i appears at rank i in a non empty set of possible

worlds PW (xj
i ) ⊆ PW based on scores. A U-kRanks query , based on scores, returns

{x∗i ; i = 1...k}, where x∗i = argmax
xj

i
(
∑

w∈PW (xj
i )

(Pr(w))).

The tuples of U-kRanks query answer may not form a possible world. But each tuple is

the winner in its position. The U-2Ranks query answer for the example above is {t2, t1}.

In [30] algorithms are designed to find top-k tuples for each of the definitions above.

They create a state graph for the problem and use an A∗-like search algorithm to find the

result. The complexity of the algorithm is exponential. In [31], with the internal structure of

the problem, new algorithms are designed with polynomial complexity to find top-k tuples

following the same definition given in [30].

2.2.2 PT-k query answer

In [28], the concept of probability threshold top-k query (PT-k query) is introduced. First,

it defines the top-k probability of a tuple ti to be the sum of the probabilities of all the

possible worlds in which ti is one of the top-k tuples (k tuples with highest scores). Given

a probability threshold p, the answer set of a PT-k query is the set of all tuples whose top-k

probability values are at least p. Then, exact and approximate algorithms are proposed to

find the answer set of a PT-k query. For Example 2.2.1, the PT-2 query answer is t1 and t5.

In [28], a polynomial time algorithm is proposed to compute the PT-k query answer.

Pruning is also used in [28] to improve the performance of the proposed algorithms.

2.2.3 Expected rank

In [34], the authors propose a definition of top-k ranking called expected rank for attribute-

level uncertainty model and tuple-level uncertain model in uncertain databases.

The tuple-level uncertain model is actually the x-tuple model which we have introduced

before. In attribute-level uncertain model, the uncertain database is a table of N tuples.

Each tuple has one attribute whose value is uncertain. The values of the uncertain attribute

of a tuple are described by a discrete probability distribution. A possible world consists of

N tuples and each of them takes one value for the uncertain attribute according to its prob-

ability distribution. The probability of a possible world is the product of the probabilities

of all the values of the tuples in this possible world. The attribute-level uncertain model has

many practical applications [47, 48, 49, 50, 51].
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The rank of a tuple in a possible world W is defined to be the number of tuples whose

values are higher than this tuple. The rank of a tuple ti in W

rankW (ti) =| {tj ∈ W | vj > vi} |

Let Ω be the set of all the possible worlds. The expected rank of ti in attribute-level

uncertain model

r(ti) =
∑

W∈Ω,ti∈W

Pr(W ) · rankW (ti)

For tuple-level uncertain model, we define rankW (ti) = |W | when a possible world

W does not contain ti. The expected rank of ti in tuple-level uncertain model

r(ti) =
∑

ti∈W

Pr(W ) · rankW (ti) +
∑

ti /∈W

Pr(W ) · |W | =
∑

W∈Ω

Pr(W ) · rankW (ti)

Then the top-k tuples are the k tuples with lowest expected ranks.

In [34], polynomial time algorithms are designed for finding top-k tuples for both

attribute-level uncertain model and tuple-level uncertain model. Some pruning methods

are applied to improve the performance of the algorithms. In [34], the notion of expected

rank is defined formally only for one attribute under ranking. The authors argue that the

definition of expected rank can be extended to multiple attributes as well.

2.2.4 Parameterized ranking functions

In [29], the authors propose a definition of top-k ranking in uncertain databases based on

the notion of parameterized ranking functions. The parameterized ranking function (PRF)

for a given tuple t is defined as:

Υ(t) =
∑

W∈PW (t)

ω(t, βW (t))× Pr(W )

where PW (t) is the set of all the possible worlds containing t, βW (t) is the position of t in

the possible world W (according to score(t)), and ω(t, i) is a weight function: T ×N → C

(C is the set of complex numbers). We will call Υ(t) the PRFω value of t.

In [29], a special class of PRFω functions, named PRF e, is proposed. A PRF e

function requires the weight function to be ω(i) = αi, where α is a constant and may be a

real or a complex number.

The approach based on PRF provides a general definition to cover a wide range of

ranking functions; e.g., some top-k ranking definitions introduced earlier are special cases.
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When we set ω(t, i) = score(t), this is the Expected Score defined in [34]. The top-k

tuples under the definition of expected score is the k tuples with highest expected scores.

When we set

ω(i) =
{

1 if i ≤ k
0 if i > k

this is almost the PT-k query answer defined in [28]2.

When we set

ωj(i) =
{

1 if i = j
0 otherwise

for some 1 ≤ j ≤ k, we can see that the tuple with largest Υωj (t) value is the rank-j answer

in U-kRanks defined in [30].

In [29], algorithms are formulated for the computation of top-k tuples under the defini-

tion of PRFω and PRF e, respectively. These algorithm are designed for the probabilistic

and/xor tree model which is a data model for uncertain databases. The x-tuple model is a

special case of probabilistic and/xor tree model. So the algorithms in [29] can be applied

to x-tuple model. Under the x-tuple model, two algorithms are proposed for the computa-

tion of top-k tuples for PRFω, one of which runs O(n3) time and the other O(n2log2n)

time. Under the x-tuple model, the complexity of the algorithm to compute top-k tuples for

PRF e is O(n log n). When all the tuples have been sorted in a decreasing order of their

scores, the complexity reduces to O(n).

2.3 Ranking Continuous Probabilistic Datasets

For the top-k ranking we introduced in Section 2.2, the domain of uncertain data is discrete.

However continuous domain of uncertain data arises in many areas [52, 53, 54, 55]. In

[56], the authors propose a definition of parameterized ranking function to rank tuples with

uncertain scores which are captured by a continuous probability distribution. Let us assume

we are given a probabilistic dataset consisting of n tuples, each of which has an uncertain

score which is described by a continuous probability distribution. For a tuple ti, let us

denote by si the random variable corresponding to its score, and by ui the probability

density function of si. We define the support of ui as the set of reals where ui is nonzero.

The cumulative density function of si is:

ρi(l) = Pr(si ≤ l) =
∫ l

−∞
ui(x)dx

2The definition here is slightly different from the definition in [28]. We return k tuples with highest PRF
values. In [28], they return all the tuples with PRF values higher than a threshold.
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A tuple is also associated with an existence probability to represent the probability of

existence of this tuple in the dataset (a tuple may or may not exist in the dataset). The

uncertain tuples and attribute scores are independent of each other.

A possible world consists of some tuples each of which has a value. The domain of

a tuple may be infinite (from a continuous domain), so there can be an infinite number of

possible worlds. We use r(t) to denote the position of tuple t in a possible world. If a

tuple does not exist in a possible world, we denote its position by ∞. Pr(r(t) = j) is the

probability that t is ranked at position j. ω : T ×N → C is a weight function that maps a

tuple-rank pair to a complex number. The parameterized ranking function is defined as:

Υω(t) =
∑

i>0

ω(t, i)Pr(r(t) = i)

A top-k query returns the k tuples with the highest |Υω| values.

When the probability distribution of the scores is uniform or piecewise polynomial,

polynomial-time exact algorithms are given to compute top-k tuples. When the probability

distribution is uniform and we do not consider tuple uncertainty, the complexity of the

algorithm is O(
∑

j m3
j ). When the probability distribution is piecewise polynomial and we

do not consider tuple uncertainty, the complexity of the algorithm is O(γ2
∑

j m3
j ). Here,

γ is the maximum degree of the piecewise polynomials. We introduce mj below. When

considering tuple uncertainty, the complexities of the algorithms are still polynomial.

For a uniform distribution, we assume a tuple ti’s support interval is [li, ui]. The prob-

ability density function ui of si is uniform over [li, ui]. We assume there are n tuples. For

simplicity, we assume all the li,ui are different. So there are 2n points which partition the

real line into 2n+1 small intervals. For each of this small interval Ij (1 ≤ j ≤ 2n+1), let

Mj be the set of tuples whose score interval contains Ij . Let mj = |Mj |. We can see that

the maximal value of mj is n. But in general, it is much smaller than n, and the maximal

number of j is 2n + 1.

For a piecewise polynomial distribution, a tuple ti’s support interval can be divided into

some small parts. We assume the maximal number of pieces of a tuple’s support interval is

τ . Then there are at most n(τ +1) points which partition the real line into n(τ +1)+1 small

intervals. For each of this small interval Ij , let Mj be the set of tuples whose score interval

contains Ij . Let mj = |Mj |. We can see that the maximal value of mj is n. Generally, it is

much smaller than n, and the maximal number of j is n(τ + 1) + 1.
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2.4 Top-k Ranking with Uncertain Score

In [35], the authors propose to rank records with uncertain scores in databases. In some

applications, the score of a record ti is modeled as a probability density function fi defined

on a score interval [loi, upi]. The interval-based score representation can induce a partial

order over database records. If a record’s lower bound is higher than another record’s upper

bound, we can order this record ahead of the other record. Otherwise, there is no order

between these two records. Then we get a partial order among these records. The linear

extensions of the partial order are all the possible total orders that are consistent with this

partial order. In this paper, each linear extension is associated with a probability. The paper

considers different ranking queries. An UTop-Rank(i,j) query reports the most probable

record to appear at any rank i...j in possible linear extensions. An l-UTop-Rank(i, j) query

reports the l most probable records to appear at a rank i...j. An UTop-Prefix(k) query

reports the most probable linear extension prefix of k records. An UTop-set(k) query reports

the most probable set of top-k records of linear extensions. Approximation algorithms are

designed to compute answers to queries.

2.5 Ranking Objects with Relations

Agrawal et al. [36] propose a method for ranking tuples when we only know some relations

between tuples. We can treat tuples as objects. The paper gives an example of actors, and

we want to rank their popularity. But we do not have exact values to represent the degree of

popularity. Instead, we know some preferences between actors, such as A is more popular

than B and C, and B is more popular than D. In the paper, it is assumed that this order

can be any order, e.g., it doesn’t have to satisfy antisymmetry or transitivity. A simple

method is then used to find the k most popular actors. Assume there are m different sets of

preferences each of which is specified by a partial order on actors. Given a partial order, the

method in the paper finds a total order that satisfies the partial order. Then this total order

is updated by putting the actor without any preferences with other actors at the end of the

order. Then for each actor, a score n − i + 1 is assigned, where n is the number of actors

and i the position of the actor in this order. Then for each set of preferences, each actor has

a score. An actor thus has m scores. The paper gives an aggregation function designed by

the authors themselves to get an aggregation score which combines the m scores for each

actor. Then the top-k actors are the k actors with highest aggregation scores.
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2.6 Ranking in World Wide Web

PageRank [37] is a link analysis algorithm to measure the relative importance of the ele-

ments in a linked graph, such as World Wide Web. Generally speaking, this algorithm tries

to capture the relations between pages based on analyzing the link structure of the web.

These relations can be described by a group of linear equations:

PR(pi) =
1− d

N
+ d

∑

pj∈M(pi)

PR(pj)
L(pj)

where pi is a page, PR(pi) is the page rank of the page pi, M(pi) is the set of pages that

link to pi, d is the damping factor, L(pj) is the number of outbound links on page pj , and

N is the total number of pages.

This is a system of linear equations over N variables (pages) and N equations (each

page has an equation). So we can compute the page rank PR(pi) from the system of linear

equations.

2.7 Other Research on Ranking

There are some other works on ranking. In [38], an automated ranking method for the

query results in a database is proposed. It mimics the idea of TF-IDF (term frequency-

inverse document frequency) in Information Retrieval to rank tuples. In [57], new methods

are proposed to derive a ranking function for a database query. They adapt and apply

principles of probabilistic model from Information Retrieval to structured data. Machine

learning methods can also be used for ranking [58, 59, 60].
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Chapter 3

Pruning for Top-k Ranking:
Theoretical Development

In this chapter, we investigate the theoretical basis for pruning for top-k ranking based on

parameterized ranking functions. There are two key ideas in our work. The first is that,

given a tuple t, the definition of PRFω(t) can be equivalently reformulated as the sum of

some partial PRFω values of t, using a structure devised from the symmetry property of

tuple sets. This reformulation tells us what part of computation of PRFω might be pruned.

This is followed by a derivation of a generic method for pruning, which serves as a model

for developing concrete pruning methods.

This chapter involves a number of nontrivial technical results and here is a road map

for it. The next section provides an outline of computing top-k tuples. That is, given a

top-k algorithm, we sketch how pruning may be added into it. This is intended to give the

reader an overall picture of the role of pruning, and how it may be integrated into an existing

algorithm, in the computation of top-k tuples. The reader can also benefit from the hints

on the problems that need to be resolved. In Section 3.2, we study the symmetry property

of tuple sets, which forms the basis of the mathematical development that leads to a new

representation of PRFω values, which is presented in Section 3.3. Then, in Section 3.4 we

formulate a general method for pruning. Finally in Section 3.5 we provide a summary.

3.1 Outline of Computing Top-k Tuples

Given an algorithm for computing top-k tuples under the definition of PRF , we can com-

bine it with our pruning methods. Below, we outline this process for the algorithms given in

[29] for PRFω, where the tuples of an uncertain database are sorted in a descending order

based on their scores, and are retrieved one by one.
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We stress the assumption that the tuples stored in an uncertain database are sorted in

a descending order of their scores and are retrieved one by one in that order - this is a

common assumption in the literature, and an assumption in our work as well. From the

(worst case) complexity point of view, sorting tuples takes O(n log n) time, which is lower

than the overall complexity of computing top-k tuples for PRFω.1

In the combined algorithm, we maintain a heap Lk of the k tuples with the highest

PRFω values retrieved so far in the descending order of their PRFω values. For the first k

tuples, they are stored in Lk along with their computed PRFω values. For a subsequently

retrieved tuple, its PRFω value may or may not be computed, depending on the computed

upper bound of its PRFω value.

We maintain a special tuple, called tlowest, from the retrieved tuples (the details on how

to choose it will be given later). The tuple tlowest will be used in computing the upper

bound of the next retrieved tuple. Thus, after the first k tuples, we retrieve a tuple tnew

and compute its upper bound. If this upper bound is less than or equal to Υ(t), for any t

in Lk, then it is guaranteed that tnew is not a top-k tuple, hence Υ(tnew) is not computed.

Otherwise, Υ(tnew) is computed and tlowest updated if necessary. If Υ(tnew) is higher than

the lowest PRFω value in Lk, we replace a tuple in Lk with the lowest PRFω value with

tnew. After all the tuples are retrieved, Lk holds the top-k tuples.

The most important missing detail in this outline is how to compute an upper bound of

Υ(tnew). Related questions include:

• What could be an upper bound of Υ(tnew),

• In what sense it is a tight upper bound, and

• Is there a simple way to determine such an upper bound for ranking functions of

PRF e?

These questions will be answered in the rest of this chapter. But first, let us reveal a

crucial property in our theoretical development - the symmetry property among tuple sets.

3.2 Symmetry among Tuple Sets

In this section, we study a fundamental property among tuple sets in uncertain databases

under the x-tuple model, which is called symmetry. A tuple set is just a collection of tuples.
1As a related remark, later in this thesis we will often see the phrases like “given two tuples t1 and t2 such

that score(t1) ≥ score(t2)”. This implies that t1 is retrieved before t2 in an algorithmic context.
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For each generation rule ri ∈ T , if Pr(ri) < 1, for technical convenience, we create a

tuple ®i, called the virtual tuple of ri. Virtual tuples do not participate in ranking, hence

their scores are irrelevant. Thus we assume a virtual tuple has no score and is not involved

in any comparison of scores. But a virtual tuple has a probability, Pr(®i) = 1−Pr(ri). To

distinguish, we call the other tuples of this generation rule the real tuples of the generation

rule. A virtual tuple has the same exclusive relation with other tuples of the same generation

rule. Note that the probability of a possible world is the product of the membership prob-

abilities of all the tuples in it, one from each generation rule, be it a real tuple or a virtual

tuple. In addition, a tuple set may contain virtual tuples if not said otherwise explicitly.

In the sequel, by abuse of notation, we also use a generation rule r as a set, which

consists of all the tuples (including both real and virtual ones) that are involved in r.

Definition 3.2.1 Let η = {t1, ..., tm} and η′ = {s1, ..., sm} be two tuple sets. η and η′ are

said to be symmetric iff

1. tuples in η (resp. η′) are from different generation rules, and

2. for each t ∈ η there is exactly one s ∈ η′ from the same generation rule, and vice

versa.

Consider Example 2.2.2. The tuple sets {t2, t4} and {t3, t5} are symmetric, so are the

tuple sets {t2, t4} and {t2, t5}.

Symmetric tuple sets possess some interesting properties. The following lemma says

that symmetric tuple sets are closely related to symmetric possible worlds. Its proof is

routine and omitted

Lemma 3.2.2 If two tuple sets η and η′ are symmetric, then for every possible world W

such that η ⊂ W , there exists a possible world W ′ = (W − η) ∪ η′, and vice versa.

The possible worlds W and W ′ in Lemma 3.2.2 are then said to be symmetric w.r.t. η

and η′. That is, W ′ can be obtained by replacing η in W with η′, and vice versa.

Note that two symmetric tuple sets may induce more than one pair of symmetric pos-

sible worlds. By this lemma, the one-to-one correspondence holds for all induced possible

worlds.

An interesting property of symmetric possible worlds is that the ratio of the probabilities

of two symmetric possible worlds is the same as that of the product of the membership

probabilities of all the tuples in these two tuple sets that induce them.

29



Lemma 3.2.3 If two possible worlds W and W ′ are symmetric w.r.t. η and η′, then Pr(W )
Pr(W ′) =∏

t∈η Pr(t)∏
t∈η′ Pr(t) .

Proof. Let W = A ∪ η and W ′ = A ∪ η′. If A 6= ∅, we have

Pr(W ) =
∏

t∈W Pr(t) =
∏

t∈A Pr(t)
∏

t∈η Pr(t)
Pr(W ′) =

∏
t∈W ′ Pr(t) =

∏
t∈A Pr(t)

∏
t∈η′ Pr(t)

So we can get Pr(W )
Pr(W ′) =

∏
t∈η Pr(t)∏
t∈η′ Pr(t) . If A = ∅, we have

Pr(W ) =
∏

t∈W Pr(t) =
∏

t∈η Pr(t)
Pr(W ′) =

∏
t∈W ′ Pr(t) =

∏
t∈η′ Pr(t)

In this case we still have Pr(W )
Pr(W ′) =

∏
t∈η Pr(t)∏
t∈η′ Pr(t) . 2

Let Pr(η) be the sum of the probabilities of the possible worlds in PW (η). We then

have

Lemma 3.2.4 For a tuple set η in which all tuples are involved in different generation rules,

we have Pr(η) =
∏

ti∈η Pr(ti).

Proof. Let η = (t1, t2, ..., tl) and ti be involved in the generation rule rsi . Let rv1 , rv2 , ..., rvh

be all the generation rules except rs1 , rs2 , ..., rsl
. For each generation rule rvi , we assume

tvi1, tvi2, ..., tvipvi
are all the tuples involved in it. Note that

∑pvi
j=1 Pr(tvij) = 1.

A possible world in PW (η) must contain a tuple ti from rsi . Clearly, such a possible

world also contains one of the tuples tvij from rvi . Thus, we have

Pr(η)
=

∏
ti∈η Pr(ti)×

∑pv1
j1=1 ...

∑pvh
jh=1 Pr(tv1j1)× ...× Pr(tvhjh

)
=

∏
ti∈η Pr(ti)×

∑pv1
j1=1 ...

∑pvh−1

jh−1=1 Pr(tv1j1)× ...× Pr(tvh−1jh−1
)×∑pvh

jh=1 Pr(tvhjh
)

=
∏

ti∈η Pr(ti)×
∑pv1

j1=1 ...
∑pvh−1

jh−1=1 Pr(tv1j1)× ...× Pr(tvh−1jh−1
)

= ...

=
∏

ti∈η Pr(ti)×
∑pv1

j1=1 Pr(tv1j1) =
∏

ti∈η Pr(ti).

2

3.3 A New Representation of Υω

Our goal is to develop a general approach to generating an upper bound of Υ(t), for a given

tuple t. For simplicity, we may just call it an upper bound of t. A key finding in our work

is a new representation of PRFω values, which is presented in this section.
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Warning: The results presented in this section are nontrivial, and sometimes their devel-

opment could be quite involved, due to various mathematical manipulations of possible

worlds. We will give intuitions whenever possible, but the notations could be overwhelm-

ing at the first. The reader is advised to go through each concept and notation carefully.

Throughout this section and the rest of this chapter, given an uncertain database T , we

consider a set of q tuples Q = {t1, t2, ..., tq}. As we are interested in the upper bound

of a tuple t ∈ Q and in our method we will use at least one another tuple as a reference,

we assume q ≥ 2. Given such a Q, there is a set of generation rules R = {r1, r2, ..., rl}
associated with Q, i.e., every tuple in Q is in some generation rule in R and every ri ∈ R

contains at least one tuple in Q. Clearly, l ≤ q.

For any t ∈ Q, our interest is to find an upper bound of it. For this, we want to find

some real numbers ci such that

q∑

i=1

ciΥ(ti) ≥ 0 (3.1)

Note that one of the ti ∈ Q is t. Let us denote its coefficient in the above inequation by c.

If c < 0, the inequation in (3.1) above can be transformed to

Υ(t) ≤
∑

ti∈Q,ti 6=t

−ci

c
Υ(ti) (3.2)

That is, the value of Υ(t) cannot be higher than the right hand side of (3.2), which is thus an

upper bound of t. The lower such an upper bound, the better (tighter). Since this expression

is essential in this thesis and frequently referred to, let us give it a special term - the upper

bound expression. In particular, the theoretical development for pruning in this chapter is

centered around the question of how to assign the coefficients of the upper bound expression

such that the inequation in (3.2) holds.

The upper bound expression above, i.e., the inequation in (3.2) does not tell us how to

compute such an upper bound, for two reasons:

• we may not have computed all of the Υ(ti) values of the other tuples in Q, and

• we were not told how to choose ci so that inequation (3.2) is guaranteed to hold for

any given q tuples.

The theoretical development of this section aims at the methods that resolve these ques-

tions.
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3.3.1 A novel representation of PRF ω

We introduced the parameterized ranking function in Subsection 2.2.4. That is, such a

function Υ on a tuple t is defined as:

Υ(t) =
∑

W∈PW (t)

ω(t, βW (t))× Pr(W ) (3.3)

where PW (t) is the set of all the possible worlds containing t, βW (t) is the position of t in

the possible world W (according to score(t)), and ω(t, i) is a weight function: T ×N → C

(C is the set of complex numbers).

In our work, we restrict ω(t, i) to ω(i), which means the weight function is independent

of t, and the values of ω(i) to real numbers. Further, we assume ω(i) is monotonically

non-increasing. This means ω(i) ≥ ω(i + 1), for all i with 1 ≤ i ≤ n − 1, assuming n

tuples. This assumption is reasonable, since in normal cases a higher position is at least

as desirable as those behind it and thus should be given a higher weight. For PRF e, we

assume α is a constant real number and 0 < α < 1. We make this assumption because only

when 0 < α < 1, ω(i) = αi is monotonically non-increasing (we will not consider the

trivial cases where α = 0 or 1).

Given a tuple ti ∈ Q (note that Q contains only real tuples), its PRFω value Υ(ti) is

defined above as:

Υ(ti) =
∑

W∈PW (ti)

ω(βW (ti))× Pr(W ) (3.4)

Note that the ti here is the t in equation (3.3). This notational change is due to the fact

that later we need to refer to each of the elements in Q, and talk about some relationships

between different elements in Q, which are distinguished by their subscripts.

We will derive a new representation of Υ(ti), which serves as a critical element in

our work. The idea is to divide all the possible worlds containing ti into l groups, such

that Υ(ti) can be expressed by the sum of the part PRFω values of ti, each of which is

obtained from the possible worlds in a group. That is, each group contributes to a part of

the Υ(ti) value.

We now give the details. Suppose, among l generation rules R = {r1, ..., rl}, ti ∈ rd,

for some rd ∈ R. Consider a tuple set η of size l, such that ti ∈ η and each tuple in η is

from a distinct generation rule in R (thus all tuples in η are from different generation rules).

Let us write it in the form

{ts1 , ts2 , ..., tsd−1
, ti, tsd+1

, ..., tsl
}

32



where tsj ∈ rj . Let us denote by ∆i the set of all such tuple sets. Note that the tuple sets

in ∆i are symmetric to each other. Recall that symmetry means, assuming η1, η2 ∈ ∆i,

for every possible world W1 such that η1 ⊂ W1, there exists a possible world W2 =

(W1− η1)∪ η2, and vice versa. That is, W2 can be obtained by replacing η1 in W1 with η2,

and vice versa.

We now divide ∆i into l sets Sij , for 0 ≤ j ≤ l − 1:

Sij = {S ∈ ∆i | there are exactly j real tuples in S s.t. for each such tuple t,

score(t) > score(ti)} (3.5)

We call Sij the j-rank set of ti w.r.t. Q. The elements in Sij are “equivalent” in the sense

that each of them contains exactly j tuples whose scores are higher than score(ti).

Suppose η ∈ Sij . Let us define Υη(ti) to be the PRFω value of ti obtained from all the

possible worlds in PW (η), where PW (η) is the set of all the possible worlds containing η,

i.e.,

Υη(ti) =
∑

W∈PW (η)

ω(βW (ti))× Pr(W ) (3.6)

This is the representation of part PRFω value of ti that we talked about above.

Recall that Pr(η) denotes the sum of the probabilities of the possible worlds in PW (η).

We then can show

Theorem 3.3.1 For any two tuple sets η1, η2 ∈ Sij , we have Υη1 (ti)

Pr(η1) = Υη2 (ti)

Pr(η2) .

That is, the ratio between Υη(ti) and Pr(η) is the same for all tuple sets η ∈ Sij . This is

an important property in our pruning theory.

Proof. Since η1, η2 ∈ Sij , they are symmetric. We assume W1,W2, ..., We are all the

possible worlds which contain all the tuples in η1. From Lemma 3.2.2, there exist possible

worlds W ′
1,W

′
2, ..., W

′
e which contain all the tuples in η2, Wv and W ′

v (1 ≤ v ≤ e) are

symmetric w.r.t. η1 and η2, Wv = A ∪ η1 and W ′
v = A ∪ η2 (A ⊆ T , A ∩ η1 = ∅, and

A ∩ η2 = ∅). As η1, η2 ∈ Sij , η1 and η2 both contain j tuples that have a higher score than

ti. So we know that ti has the same position in Wv and W ′
v. So βWv(ti) = βW ′

v
(ti) and

ω(βWv(ti)) = ω(βW ′
v
(ti)). From equation (3.6), we have

Υη1(ti) =
∑e

v=1 ω(βWv(ti))× Pr(Wv)
Υη2(ti) =

∑e
v=1 ω(βW ′

v
(ti))× Pr(W ′

v)
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From Lemma 3.2.3, we have

Pr(Wv)
Pr(W ′

v)
=

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)

So we have

Υη1(ti) =
∑e

v=1 ω(βW ′
v
(ti))×

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu) × Pr(W ′
v)

=
∏

tu∈η1
Pr(tu)∏

tu∈η2
Pr(tu) ×

∑e
v=1 ω(βW ′

v
(ti))× Pr(W ′

v)

=
∏

tu∈η1
Pr(tu)∏

tu∈η2
Pr(tu) ×Υη2(ti)

It follows that
Υη1(ti)
Υη2(ti)

=

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)

From Lemma 3.2.4, we have

Pr(PW (η1)) =
∏

tu∈η1
Pr(tu)

Pr(PW (η2)) =
∏

tu∈η2
Pr(tu)

So we have
Υη1(txi)
Υη2(ti)

=
Pr(PW (η1))
Pr(PW (η2))

That is
Υη1(ti)

Pr(PW (η1))
=

Υη2(ti)
Pr(PW (η2))

This completes the proof. 2

The fact that the ratio between Υη(ti) and Pr(η) is the same for all tuple sets η ∈ Sij

may not a total surprise, as the tuple sets in Sij are in a sense equal (they form an equivalent

relation). As this result is critical in our theory of pruning, let us give it a special notation:

Given a non-empty Sij and η ∈ Sij , define the PRFω value ratio of Sij , denoted Uij , as

Uij =
Υη(ti)
Pr(η)

(3.7)

Intuitively, one can think of Uij as some kind of average PRFω value; more precisely

(unfortunately by a somewhat awkward sentence), it is the average PRFω value of ti per

unit value of the probabilities of the possible worlds containing η.

We now show an example of the concepts of Sij and Uij .

Example 3.3.2 Consider Example 2.2.2 again. For convenience, let us provide the uncer-

tain table here in Table 3.1.

Assume Q = {t2, t5}. Let us use ∆1, S10 and S11 for t2, and similarly ∆2, S20 and S21

for t5. That is, these two tuples are identified by their positions in Q: the tuple t2 is indexed

by subscript 1 and t5 by subscript 2.
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Time Radar Car Model Plate No Speed Prob
t1 11:45 L1 Honda X-123 120 1.0
t2 11:50 L2 Toyota Y-245 130 0.7
t3 11:35 L3 Toyota Y-245 95 0.3
t4 12:10 L4 Mazda W-541 90 0.4
t5 12:25 L5 Mazda W-541 110 0.6
t6 12:15 L6 Chevy L-105 105 0.5
t7 12:20 L7 Chevy L-105 85 0.4

Table 3.1: An example uncertain table

For example, ∆1 is the set of the tuple sets each of which consists of tuples from distinct

generation rules involved in Q, i.e., ∆1 = {{t2, t4}, {t2, t5}}. In both of these two tuple sets

there is no tuple with a higher score than t2. So, S10 = {{t2, t4}, {t2, t5}} and S11 = ∅.

Similarly, we have ∆2 = {{t5, t2}, {t5, t3}}, and S20 = {{t5, t3}} and S21 = {{t5, t2}}.

Assume the weight function is ω(i) = 5− i. By Theorem 3.3.1, we know

U10 =
Υ{t2,t4}(t2)

Pr(PW ({t2, t4})) =
Υ{t2,t5}(t2)

Pr(PW ({t2, t5})) = 4

U20 =
Υ{t5,t3}(t5)

Pr(PW ({t5, t3})) = 3

U21 =
Υ{t5,t2}(t5)

Pr(PW ({t5, t2})) = 2

2

The tuple set η in (3.6) is just one in Sij . We are interested in all η in Sij . Let

PW (Sij) = ∪η∈SijPW (η), and define

ΥSij (ti) =
∑

η∈Sij

Υη(ti)

That is, ΥSij (ti) is the part of the PRFω value obtained from the possible worlds in

PW (Sij).

Now, let us define the following notation:

Pr(Sij) =
∑

η∈Sij

Pr(η)

That is, Pr(Sij) is the sum of the probabilities of all possible worlds that contain all the

tuples of a tuple set in Sij . We call Pr(Sij) the probability of Sij . Note that Pr(Sij) = 0

when Sij is empty.
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It is easy to check that

Υ(ti) =
∑l−1

j=0 ΥSij (ti)
=

∑l−1
j=0

∑
η∈Sij

Υη(ti)
=

∑l−1
j=0

∑
η∈Sij

Uij × Pr(η) [by (3.7)]
=

∑l−1
j=0 Uij × Pr(Sij)

This is to say that we have arrived at a new representation of Υ(ti):

Υ(ti) =
l−1∑

j=0

Uij × Pr(Sij) (3.8)

Equation (3.8) above is actually quite intuitive: for each j, Uij × Pr(Sij) is the part of

the PRFω value of ti obtained from the possible worlds in PW (Sij); then the sum of all

these PRFω values of ti is Υ(ti). This is how all part PRFω values of ti added together

gives us the the PRFω values of ti.

Here, Υ(ti) is expressed in terms of Uij and Pr(Sij). We will compute the latter but

not the former (if we do compute both, we then have computed Υ(ti) - there is no pruning).

Notice that the equation

Pr(ti) =
l−1∑

j=0

Pr(Sij) (3.9)

holds, since both sides equal the sum of the probabilities of all the possible worlds contain-

ing ti. This equation will be used frequently later.

For the computation of Pr(Sij), we can show that, for each tuple ti, we need O(l2+ lτ)

time to compute Pr(Sij), where τ is the maximum number of real tuples in a generation

rule. Hence for q tuples, the complexity is O(ql2 + qlτ). In real applications, τ is usually

a very small number compared with the number of tuples in an uncertain database. The

details of the algorithm and the complexity analysis are given below.

We adopt the idea of generating function in [29] for the computation of Pr(Sij).

Suppose tuple ti is involved in the generation rule rd. For each of the generation rules

r1, r2, ..., rd−1, rd+1, ..., rl, it divides the tuples involved in it into two parts. Some tuples

have higher scores than ti and others have lower or equal scores than ti. We define bih as

the sum of the probabilities of the tuples involved in rh(1 ≤ h ≤ l and h 6= d) which have

higher scores than ti. Here we assume a virtual tuple has lower score than any real tuple.

From the definition of bih, we know that 1− bih is the sum of the probabilities of the tuples

involved in rh which have equal or lower scores than ti. It is easy to see that we need O(lτ)

time to compute all the bih for ti. For each tuple ti, we define a set θi = {bih} (1 ≤ h ≤ l

and h 6= d).

36



Let us consider η ∈ ∆i. We assume η = {ts1 , ts2 , ..., tsd−1
, ti, tsd+1

, ..., tsl
} where

tsh
∈ rh. We construct a generating vector γ = 〈γ1, γ2, ..., γd−1, γd+1, ..., γl〉 for η. If

score(tsh
) > score(ti), γh = 1; otherwise, γh = 0. Some tuple sets in ∆i may have the

same generating vector.

We assume γ is a generating vector for some tuple sets in ∆i. We define Φγ as the set

of all the tuple sets in ∆i that have the generating vector γ. Let Pr(Φγ) be the sum of the

probabilities of all the tuple sets in Φγ . It is easy to see that

Pr(Φγ) = Pr(ti)
∏

h:γh=1

bih

∏

h:γh=0

(1− bih)

We notice that all the tuple sets in Φγ belong to the same Sij . Sij is the union of some

Φγ . Let |γ| be the number of 1 in γ. The condition that Φγ belongs to Sij is |γ| = j. We

can compute Pr(Sij) as follows.

Pr(Sij) = Pr(ti)
∑

|γ|=j

∏

h:γh=1

bih

∏

h:γh=0

(1− bih)

.

Let us see a function: F (x) =
∏n

i=1(ai + bix). The coefficient of xj in F (x) is given

by:
∑
|β|=j

∏
i:βi=0 ai

∏
i:βi=1 bi where β = 〈β1, ..., βn〉 is a boolean vector.

Now consider the following generating function: F i(x) = Pr(ti)×
∏

b∈θi
(1− b + b×

x) =
∑l−1

j=0 ajx
j .

We can see that the coefficient aj of xj in the expansion of F i(x) is Pr(Sij). We

can extend F i(x) to get cj in O(l2) time. Therefore, for each tuple ti, the complexity of

computing Pr(Sij) is O(l2 + lτ).

3.3.2 A key theorem

We have gone through some fairly involved technical development above, and it is time to

take a pause. Now, the reader may review the main symbols used so far and their meanings,

in Table 3.2, before moving to a key theorem.

The following is a key insight in our pruning methods.

Theorem 3.3.3 Suppose Sij1 , Sij2 , Si1j , and Si2j are non-empty, where (1 ≤ i, i1, i2 ≤ q)

and (0 ≤ j, j1, j2 ≤ l − 1). Then we have

(i) if j1 ≤ j2, then Uij1 ≥ Uij2;

(ii) if score(ti1) ≥ score(ti2), then Ui1j ≥ Ui2j .
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Table of Symbols
Q {t1, ..., tq} (q ≥ 2), the set of real tuples considered
R {r1, ..., rl} (l ≤ q), the set of relevant generation rules
τ the maximum number of real tuples in a generation rule in R
∆i the set of tuple sets of size l, s.t. ∀η ∈ ∆i, ti ∈ η and all tuples in η are

from distinct gen. rules in R
Sij Sij ⊆ ∆i s.t. ∀η ∈ Sij there are exactly j tuples with scores higher than

score(ti)
Uij the PRFω value ratio of Sij

PW (t) the set of possible worlds (PWs) that contain t
PW (η) the set of PWs that contain all tuples in η
PW (Sij) the union of PW (η), for each η ∈ Sij

Pr(η) the sum of the probabilities of the PWs containing all tuples in η
Pr(Sij) the sum of the probabilities of all PWs in PW (Sij)

Table 3.2: A summary of symbols and their meanings in theoretical development

Before we present a proof, let us remark that there are good intuitions of why the claims

given in theorem hold. In (i), for a tuple ti ∈ {t1, ..., tq}, the larger the j value, the lower

the Uij , since higher j means more tuples “ahead” in a possible world containing η. In

(ii), with the same j, the higher the score the higher the Uij , as higher score contributes

to higher average PRFω value per unit value of the probabilities of the possible world

containing η ∈ Sij .

Example 3.3.4 Consider Example 3.3.2 again. As an example of part (i) of Theorem 3.3.3,

one can see that U20 > U21, and as an example of part (ii), U10 > U20.

We now proceed to present a proof of the theorem.

Proof. By the assumption that these Sij are non-empty, we suppose η1 ∈ Sij1 and η2 ∈
Sij2 . We assume W1,W2, ..., We are all the possible worlds containing all the tuples in η1

and W ′
1,W

′
2, ..., W

′
e are all the possible worlds containing all the tuples in η2. Here, Wv

and W ′
v (1 ≤ v ≤ e) are symmetric w.r.t. η1 and η2. Let Wv = A ∪ η1 and W ′

v = A ∪ η2

where A ⊆ T , A ∩ η1 = ∅, and A ∩ η2 = ∅. As η1 ∈ Sij1 , η1 contains j1 tuples that have

a score higher than ti. Since η2 ∈ Sij2 , η2 contains j2 tuples with a score higher than ti.

Since j1 ≤ j2, compared with W ′
v, Wv must contain a less or equal number of tuples that

have a higher score than ti. So ti has an equal or higher position in Wv than W ′
v. As we

have assumed that the weight function is monotonically non-increasing, we get

ω(βWv(ti)) ≥ ω(βW ′
v
(ti))
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From Lemma 3.2.3, we have

Υη1(ti) =
∑e

v=1 ω(βWv(ti))Pr(Wv)Υη2(ti) =
∑e

v=1 ω(βW ′
v
(ti))Pr(W ′

v)
Pr(Wv)
Pr(W ′

v) =
∏

tu∈η1
Pr(tu)∏

tu∈η2
Pr(tu)

from which we derive

Υη1(ti)

=
∑e

v=1 ω(βWv(ti))×
∏

tu∈η1
Pr(tu)∏

tu∈η2
Pr(tu) × Pr(W ′

v)

=
∏

tu∈η1
Pr(tu)∏

tu∈η2
Pr(tu) ×

∑e
v=1 ω(βWv(ti))× Pr(W ′

v)

≥
∏

tu∈η1
Pr(tu)∏

tu∈η2
Pr(tu) ×

∑e
v=1 ω(βW ′

v
(ti))× Pr(W ′

v)

=
∏

tu∈η1
Pr(tu)∏

tu∈η2
Pr(tu) ×Υη2(ti)

So
Υη1(ti)∏

tu∈η1
Pr(tu)

≥ Υη2(ti)∏
tu∈η2

Pr(tu)

From Lemma 3.2.4, we get

Pr(PW (η1)) =
∏

tu∈η1
Pr(tu)

Pr(PW (η2)) =
∏

tu∈η2
Pr(tu)

which leads to
Υη1(ti)

Pr(PW (η1))
≥ Υη2(ti)

Pr(PW (η2))

That is, Uij1 ≥ Uij2 . 2

Now we present a generalization of Theorem 3.3.3 by removing the condition that Sij

be non-empty. When Sij is empty, it is meaningless to define Uij . For technical convenience

in our later exploration, we can define Uij to be a real number for any empty Sij so that

Theorem 3.3.3 holds when any of Sij is empty.

Before setting up Uij for empty Sij , we point out some properties of Sij . From the

definition of Sij , we know that for a fixed i, the non-empty sets Sij must be consecutive.

This means that it is impossible that Sih(0 ≤ h ≤ l − 3) and Si(h+2) are non-empty sets

and Si(h+1) is an empty set. From the definition of Sij , we also know there exist at least

one non-empty Sij for a fixed i. Notationally, given ti ∈ Q, let us denote the consecutive

sequence of all non-empty sets (w.r.t. ti) by

Sij1 , Si(j1+1), ..., Sij2

where 0 ≤ j1 ≤ j2 ≤ l − 1. Let us call Sij1 the first non-empty Sij for ti and Sij2 the last

non-empty Sij for ti. We can see that Si0, Si1, ..., Si(j1−1) and Si(j2+1), Si(j2+2), ..., Si(l−1)

are all empty sets.
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For any 1 ≤ i1, i2 ≤ q, let Si1j1 be the first non-empty Sij for ti1 , Si1j2 be the last non-

empty Sij for ti2 , Si2j3 be the first non-empty Sij for ti2 and Si2j4 be the last non-empty Sij

for ti2 . From the definition of Sij , we know that if score(ti1) ≥ score(ti2), then j1 ≤ j3

and j2 ≤ j4.

Now we set up Uij for empty Sij . For a tuple ti ∈ Q (1 ≤ i ≤ q), let Sij1 be the first

non-empty Sij for ti and Sij2 be the last non-empty Sij for ti. For an empty Sij , we set

Uij =
{

Uij1 if j < j1

Uij2 if j > j2

It is easy to check that after the set up, all Uij for Sij (empty or non-empty) satisfy the

conclusions in Theorem 3.3.3.

The argument above in fact constitutes a proof that Theorem 3.3.3 can be generalized

without the assumption that the given Sij be non-empty. We state this result formally below.

Theorem 3.3.5 Given Sij1 , Sij2 , Si1j , and Si2j , where (1 ≤ i, i1, i2 ≤ q) and (0 ≤
j, j1, j2 ≤ l − 1), we have

(i) if j1 ≤ j2, then Uij1 ≥ Uij2;

(ii) if score(ti1) ≥ score(ti2), then Ui1j ≥ Ui2j .

If ω(β(t)) ≥ 0 for any position β(t) (in this case, we say that the weight function ω

is non-negative), then according to (3.6) and (3.7), all Uij for non-empty Sij must be non-

negative. So in this situation, we also set Uij for empty Sij to be non-negative and make all

the Uij satisfy the conditions above.

3.4 A General Upper Bound Method

Recall that, given a set of real tuples Q = {t1, ..., tq}, our goal is to compute an upper

bound of a tuple t ∈ Q, expressed in form of (3.2). In this section we present a generic

method, which is independent of the number of tuples in Q, as long as there are at least

two.

We know that for each tuple ti ∈ Q, its PRFω value can be expressed in form of (3.8).

For this equation, we can multiply both sides with a constant ci to get

ciΥ(ti) = ci

l−1∑

j=0

Uij × Pr(Sij)

40



For each tuple in Q we have such an equation, so we have q equations. Let us add them

together to get

q∑

i=1

ciΥ(ti) =
q∑

i=1

l−1∑

j=0

ci × Uij × Pr(Sij) (3.10)

Recall that to get the upper bound expression in (3.2), all we need is to establish the

inequation in (3.1) (of course, with the assumption c < 0), which can be obtained from

equation (3.10) if we make its right hand side non-negative. This is our focus in the follow-

ing exploration.

Since Pr(Sij) in (3.10) is to be computed, we are left with Uij and a choice of the values

of ci. As we want to avoid the computation of Uij , we will utilize the relation between them

developed in Section 3.3.1. The idea is to transform the right hand side of (3.10) to a form

in terms of Uij , which is guaranteed to be non-negative without actually computing Uij .

We identify this form to be a summation of m terms, where m ≥ 1. Let us write it as

m∑

k=1

ak(Uij − Ui′j′) (3.11)

where ak > 0 is a real number, and each term involves a pair of distinct Uij and Ui′j′ such

that Uij ≥ Ui′j′ , where 1 ≤ i, i′ ≤ q, 0 ≤ j, j′ ≤ l − 1.

In general, there is no guarantee that there exists an assignment of ci so that such a trans-

formation is possible. However, whenever such an assignment exists (3.11) is guaranteed

to be non-negative.

Example 3.4.1 Assume two tuples t1 and t2, score(t1) ≥ score(t2), and we are interested

in an upper bound of t2. Suppose the PRFω values of the two tuples, expressed in the form

(3.8), are
Υ(t1) = 0.03U10 + 0.06U11

Υ(t2) = 0.2U20 + 0.7U21

From Theorem 3.3.5, we know that

U10 ≥ U11, U20 ≥ U21, U10 ≥ U20, U11 ≥ U21

If we set c1 = 1 and c2 = −0.1, we will get

Υ(t1)− 0.1Υ(t2)
= 0.03U10 + 0.06U11 − 0.02U20 − 0.07U21

= 0.02(U10 − U20) + 0.06(U11 − U21) + 0.01(U10 − U21)

The last expression is in the form (3.11), which involves three pairs of PRFω value ratios

with coefficients a1 = 0.02, a2 = 0.06, and a3 = 0.01. Clearly, the value of this expression
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is non-negative, which guarantees Υ(t1) − 0.1Υ(t2) ≥ 0. So an upper bound of t2 is

obtained by Υ(t2) ≤ 10Υ(t1).

Sometimes it may not be possible to transform the right hand side of (3.10) to (3.11),

in which case we can relax the condition by allowing an extra expression, as in

m1∑

k=1

ak(Uij − Ui′j′) +
m2∑

k=1

bkUij (3.12)

where m1 ≥ 0 and m2 ≥ 1. The first summation is similar to (3.11). The second involves

a subset of PRFω value ratios, for 1 ≤ i ≤ q and 0 ≤ j ≤ l − 1, with coefficients

bk > 0. In this situation, if ω(β(t)) ≥ 0 for any position β(t), all Uij must be non-negative.

Then (3.12) must be non-negative. It follows that the right hand side of (3.10) must be

non-negative.

Example 3.4.2 Assume two tuples t1 and t2 with score(t1) ≥ score(t2), and suppose

Υ(t1) = 0.02U10 + 0.08U11

Υ(t2) = 0.2U20 + 0.6U21

Let c1 and c2 be the coefficients of t1 and t2 respectively, as in equation (3.10). Assume

the weight function is non-negative. From Theorem 3.3.5, we know that U10 ≥ U11, U20 ≥
U21, U10 ≥ U20, and U11 ≥ U21. It can be shown that there does not exist an assignment

that leads to a transformation to (3.11). However, a transformation to (3.12) is possible. If

we set c1 = 1 and c2 = −0.1, we will get

Υ(t1)− 0.1Υ(t2)
= 0.02U10 + 0.08U11 − 0.02U20 − 0.06U21

= 0.02(U10 − U20) + 0.06(U11 − U21) + 0.02U11

The second line above is in the form of the right hand side of (3.10), and the last expression

is in the form (3.12), whereas the term 0.02U11 corresponds to the second summation. Thus,

we conclude Υ(t1)− 0.1Υ(t2) ≥ 0.

Theorem 3.4.3 Let Q = {t1, ..., tq}. Assume t ∈ Q and there exists a tuple s ∈ Q such

that s 6= t and score(s) ≥ score(t). Then, there exists at least one assignment θ of ci such

that the right hand side of (3.10) can be transformed to an expression in form of (3.11), and

if not, to an expression in form of (3.12).

Proof. For notational convenience, let s and t in the theorem be also named as ta and

tb, respectively. Because score(ta) ≥ score(tb), we know Uaj ≥ Ubj . We construct an
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assignment θ of ci w.r.t. Q as follows: set ci(i 6= a, b) = 0 in θ. Then the right hand side of

(3.10) can be written as:

l−1∑

j=0

ca × Pr(Saj)× Uaj + cb × Pr(Sbj)× Ubj

Here, ca > 0 and cb < 0. Clearly, we just need to set ca large enough and the absolute

value of cb small enough, so that
∑l−1

j=0 ca × Pr(Saj) × Uaj + cb × Pr(Sbj) × Ubj can

be transformed to an expression in the form (3.11), and if not, to an expression in the form

(3.12). 2

Note that if there does not exist a tuple s ∈ Q such that score(s) ≥ score(t), then it

is not difficult to show that no assignment can lead to a successful transformation to either

(3.11) or (3.12). This is why we need at least one tuple ahead of tuple t, as a reference.

Notice also that for the expression in (3.12) to be non-negative, the underlying weight

function shall be non-negative.

In the sequel, given any q (real) tuples Q = {t1, ..., tq}, we say that an assignment θ

(of ci w.r.t.Q) induces an upper bound of t, where t ∈ Q, if the right hand side of (3.10),

with θ substituted, can be transformed to an expression either in the form of (3.11) or in the

form of (3.12). We note that the notion of “an assignment inducing an upper bound of t”

is important in the rest of this chapter. Essentially, such an assignment θ makes the upper

bound expression in (3.2) hold, and that is why it induces an upper bound of t.

Questions arise. Under the method of transformation from (3.10) to either (3.11) or

(3.12), is there a notion of optimal upper bound for a tuple t w.r.t. a given Q, where t ∈ Q?

This question seems hard for a Q with any size. But when the size of Q is 2, we can give a

positive answer.

Theorem 3.4.4 Let T be an uncertain table, Q = {t′, t} be a set of tuples from T . The

upper bound u of t, induced by any assignment w.r.t.Q, satisfies u ≥ Pr(t)
Pr(t′)Υ(t′).

Proof. If score(t′) < score(t), it is easy to know that no assignment w.r.t. Q can induce

an upper bound of t. For an assignment w.r.t. Q, if the coefficient of t′ is not greater than

0, it is also easy to see that this assignment cannot induce an upper bound of t. So if an

assignment w.r.t. Q induces an upper bound, we then must have score(t′) ≥ score(t) and

the coefficient of t′ is greater than 0.

Let φ be any assignment w.r.t. Q which induces an upper bound u of t. Let the coeffi-

cients of t′, t in φ be c1, c2, respectively. We know that c1 > 0 and c2 < 0. From equation
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(3.10), we have

c1Υ(t′) + c2Υ(t)
=

∑l−1
j=0 c1Pr(S1j)U1j +

∑l−1
j=0 c2Pr(S2j)U2j

To make the transformation from the right hand side of the equation above to (3.11) or

(3.12), the sum of the positive coefficients of Uij must not be smaller than the sum of the

absolute value of the negative coefficients of Uij . Notice that
∑l−1

j=0 Pr(S1j) = Pr(t′) and
∑l−1

j=0 Pr(S2j) = Pr(t) . So we get

c1Pr(t′) ≥ −c2Pr(t)

and this is

c1 ≥ −c2
Pr(t)
Pr(t′)

We know the upper bound u of t induced from φ is

u =
c1Υ(t′)
−c2

So we can get

u ≥ Pr(t)
Pr(t′)

Υ(t′)

2

Theorem 3.4.4 shows that, if an assignment w.r.t. Q = {t′, t} can induce an upper

bound u of t, then this upper bound u is not lower than Pr(t)
Pr(t′)Υ(t′).

In other words, Pr(t)
Pr(t′)Υ(t′) is the lowest possible upper bound of t, induced by any

assignment w.r.t. Q = {t′, t}. In general, it may or may not be an upper bound of t.

When it is, let us call it the optimal upper bound of t w.r.t. Q. We stress that the notion of

optimality here is relative, i.e., it is the lowest upper bound one can possibly get within the

framework of transforming the right hand side of (3.10) to either (3.11) or (3.12). Note also

that an optimal bound is defined w.r.t. Q. For different Q’s, optimal upper bounds may well

be different.

Intuitively, one can think of the practical scenario in which some tuples with higher

score than t have been retrieved and we want to know the upper bound of t. Let the retrieved

tuples with higher scores than t be P . When using two tuple relation (this means the size

of Q is 2), from Theorem 3.4.4, we know the upper bound of t is not lower than Pr(t)
Pr(t′)Υ(t′)

for any t′ ∈ P . Let tlowest ∈ P such that Υ(tlowest)
Pr(tlowest)

≤ Υ(t′)
Pr(t′) , for any t′ ∈ P . Then the

upper bound of t is not lower than Pr(t)
Pr(tlowest)

Υ(tlowest) when using two tuple relation to

get the upper bound of T from tuples in P .
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If we want to improve an upper bound, we may consider additional tuples. This is easy

to understand as with more tuples involved, we have more information to use. So we may

get a lower upper bound. Let us see an example.

Example 3.4.5 Consider Example 2.2.2, where t6 and t4 are from different generation

rules and score(t6) > score(t4). Assume

Υ(t6) = Pr(S10)U10 + Pr(S11)U11 = 0.2U10 + 0.3U11

Υ(t4) = Pr(S20)U20 + Pr(S21)U21 = 0.2U20 + 0.2U21

Consider an upper bound of t4. By Theorem 3.4.4, we know that the upper bound of t4

induced from any assignment w.r.t. {t6, t4} is no smaller than Pr(t4)
Pr(t6)Υ(t6). But there does

not exist an assignment w.r.t. {t6, t4}, which induces this upper bound. Now let us introduce

t3. We then have

Υ(t6) = Pr(S10)× U10 + Pr(S11)× U11 + Pr(S12)× U12

= 0.06U10 + 0.23U11 + 0.21U12

Υ(t4) = Pr(S31)× U31 + Pr(S32)× U32

= 0.2U31 + 0.2U32

If we set c1 = 1
Pr(t6) = 2 and c2 = − 1

Pr(t4) = −2.5, we will get

Υ(t6)
Pr(t6) −

Υ(t4)
Pr(t4)

= 0.04(U10 − U31) + 0.46(U11 − U31) + 0.08(U10 − U32) + 0.42(U12 − U32)
≥ 0

So we can get an upper bound of t4 as Pr(t4)
Pr(t6)Υ(t6). This upper bound is induced from an

assignment w.r.t. {t6, t4, t3}.

The above example shows that there are cases where by using an additional tuple we

can get a better upper bound.

3.5 Summary

In this chapter, we study inter-connections of PRFω values of tuples, and find that sym-

metric tuple sets possess some interesting properties. Using these properties, we derive a

new representation of PRFω value, in the form:

Υ(ti) =
l−1∑

j=0

Uij × Pr(Sij)

This result allows us to locate the part of the computation of Υ(ti) that may be pruned,

namely the computations of Uij’s. We further find that there exist some interesting rela-

tions between different Uij’s. Then we utilize these relations to derive a general method of
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pruning, in the form of a scheme. We show some properties of this general method. In ad-

dition, we study the possibility of using more tuples in order to improve an upper bound. To

our knowledge, the theoretical insights revealed in this chapter are new, and results enhance

our understanding of the inter-relationships among tuples in the possible world context.
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Chapter 4

Deriving Practical Pruning Methods

In the last chapter, we have developed an abstract schema to determine an upper bound of

the PRFω value of a tuple. Based on this scheme, in this chapter, we will derive some

practical methods for pruning.

This chapter is organized as follows. We introduce the concrete computational methods

of upper bounds of PRFω values of tuples in Section 4.1. Section 4.2 gives the details of a

combined algorithm and its complexity analysis. Section 4.3 compares our pruning with the

pruning methods in the literature. Section 4.4 comments on the assumptions in our work.

4.1 Deriving Practical Methods

The method given in the last chapter is only a scheme, which does not tell us how to choose

the coefficients ci so that the described transformations are possible. In this section, we

show how to instantiate this scheme to generate practical upper bound methods.

Briefly, if two tuples t1 and t2 (score(t1) ≥ score(t2)) are from the same generation

rule, there is a choice of ci such that the optimal upper bound of t2 w.r.t. {t1, t2} is guar-

anteed. In the case that two tuples are from different generation rules, if some condition is

satisfied, the optimal bound is guaranteed, and if it is not we provide a conservative esti-

mate. That is, an upper bound is generated in any case. We continue this exercise to three

tuples for possibly improving non-optimal upper bounds. It is then clear that theoretically

speaking, this process can continue for any n tuples.

4.1.1 Two tuples from the same generation rule

Assume two real tuples t1 and t2 from the same generation rule, with score(t1) ≥ score(t2).

As they are involved in the same generation rule, l = 1. So according to (3.8), we have

Υ(t1) = Pr(S10)× U10 Υ(t2) = Pr(S20)× U20
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where, as l = 1, Pr(t1) = Pr(S10) and Pr(t2) = Pr(S20) (cf. equation (3.9)). It’s also

clear that U10 ≥ U20. Then, by setting c1 = 1
Pr(t1) and c2 = − 1

Pr(t2) the right hand side of

equation (3.10) can be transformed to

Υ(t1)
Pr(t1)

− Υ(t2)
Pr(t2)

= U10 − U20 ≥ 0

which is an instance of (3.11). Then we have Υ(t2) ≤ Pr(t2)
Pr(t1)Υ(t1). This is to say that if we

know the PRFω value of t1, we can compute the optimal upper bound of t2 w.r.t. {t1, t2}.

The above actually constitutes a proof for the following theorem.

Theorem 4.1.1 Let T be an uncertain table, and t1 and t2 be two real tuples in T that

are involved in the same generation rule, with score(t1) ≥ score(t2). Then, we have

Υ(t2) ≤ Pr(t2)
Pr(t1)Υ(t1).

Note that the time complexity to compute the upper bound of t2 in the theorem is O(1).

4.1.2 Two tuples from different generation rules

Assume two real tuples t1 and t2 from different generation rules and score(t1) ≥ score(t2).

As they belong to different generation rules, l = 2. So, according to (3.8), we have

Υ(t1) = Pr(S10)× U10 + Pr(S11)× U11

Υ(t2) = Pr(S20)× U20 + Pr(S21)× U21

Let us set c1 = 1
Pr(t1) and c2 = − 1

Pr(t2) . We can show

Theorem 4.1.2 Let T be an uncertain table, and t1 and t2 be two real tuples in T belonging

to different generation rules. Assume score(t1) ≥ score(t2). If Pr(S10)
Pr(t1) ≥ Pr(S20)

Pr(t2) , then

Υ(t2) ≤ Pr(t2)
Pr(t1)Υ(t1).

Proof. We know that U10 ≥ U20, U11 ≥ U21, U10 ≥ U11. By the definition of Uij , it

follows immediately that U10 ≥ U21. By definition, we also have

Pr(t1) = Pr(S10) + Pr(S11)
Pr(t2) = Pr(S20) + Pr(S21)

So we can get
Pr(S10)
Pr(t1)

− Pr(S20)
Pr(t2)

=
Pr(S21)
Pr(t2)

− Pr(S11)
Pr(t1)

Let us set c1 = 1
Pr(t1) and c2 = − 1

Pr(t2) . Then, we have

1
Pr(t1) ×Υ(t1)− 1

Pr(t2) ×Υ(t2)

= Pr(S10)
Pr(t1) × U10 + Pr(S11)

Pr(t1) × U11 − Pr(S20)
Pr(t2) × U20 − Pr(S21)

Pr(t2) × U21

= Pr(S20)
Pr(t2) × (U10 − U20) + Pr(S11)

Pr(t1) × (U11 − U21) + (Pr(S10)
Pr(t1) −

Pr(S20)
Pr(t2) )× U10

−(Pr(S21)
Pr(t2) −

Pr(S11)
Pr(t1) )× U21

= Pr(S20)
Pr(t2) × (U10 − U20) + Pr(S11)

Pr(t1) × (U11 − U21) + (Pr(S10)
Pr(t1) −

Pr(S20)
Pr(t2) )× (U10 − U21)
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Clearly, if Pr(S10)
Pr(t1) ≥ Pr(S20)

Pr(t2) , then

1
Pr(t1)

×Υ(t1) ≥ 1
Pr(t2)

×Υ(t2)

So we get

Υ(t2) ≤ Pr(t2)
Pr(t1)

Υ(t1)

2

For some insights, in the proof of Theorem 4.1.2, if two tuples t1 and t2 are from

different generation rules and the condition Pr(S10)
Pr(t1) ≥ Pr(S20)

Pr(t2) is satisfied, we can choose

c1 and c2 so that the right hand side of (3.10) can be transformed to (3.11), hence we get

the optimal upper bound of t2 w.r.t. {t1, t2}.

In Theorem 4.1.2, we need to compute Pr(Sij). As discussed in Section 3.3.1, the time

complexity of computing Pr(Sij) is O(ql2 + qlτ).1 Here q = 2 and l = 2. So the time

complexity of computing Pr(Sij) is O(τ), so is the cost of computing the upper bound of

t2.

Example 4.1.3 Consider Example 2.2.2. Suppose the weight function is ω(i) = 5 − i.

Tuples t2 and t5 are involved in different generation rules.

Υ(t2) = Pr(S10)U10 = 0.7U10

Υ(t5) = Pr(S20)U20 + Pr(S21)U21 = 0.18U20 + 0.42U20

Since
Pr(S10)
Pr(t2)

= 1 >
Pr(S20)
Pr(t5)

= 0.3

we have
Υ(t2)
Pr(t2)

= 4 ≥ Υ(t5)
Pr(t5)

= 2.3

In Theorem 4.1.2, the condition Pr(S10)
Pr(t1) ≥ Pr(S20)

Pr(t2) must be satisfied. If this condition

is not satisfied, question arises as whether there is a reasonable way to estimate an upper

bound of t2. The answer is yes. For this, let us set c1 = Pr(S20)
Pr(S10)×Pr(t2) and c2 = − 1

Pr(t2) .

We can show

Theorem 4.1.4 Let T be an uncertain table, and t1 and t2 be two real tuples in T from

different generation rules, with score(t1) ≥ score(t2). If Pr(S10)
Pr(t1) < Pr(S20)

Pr(t2) and the

weight function is non-negative, we have Υ(t2) ≤ Pr(S20)
Pr(S10)Υ(t1).

1Recall that τ is the maximum number of real tuples in a generation rule.
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Proof. Because
Pr(S10)
Pr(t1)

<
Pr(S20)
Pr(t2)

we get
Pr(S10)

Pr(S10) + Pr(S11)
<

Pr(S20)
Pr(S20) + Pr(S21)

From this, we have

Pr(S20)× Pr(S11)− Pr(S10)× Pr(S21) > 0

Here we assume the weight function ω(β(t)) ≥ 0 for any position so that any Uij will be

equal to or greater than 0.

Since score(t1) ≥ score(t2) and the tuples are involved in different generation rules,

Pr(S10) must be greater than 0. Let us set c1 = Pr(S20)
Pr(S10)×Pr(t2) and c2 = − 1

Pr(t2) . We then

have
Pr(S20)

Pr(S10)×Pr(t2) ×Υ(t1)− 1
Pr(t2) ×Υ(t2)

= Pr(S20)
Pr(S10)×Pr(t2)(Pr(S10)× U10 + Pr(S11)× U11)

− 1
Pr(t2)(Pr(S20)× U20 + Pr(S21)× U21)

= Pr(S20)
Pr(t2) × (U10 − U20) + Pr(S21)

Pr(t2) × (U11 − U21)

+Pr(S20)×Pr(S11)−Pr(S10)×Pr(S21)
Pr(S10)×Pr(t2) × U11

≥ 0

So when Pr(S10)
Pr(t1) < Pr(S20)

Pr(t2) and the weight function is always greater than or equal to

0, we have Pr(S20)
Pr(S10) ×Υ(t1) ≥ Υ(t2). 2

Theorem 4.1.4 says that if the condition in Theorem 4.1.2 is not satisfied (i.e., its nega-

tion Pr(S10)
Pr(t1) < Pr(S20)

Pr(t2) is satisfied), we still can get an upper bound of t2, which is Υ(t1)

multiplying the factor Pr(S20)
Pr(S10) . Obviously, this upper bound is higher Pr(t2)

Pr(t1)Υ(t1).

The cost of computing the upper bound above is O(τ).

Example 4.1.5 Consider Example 2.2.2. Assume the weight function ω(i) = 5− i. Tuples

t6 and t4 are involved in different generation rules and score(t6) > score(t4).

Υ(t6) = Pr(S10)U10 + Pr(S11)U11 = 0.2U10 + 0.3U11

Υ(t4) = Pr(S20)U20 + Pr(S21)U21 = 0.2U20 + 0.2U21

Since
Pr(S10)
Pr(t6)

= 0.4 <
Pr(S20)
Pr(t4)

= 0.5

we have
Pr(S20)
Pr(S10)

Υ(t6) = 0.85 ≥ Υ(t4) = 0.6
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4.1.3 Three tuples

When the condition in Theorem 4.1.2 is not satisfied, it is possible to improve the non-

optimal upper bound given in Theorem 4.1.4.

Suppose t1, t2, and t3 are three real tuples from three different generation rules, with

score(t1) ≥ score(t2) ≥ score(t3). From expression (3.8), we get

Υ(t1) = Pr(S10)× U10 + Pr(S11)× U11 + Pr(S12)× U12

Υ(t2) = Pr(S20)× U20 + Pr(S21)× U21 + Pr(S22)× U22

Υ(t3) = Pr(S30)× U30 + Pr(S31)× U31 + Pr(S32)× U32

Theorem 4.1.6 Let T be an uncertain table, and t1, t2, and t3 be three real tuples in

T from three different generation rules, with score(t1) ≥ score(t2) ≥ score(t3). Let

a, b ∈ {1, 2, 3} and a < b. If Pr(Sa0)
Pr(ta) ≥ Pr(Sb0)

Pr(tb)
and Pr(Sa2)

Pr(ta) ≤ Pr(Sb2)
Pr(tb)

, then we have
1

Pr(ta) ×Υ(ta) ≥ 1
Pr(tb)

×Υ(tb)

Proof. Let d be the remaining number in {1, 2, 3} except a and b. We set ca = 1
Pr(ta) , cb =

− 1
Pr(tb)

, cd = 0. We have

Pr(Sa0)
Pr(ta)

+
Pr(Sa1)
Pr(ta)

+
Pr(Sa2)
Pr(ta)

= 1 =
Pr(Sb0)
Pr(tb)

+
Pr(Sb1)
Pr(tb)

+
Pr(Sb2)
Pr(tb)

If Pr(Sa1)
Pr(ta) ≥ Pr(Sb1)

Pr(tb)
, then

1
Pr(ta) ×Υ(ta)− 1

Pr(tb)
×Υ(tb)

= Pr(Sb0)
Pr(tb)

(Ua0 − Ub0) + (Pr(Sa0)
Pr(ta) −

Pr(Sb0)
Pr(tb)

)Ua0 + Pr(Sb1)
Pr(tb)

(Ua1 − Ub1)

+(Pr(Sa1)
Pr(ta) −

Pr(Sb1)
Pr(tb)

)Ua1 + Pr(Sa2)
Pr(ta) (Ua2 − Ub2)− (Pr(Sb2)

Pr(tb)
− Pr(Sa2)

Pr(ta) )Ub2

We then get

(
Pr(Sa0)
Pr(ta)

− Pr(Sb0)
Pr(tb)

) + (
Pr(Sa1)
Pr(ta)

− Pr(Sb1)
Pr(tb)

) =
Pr(Sb2)
Pr(tb)

− Pr(Sa2)
Pr(ta)

It follows that
1

Pr(ta) ×Υ(ta)− 1
Pr(tb)

×Υ(tb)

= Pr(Sb0)
Pr(tb)

(Ua0 − Ub0) + Pr(Sb1)
Pr(tb)

(Ua1 − Ub1) + Pr(Sa2)
Pr(ta) (Ua2 − Ub2)

+(Pr(Sa0)
Pr(ta) −

Pr(Sb0)
Pr(tb)

)(Ua0 − Ub2) + (Pr(Sa1)
Pr(ta) −

Pr(Sb1)
Pr(tb)

)(Ua1 − Ub2)
≥ 0

If Pr(Sa1)
Pr(ta) < Pr(Sb1)

Pr(tb)
, we can carry out a similar transformation as above.

1
Pr(ta) ×Υ(ta)− 1

Pr(tb)
×Υ(tb)

= Pr(Sb0)
Pr(tb)

(Ua0 − Ub0) + Pr(Sa1)
Pr(ta) (Ua1 − Ub1) + Pr(Sa2)

Pr(ta) (Ua2 − Ub2)

+(Pr(Sb1)
Pr(tb)

− Pr(Sa1)
Pr(ta) )(Ua0 − Ub1) + (Pr(Sb2)

Pr(tb)
− Pr(Sa2)

Pr(ta) )(Ua0 − Ub2)
≥ 0
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So we always have 1
Pr(ta) × Υ(ta) − 1

Pr(tb)
× Υ(tb) ≥ 0. That is 1

Pr(ta) × Υ(ta) ≥
1

Pr(tb)
×Υ(tb). 2

The cost of computing the upper bound above is O(τ).

Example 4.1.7 Consider Example 3.4.5, after t3 is introduced, we have
Pr(S10)
Pr(t6) = 0.12 ≥ Pr(S30)

Pr(t4) = 0
Pr(S12)
Pr(t6) = 0.42 ≤ Pr(S32)

Pr(t4) = 0.5

It follows
Υ(t6)
Pr(t6)

= 1.7 ≥ Υ(t4)
Pr(t4)

= 1.5

4.2 Algorithm and Complexity

Earlier in Section 3.1, we sketched a combined algorithm for the computation of top-k

tuples for PRFω with pruning. We now fill more details on this combined algorithm.

After the first k tuples, we retrieve a new tuple tnew. To compute the upper bound

of tnew, we maintain a tuple called tlowest, which is among the retrieved tuples whose

PRFω values have been computed. The tuple tlowest must be the one that has the lowest

ratio between its PRFω value and its membership probability among all retrieved tuples,

i.e., Υ(tlowest)
Pr(tlowest)

≤ Υ(t′)
Pr(t′) , for any retrieved tuple t′ such that Υ(t′) is computed. If tnew

is involved in the same generation rule with tlowest, we get the upper bound of tnew as
Pr(tnew)

Pr(tlowest)
Υ(tlowest) from Theorem 4.1.1.

If tnew and tlowest are from different generation rules, we check whether the condition

in Theorem 4.1.2 is satisfied. If it is, we get the upper bound of tnew as Pr(tnew)
Pr(tlowest)

Υ(tlowest).

Otherwise Theorem 4.1.4 provides an upper bound of tnew. As discussed in Section 3.4,

when using two tuple relation, Pr(tnew)
Pr(tlowest)

Υ(tlowest) is the lowest upper bound of tnew we

can get from the retrieved tuples whose PRFω values have been computed.

Example 4.2.1 To show the procedure of the combined algorithm with pruning, we give

an example. We use the uncertain table in Table 2.3. We assume the weight function is

ω(i) = 5 − i. We want to find top-1 tuple. We assume all the tuples are sorted in a

descending order of their scores and then are retrieved one by one. Then all the tuples are

retrieved in the following order: t2, t1, t5, t6, t3, t4, t7.

For the first retrieved tuple t2, we compute its PRFω value and it is 2.8. For the second

retrieved tuple t1, tlowest is t2. t1 and t2 are from different generation rules. We have

Υ(t2) = Pr(S10)U10 + Pr(S11)U11 = 0.7U10

Υ(t1) = Pr(S20)U20 + Pr(S21)U21 = 0.3U20 + 0.7U21
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Because Pr(S10)
Pr(t2) = 1 > Pr(S20)

Pr(t1) = 0.3, the condition in Theorem 4.1.2 is satisfied. We get

the upper bound of t1 as Pr(t1)
Pr(t2)Υ(t2) = 4. Now t2 is the tuple with largest PRFω value

among all the retrieved tuples (not including t1). We compare the upper bound of t1 with

Υ(t2) and find it is greater than Υ(t2). So t1 can not be pruned. We need to compute its

PRFω value and it is 3.3. Because the ratio between t1’s PRFω value and its membership

probability is lower than the ratio of t2, we update tlowese to t1. And t1 is the tuple with the

largest PRFω value among all the retrieved tuples now.

For the third retrieved tuple t5, we compare it with tlowest (now is t1). t5 and t1 are

from different generation rules. We have

Υ(t1) = Pr(S10)U10 + Pr(S11)U11 = U10

Υ(t5) = Pr(S20)U20 + Pr(S21)U21 = 0.6U21

Because Pr(S10)
Pr(t1) = 1 > Pr(S20)

Pr(t5) = 0, the condition in Theorem 4.1.2 is satisfied. We get

the upper bound of t5 as Pr(t5)
Pr(t1)Υ(t1) = 1.98. It is smaller than Υ(t1), so t5 can be pruned.

tlowest does not need to be updated because the ratio between t1’s PRFω value and its

membership probability is lower than the ratio of t5. And t1 is still the tuple with the largest

PRFω value among all the retrieved tuples.

Similarly, we can process t6, t3, t4, t7 one by one. All these tuples can be pruned. So

the top-1 tuple is t1.

Recall from Section 4.1.2 that the time cost to compute the upper bound of a tuple is

O(τ), where τ is the maximum number of real tuples in a generation rule.

Assume there are n tuples in T , and ti is the i-th tuple, ordered by tuples’ scores. In

[29], the time cost of computing the PRFω value of ti is O(i log2(i)). The total time cost

to find top-k tuples is O(n2log2n), where n is the number of tuples in T .

We can see that the cost of pruning for a tuple is much smaller than that of computing

its PRFω value. When we retrieve the tuples whose positions are not high, these tuples are

very likely to be pruned. This is also verified in our experiments.

In the worst case in which no tuple is pruned, the time complexity of our (combined)

algorithm is O(n2log2n + nτ). As the maximum value of τ is n, the time complexity of

the combined algorithm remains the same as the one without pruning, namely O(n2log2n).

So pruning does not reduce or increase the complexity of the given algorithm.
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4.3 Theoretical Comparison

In [28], the concept of probability threshold top-k query (PT-k query) is introduced. It

defines the top-k probability of a tuple t to be the sum of the probabilities of all the possible

worlds in which t is one of the top-k tuples. Given a probability threshold p, the answer set

of a PT-k query is the set of all tuples whose top-k probability values are at least p. Here

let us consider the answer set of a PT-k query to be the set of k tuples with highest top-k

probabilities.

In [28], some pruning techniques are proposed. PT-k query answer can be thought of as

a special case of PRFω by writing the weight function of the PT-k query answer as follows:

ω(i) =
{

1 if i ≤ k
0 if i > k

Therefore, our methods are applicable. The pruning theorems in [28] are given as fol-

lows, where p is the threshold.

Theorem 4.3.1 Prk(t) ≤ Pr(t). Moreover, for an independent tuple t, if Prk(t) < p,

then (1) for any independent tuple t′ such that score(t) ≥ score(t′) and Pr(t′) ≤ Pr(t).

Prk(t′) < p; and (2) for any multi-tuple generation rule r such that t is ranked higher than

all the tuples in r and Pr(r) ≤ Pr(t), Prk(t′′) < p for any t′′ ∈ r.

Theorem 4.3.2 For tuples t and t′ in the same multi-tuple rule r, if score(t) ≥ score(t′),

Pr(t) ≥ Pr(t′), and Prk(t) < p, then Prk(t′) < p.

Here Prk(t) is the top-k probability of a tuple t. One can think of Prk(t) as Υ(t) of

this paper by changing the threshold p to the k-th highest top-k probability found so far in

applications. These pruning theorems can be derived from our pruning theorems but not

conversely. For conclusion (1) of Theorem 4.3.1, we can derive it from our Theorem 4.1.2.

We can identify t and t′ to be t1 and t2 in Theorem 4.1.2. From the theorem, we can get

Prk(t′) ≤ Pr(t′)
Pr(t) Prk(t). Because Pr(t′) ≤ Pr(t), we can get Prk(t′) ≤ Prk(t) < p. For

conclusion (2) of Theorem 4.3.1, we can identify t and t′′ to be t1 and t2 in Theorem 4.1.2.

From the theorem, we can get Prk(t′′) ≤ Pr(t′′)
Pr(t) Prk(t). Because Pr(t′′) < Pr(r) ≤

Pr(t), Prk(t′′) < Prk(t) < p. We can get Theorem 4.3.2 from Theorem 4.1.1. With t and

t′ identified to be t1 and t2 in Theorem 4.1.1, we can get Prk(t′) ≤ Pr(t′)
Pr(t) Prk(t). Because

Pr(t) ≥ Pr(t′), we have Prk(t′) ≤ Prk(t) < p.

Actually, our upper bound theorems are much stronger than those in [28]. For the condi-

tion of conclusion (1) in Theorem 4.3.1 (the same condition appears in Theorem 4.3.2), our
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theorems weaken the condition from Prk(t) < p to Prk(t) < Pr(t)
Pr(t′) × p. Since Pr(t)

Pr(t′) > 1,

our condition covers more cases. For conclusion (2) in Theorem 4.3.1, our theorems allow

a tuple in a multi-tuple generation rule to compare directly with an independent tuple. This

means that we can weaken the condition from Pr(R) ≤ Pr(t) to Pr(t′′) < Pr(t), for any

t′′ ∈ R. We can also weaken the condition from Prk(t) < p to Prk(t) < Pr(t)
Pr(t′′) × p. The

new condition covers more cases.

Generally speaking, the theorems in [28] must satisfy two conditions for any two given

tuples t and t′: (1) score(t) > score(t′), and (2) Pr(t) ≥ Pr(t′). But our theorems only

require the first condition. As a result, our theorems cover more cases. Even when both

conditions are satisfied, as we have already shown, our theorems can prune better than the

theorems in [28].

In [28] a theorem about global constraint is given:

Theorem 4.3.3 Let A be a set of tuples whose top-k probability values have been computed.

If
∑

t∈A Prk(t) > k − p, then for every tuple t′ /∈ A,Prk(t′) < p.

Based on this global constraint theorem, if the top-k probabilities of some tuples have

been computed and the sum of the top-k probabilities of these tuples is greater than k − p,

then the top-k probability of any tuple which has not been computed is smaller than p.

Similarly as before, we can change the threshold p to the k-th highest top-k probability

found so far in applications.

But the global constraint cannot be used for PRFω or PRF e, due to the difference

between the definition of PRFω and the PT-k query answer.

4.4 Discussion

A question arises. If a tuple t1 has higher score and membership probability than another tu-

ple t2, must t1 have higher PRFω value than t2? The answer is no. Here we give a counter

example. We consider an uncertain table which has 4 tuples: t1, t2, t3, t4. The scores

of these tuples satisfy the following conditions: score(t4) > score(t1) > score(t2) >

score(t3). The member probabilities of t1, t2, t3, t4 are 0.3, 0.25, 0.7, 0.75 respectively.

Tuples t1, t3 are involved in one generation rule and tuples t2,t4 are involved in another

generation rule. The weight function ω(i) = 2− i. We can see that t1 has higher score and

membership probability than t2. But the PRFω value of t1 is 0.375 and the PRFω value

of t2 is 0.425. So t1 has lower PRFω value than t2.
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There are three assumptions in our work for pruning. The first is that the weight function

is independent of tuples. Technically, this assumption can be removed if ω(t, i) is restricted

to ω(score(t), i) (i.e., anything that depends on t depends on score(t)), and ω(score(t), i)

is non-negative and monotonically non-decreasing w.r.t. score(t) (i.e., higher the score,

higher the weight). Another assumption in our work is that ω(t, i) is monotonically non-

increasing w.r.t. i. This is a reasonable assumption, as in most real applications a smaller i

(hence a higher position) is clearly more important than larger i’s. The third assumption is

that the weight function is non-negative. We will look into whether this can be removed in

the future.
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Chapter 5

Pruning for PRF e

In this chapter we turn our attention to the problem of computing top-k tuples for PRF e.

This is an important topic as the overall complexity of computing top-k tuples for PRF e

is linear,1 so it is potentially useful in dealing with extreme large databases. Its importance

is also reflected in the fact that PRF e can be used as an approximation of PRFω [29].

In this chapter, we propose an entirely new method for pruning for this context. The key

result is an early termination condition, followed by a description of an algorithm on how

this condition is actually used.

5.1 Early Termination

Here, we show a special property of PRF e for pruning, which can terminate the top-k

computation earlier.

It is known that the PRF e value of a tuple can be determined in constant time [29].

Thus, the method of pruning given in previous sections may not be worthwhile for PRF e.

Here we study a special property of PRF e, as presented in the lemma below.

Lemma 5.1.1 Let T be an uncertain table and Q = {t1, ..., tq} a set of tuples from T .

Let the weight function be PRF e and ω(i) = αi. We assume α is a real number and

0 < α < 1. For any Sij and Si(j+1) (0 ≤ j ≤ l − 2, l ≥ 2) which are non-empty, we have

Ui(j+1) = α× Uij .

Proof. Suppose the tuples in Q are involved in l (l ≤ q) generation rules in R. Assume

score(ti) ≥ score(ti+1) (1 ≤ i ≤ q − 1).

Following the proof for part (i) of Theorem 3.3.3, let η1 ∈ Sij and η2 ∈ Si(j+1).

We assume W1,W2, ..., We are all the possible worlds containing all the tuples in η1 and
1If sorting tuples is considered part of the process, then the complexity becomes O(n log n).
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W ′
1,W

′
2, ..., W

′
e are all the possible worlds containing all the tuples in η2. Assume Wv and

W ′
v (1 ≤ v ≤ e) are symmetric w.r.t. η1 and η2, and let Wv = A ∪ η1 and W ′

v = A ∪ η2.

Because η1 ∈ Sij , there are j tuples in η1 having a higher score than ti. Since η2 ∈ Si(j+1),

there are j + 1 tuples in η2 having a higher score than ti. So we know that W ′
v contains one

more tuple than Wv with a higher score than ti. We thus have

βWv(ti) = βW ′
v
(ti)− 1

ω(βWv(ti)) = 1
α × ω(βW ′

v
(ti))

Because
Υη1(ti) =

∑e
v=1 ω(βWv(ti))Pr(Wv)

Υη2(ti) =
∑e

v=1 ω(βW ′
v
(ti))Pr(W ′

v)
Pr(Wv)
Pr(W ′

v) =
∏

tu∈η1
Pr(tu)∏

tu∈η2
Pr(tu)

we have
Υη1(ti)

=
∑e

v=1
1
α × ω(βW ′

v
(ti))×

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu) × Pr(W ′
v)

= 1
α ×

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu) ×Υη2(ti)

It follows that
Υη1(ti)∏

tu∈η1
Pr(tu)

=
1
α
× Υη2(ti)∏

tu∈η2
Pr(tu)

Since
Pr(PW (η1)) =

∏
tu∈η1

Pr(tu)
Pr(PW (η2)) =

∏
tu∈η2

Pr(tu)

we get
Υη1(ti)

Pr(PW (η1))
=

1
α
× Υη2(ti)

Pr(PW (η2))

This is

Ui(j+1) = α× Uij

2

Recall that in the definition of Uij (see equation (3.7)), we assume that the correspond-

ing Sij are non-empty. Now, for technical convenience we would like to deal with empty

Sij as well. We did this for PRFω in Subsection 3.3.2. Due to the special property of

PRF e (as stated in Lemma 5.1.1), we need to deal with empty Sij differently from PRFω.

Recall that for a fixed i, non-empty Sij appears consecutively. For a tuple ti ∈ Q, we

assume Sij1 is the first non-empty Sij for ti and Sij2 is the last non-empty Sij for ti. Now,

for empty Sij we define the corresponding Uij as follows.

Uij =
{

Uij1 × αj−j1 if j < j1

Uij2 × αj−j2 if j > j2
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After the setup of Uij for empty Sij , it is easy to check that for any Sij and Si(j+1) (0 ≤
j ≤ l − 2, l ≥ 2), we have Ui(j+1) = α × Uij . So we can relax the assumption that given

Sij be non-empty in Lemma 5.1.1. We state this formally below.

Lemma 5.1.2 Let T be an uncertain table and Q = {t1, ..., tq} a set of tuples from T .

Suppose the ranking function is PRF e and the weight function is ω(i) = αi. Assume α is

a real number and 0 < α < 1. For any Sij and Si(j+1) (0 ≤ j ≤ l − 2, l ≥ 2) , we have

Ui(j+1) = α× Uij .

From Theorem 3.3.3, we know that for any Si1j and Si2j (1 ≤ i1, i2 ≤ q, 0 ≤ j ≤ l−1)

which are non-empty, if score(ti1) ≥ score(ti2), then Ui1j ≥ Ui2j . It is easy to see that

after the setup of Uij for empty Sij as above, for any Si1j and Si2j (1 ≤ i1, i2 ≤ q, 0 ≤ j ≤
l− 1), if score(ti1) ≥ score(ti2), then Ui1j ≥ Ui2j . So after the setup of Uij for empty Sij

for PRF e, Theorem 3.3.5 still holds.

Theorem 5.1.3 Let T be an uncertain table and t1 ∈ T . Suppose the ranking function is

PRF e and ω(i) = αi, where α is a real number and 0 < α < 1. Then for any tuple t2 ∈ T

such that score(t2) ≤ score(t1), Υ(t2) ≤ 1
α × 1

Pr(t1)Υ(t1).

Proof. There are two cases: the tuples t1 and t2 are are involved two different generation

rules or both are in the same generation rule.

First, let us assume t1 and t2 are involved in two different generation rules. By the new

representation of Υ in (3.8), we have

Υ(t1) = Pr(S10)× U10 + Pr(S11)× U11

Υ(t2) = Pr(S20)× U20 + Pr(S21)× U21

By Lemma 5.1.2, we have U11 = α × U10 and U21 = α × U20. From equation (3.9), we

have

Pr(t1) = Pr(S10) + Pr(S11) (5.1)

Pr(t2) = Pr(S20) + Pr(S21) (5.2)

It follows that
Υ(t1)
Pr(t1) = Pr(S10)

Pr(t1) × U10 + (1− Pr(S10)
Pr(t1) )× U10 × α

Υ(t2)
Pr(t2) = Pr(S20)

Pr(t2) × U20 + (1− Pr(S20)
Pr(t2) )× U20 × α

Now, let us divide the two equations above, i.e.,

Υ(t1)
Pr(t1)

Υ(t2)
Pr(t2)

=
U10((1− α)Pr(S10)

Pr(t1) + α)

U20((1− α)Pr(S20)
Pr(t2) + α)
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From equation (5.1), it is clear that we have 0 ≤ Pr(S10)
Pr(t1) ≤ 1. Similarly, from (5.2) we get

0 ≤ Pr(S20)
Pr(t2) ≤ 1. Thus we can get

α ≤ (1− α)
Pr(S10)
Pr(t1)

+ α ≤ 1

and

α ≤ (1− α)
Pr(S20)
Pr(t2)

+ α ≤ 1

So we get
(1− α)Pr(S10)

Pr(t1) + α

(1− α)Pr(S20)
Pr(t2) + α

≥ α

Because U10 ≥ U20, we get
Υ(t1)
Pr(t1)

Υ(t2)
Pr(t2)

≥ α

It follows that

Υ(t2) ≤ 1
α
× Pr(t2)

Pr(t1)
Υ(t1)

Because 0 ≤ Pr(t2) ≤ 1, we have

Υ(t2) ≤ 1
α
× 1

Pr(t1)
Υ(t1)

which is the conclusion in the theorem.

Now we consider the second case, namely t1 and t2 are involved in the same generation

rule. In this case, by the new representation of Υ(t), we have

Υ(t1) = Pr(S10)× U10

Υ(t2) = Pr(S20)× U20

We know that Pr(t1) = Pr(S10) and Pr(t2) = Pr(S20). So we have

Υ(t1)
Pr(t1) = U10

Υ(t2)
Pr(t2) = U20

Because U10 ≥ U20, we divide the two equations above to get

Υ(t1)
Pr(t1)

Υ(t2)
Pr(t2)

=
U10

U20
≥ 1 ≥ α

So we have

Υ(t2) ≤ 1
α
× Pr(t2)

Pr(t1)
Υ(t1)

Because 0 ≤ Pr(t2) ≤ 1, we have

Υ(t2) ≤ 1
α
× 1

Pr(t1)
Υ(t1)
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From the derivation above, we know that when t1 and t2 involves in one or two gener-

ation rules, we always have

Υ(t2) ≤ 1
α
× 1

Pr(t1)
Υ(t1)

This completes the proof. 2

Theorem 5.1.3 tells us that, if we know PRF e(t), then 1
α× 1

Pr(t)Υ(t) is an upper bound

of all tuples whose scores are smaller than score(t). Following the top-k algorithm given in

[29], where tuples in an uncertain table are sorted according to their scores, when this value

is lower than the kth largest PRF e value found so far the computation can safely terminate.

5.2 Algorithm and Complexity for PRF e

Theorem 5.1.3 says that if we know the PRF e value of a tuple t, then we know the upper

bounds of all the tuples whose scores are smaller than that of t. This can be used as an early

termination condition.

For PRF e, similar to the method for pruning for PRFω, we also sort the tuples in

a descending order of their scores and retrieve them one by one. We compute the PRF e

values for the first k tuples. We also maintain Lk and tlowest. From the (k + 1)-th tuple,

before we retrieve the tuple t, we test whether 1
α × 1

Pr(tlowest)
Υ(tlowest) is smaller than

the k-th largest PRF e value found so far. We call this test an early termination condition

test. If the condition is satisfied, it means any of the tuples which have not been retrieved

is impossible to be a top-k tuple. So we stop the computation and return Lk as the top-k

tuples. Otherwise we retrieve the next tuple t and compute PRF e value of t. Then we

update Lk and tlowest, and move to the next tuple.

Suppose there are n tuples in T . In [29], assuming all the tuples are sorted according to

their scores, the time complexity to find the top-k tuples is O(n).

Our algorithm does not improve the complexity, but since tuples are ordered in descend-

ing order, the termination condition will be satisfied after some tuples are retrieved, so the

computation is likely to terminate early.
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Chapter 6

Experiments

We have done extensive experiments to evaluate the effectiveness of our pruning techniques

introduced in Chapter 3 and 4. We combine our methods with top-k algorithms for PRFω

and PRF e, respectively. The procedure described in Section 3.1 and Section 4.2 uses

two tuples for pruning, which was employed in our experiments. We also extended the

procedure for pruning with three tuples and will comment on our experience towards the

end.

All the experiments were run on a quad-core 2.3GHZ PC with 16GB RAM, running

Linux operating system. The algorithms are implemented in Microsoft Visual C++ V6.0.

Below, we use “computed tuples” to mean the number of tuples whose PRFω or PRF e

values are actually computed in running top-k algorithms in [29] combined with pruning.

In our experiments, we implemented the PRFω algorithm given in [29] whose com-

plexity is O(n3). In [29], another algorithm with complexity O(n2log2n) is also provided.

If we use the latter, the “computed tuples” remains the same but the gaps in running times

will be smaller. For PRF e, we implemented the algorithm given in [29], combined with

the early termination condition given in Chapter 5.

6.1 Data Sets and Weight Functions

Normal data sets:

Synthetic data sets are generated for our experiments. Such a data set contains some

tuples and some multi-tuple generation rules. The number of tuples involved in each multi-

tuple generation rule follows the normal distribution, so does the probabilities of indepen-

dent tuples and multi-tuple generation rules. To generate different data sets, we vary the

mean of the membership probabilities of the independent tuples and the size of a multi-

tuple generation rule.
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Special data sets:

Intuitively, pruning may not be very effective on data sets like the following: the scores

of the tuples are in an descending order and their membership probabilities are in an as-

cending order. Although these data sets do not seem to be typical in the real world, it can

be used to illustrate an interesting phenomenon of performance changes from variants of

these data sets, which are obtained as follows: we update such a data set by swapping the

membership probabilities of different tuples such that the membership probabilities of the

resulting tuples are not strictly in an ascending order. To get different data sets, we vary the

ratio between the number of swapping tuples and the number of all tuples.

Real data set:

A real data set is generated from International Ice Patrol (IIP) Iceberg Sighting Databases

(http://nsidc.org/data/g00807.html). Each tuple contains the number of days drifted (score)

and a confidence value (membership probability). The generated data set consists of 4232

tuples and 826 multi-tuple generation rules. This data set is also used in [28]. We get the

data set from http://www.cs.sfu.ca/∼jpei/Software/PTKLib.rar (the authors of [28] provided

this). In [28], the method to generate this data set is described. Here we briefly introduce

this method. In the iceberg sighting database, each sighting record contains the sighting

date, sighting location (latitude and longitude), number of days drifted, etc. Each tuple is

associated with a confidence level according to the source of sighting. These sources in-

clude: R/V (radar and visual), VIS (visual only), RAD (radar only), SAT-L(low earth orbit

satellite), SAT-M(medium earth orbit satellite) and SAT-H (high earth orbit satellite). To

quantify the confidence, the authors of [28] assign confidence values 0.8, 0.7, 0.6, 0.5, 0.4

and 0.3 to the above six confidence levels respectively. For the sightings with the same

time stamp, if the sighting locations are very close (the differences in latitude and longi-

tude are both smaller than 0.01), they are considered referring to the same iceberg and only

one of them is correct. All tuples involved in such a sighting form a multi-tuple rule. We

write a multi-tuple generation rule r as t1 ⊕ ... ⊕ tm. The probability of r Pr(r) is set to

the maximum confidence among the membership probabilities of tuples in the rule. The

membership probability of a tuple in the generation rule r is adjusted to

Pr(ti) =
conf(ti)∑

1≤j≤m conf(tj)
Pr(r) (1 ≤ i ≤ m)

Here conf(ti) is the the confidence value of ti.
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Weight function:

For the experiments for PRFω, we tried different weight functions ω(i): randomly

generated weight functions (RGWFs), the weight function ω(i) = n − i, where n is the

number of tuples in an uncertain database and i is the position of a tuple in a possible

world, and the weight function from the PT-k query answer [28]. All these functions are

related only to i and monotonically non-increasing.

RGWFs are generated as follows: we generate n random numbers and sort them into a

descending order; the number in the position i of this order is the weight value of ω(i).

In our experiments, we found the performance of our pruning methods for RGWFs

similar to that using the weight function ω(i) = n − i. So we only give the results for

RGWFs and the one based on PT-k query answer.

6.2 Results

All the figures are put at the end of this chapter. Each graph (except Figure 6.7 and 6.8,

which are oriented for some special purposes) in this chapter shows computed tuples or

running times (on y-axis) over one of the three parameters (on x-axis): the expected mem-

bership probabilities of independent tuples, the expected number of tuples in a generation

rule, and different values of k. Note that the first two parameters result in different data sets.

In all our experiments, the top-k tuples found by the combined algorithm with pruning is

the same as the top-k tuples found by the algorithm without pruning.

Figures 6.1, 6.2 and 6.3 show the computed tuples for normal data sets with pruning,

for a RGWF random1 and PT-k query answer. The size of the database is 100,000 tuples.

We set k = 50 in both Figure 6.1 and 6.2. In Figure 6.1, we see that the computed tuples is

between 50 and 400. Compared with the size of the dataset, with pruning we only need to

compute the PRFω values for a very small portion of the database. This is an impressive

improvement. With the increase of the expected membership probability of the independent

tuples in a data set, less tuples need be computed. In Figure 6.2, we see that the computed

tuples is between 100 and 400. In Figure 6.3, we vary the value of k from 50 to 250. We

see that only a small number of tuples are computed for their PRFω values. Most tuples

are pruned.

Figures 6.4, 6.5 and 6.6 show the running times for normal data sets. Here we also test

for 2 weight functions: a RGWF random2 and PT-k query answer. The size of the data set

is 2000 tuples. We set k = 50 for random2 and k = 150 for PT-k query answer in both
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Figure 6.4 and 6.5. The improvement is orders of magnitude. The improvement is similar

for larger data sets (we scaled the size up to 10,000 tuples and tested some selectively).

Figures 6.7 and 6.8 uses the special data sets with different ratios between the number

of swapping tuples and the number of all tuples, and different weight functions. The size of

the data sets is 2000. We set k = 50 for random2 and k = 150 for the PT-k query answer.

In the two figures (Figure 6.7 is about computed tuples and Figure 6.8 is about running

times), we see that when the swapping ratio is low, pruning produces little performance

gains. With the increase of the swapping ratio, more tuples are pruned and the running

times reduced substantially.

Figures 6.9 and 6.10 show the computed tuples and running times for a RGWF random3

and PT-k query answer for the real data set. We vary k from 150 to 350. The improvement

is similar to the ones with the synthetic normal data sets.

Comparison with pruning of [28]:

It can be shown that the main pruning theorems of [28] are special cases of our pruning

theorems (see Section 4.3). We compare with the simple pruning technique used in [28].

The test data sets are normal data sets, with size 2000. We used two weight functions:

a RGWF random2 and the PT-k query answer. Figure 6.11, 6.12 and 6.13 compare the

computed tuples, while Figure 6.14, 6.15 and 6.16 are on the running times. It can be

noticed that substantial improvement is generated.

Early termination for PRF e:

Figures 6.17-6.22 show the experimental results for the early termination condition for

PRF e. We use the early termination condition given in Chapter 5 to terminate a compu-

tation when the condition is satisfied. The test data sets are normal data sets, with the size

being 1,000,000 tuples. We set α = 0.95. When k=50000 or higher, the computation termi-

nates right after the first k tuples are retrieved. Running times are shortened to one fifth to

one twentieth of the ones without pruning. With smaller k’s, the number of retrieved tuples

could be higher than k, but not substantially. This shows that Theorem 5.1.3 yields a highly

effective pruning method.

Experiments with 3-tuples:

Theorem 3.4.4 states that when the optimal upper bound is not obtained using two

tuples, we may get it by introducing a third tuple. Suppose this is the case for two tu-

ples tlowest and tnew, and we introduce a third tuple. It can be shown that this new tuple

must be involved in a generation rule which contains some tuples whose score is between
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score(tlowest) and score(tnew) (which therefore must already been retrieved). Otherwise,

it will not help improve the already computed upper bound. Thus, in our experiments a

third tuple is randomly chosen satisfying the above condition. However, our experiments

with the four weight functions for the normal and special synthetic data sets didn’t show

performance gains, as the number of computed tuples and running times are very close to

those by the pruning method with two tuples. One observation is that, in most cases, the

optimal upper bound has already been reached using two tuples.

Real value vs. upper bound:

We also conducted experiments to show the closeness of the PRFω values of tuples

and their computed upper bounds using the method of this thesis, for the real data set. We

set k = 50 and use the weight function ω(i) = n − i. To plot the graph (Figure 6.23), we

pick one tuple from every 50 tuples (i.e., 51st, 101st,..., and so on; the upper bounds of the

first k tuples need not be computed).

From Figure 6.23, we can see that for early retrieved tuples, the upper bounds are very

close to their PRFω values. This shows that our pruning method finds very good upper

bounds at the beginning. For later retrieved tuples, the distance between the upper bounds

and the PRFω values becomes larger. Question arises as why the distance is larger while

most later tuples are still pruned?

A short answer is that later tuples are easier to be pruned. In more details, there are

three factors to be considered. First, when more tuples are retrieved, the lowest PRFω

value in the current top-k tuples becomes larger. If an upper bound of a tuple is lower than

this value, the tuple is pruned. Second, Figure 6.23 shows the trend of the PRFω values

generally decreasing with the decrease of scores. So the later tuples in this case generally

have lower PRFω values. This is why the distance becomes larger. Third, for later tuples,

because most of the tuples retrieved before have been pruned and their PRFω values are

not computed, the maintained tlowest’s ratio between its PRFω value and membership

probability is distanced from the possible lowest ratio among all retrieved tuples. So the

computed upper bounds are not as tight. Observe that this is to say that when pruning is

effective, the distance of the real values and computed upper bounds tends to become larger,

and when pruning is ineffective, more PRFω values are computed and better tlowest’s ratios

are generated so to make later pruning more likely. It is an interesting self-adapting process.
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Figure 6.1: Computed tuples for PRFω on normal data sets: membership probabilities of
independent tuples
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Figure 6.2: Computed tuples for PRFω on normal data sets: sizes of multi-tuple generation
rules
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Figure 6.3: Computed tuples for PRFω on normal data sets: parameter k
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Figure 6.4: Running times for PRFω on normal data sets: membership probabilities of
independent tuples
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Figure 6.5: Running times for PRFω on normal data sets: sizes of multi-tuple generations
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Figure 6.6: Running times for PRFω on normal data sets: parameter k
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Figure 6.7: Comparison on special data sets: computed tuples
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Figure 6.8: Comparison on special data sets: running times
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Figure 6.9: Computed tuples for PRFω on real data set
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Figure 6.10: Running times for PRFω on real data set
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Figure 6.11: Comparison with previous pruning method (computed tuples): membership
probabilities of independent tuples
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Figure 6.12: Comparison with previous pruning method (computed tuples):sizes of multi-
tuple generation rules
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Figure 6.13: Comparison with previous pruning method (computed tuples): parameter k
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Figure 6.14: Comparison with previous pruning method (running times): membership prob-
abilities of independent tuples
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Figure 6.15: Comparison with previous pruning method (running times):sizes of multi-tuple
generation rules
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Figure 6.16: Comparison with previous pruning method (running times): parameter k
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Figure 6.17: Computed tuples for early termination: membership probabilities of indepen-
dent tuples
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Figure 6.18: Computed tuples for early termination: sizes of multi-tuple generation rules
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Figure 6.19: Computed tuples for early termination: parameter k
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Figure 6.20: Running times for early termination: membership probabilities of independent
tuples
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Figure 6.21: Running times for early termination: sizes of multi-tuple generation rules
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Figure 6.22: Running times for early termination: parameter k
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Chapter 7

A Theory of Top-k Ranking for
Objects with Uncertain Data

In this chapter, we present a new ranking theory for objects with uncertain data, where two

contributors to uncertainty of data are considered. The first is that the values of an attribute

are given in terms of a probability distribution, and the second is that the values of attributes

of objects satisfy some stated constraints.

We present this ranking theory in three stages. The first assumes discrete domains. In

this case, it is convenient and conceptually intuitive to define top-k objects using the notion

of possible worlds. This material is given in Section 7.1. This formulation is extended

to include continuous domains. We show that top-k ranking for objects in this context is

closely related to the mathematical problems in high-dimensional spaces, in particular, the

problem of computing volumes of a high-dimensional polyhedron represented by a system

of inequations can be viewed as a subproblem of top-k object ranking of our theory. This

material is presented in Section 7.2. Due to this relationship, we can apply the algorithms

studied in mathematics for the former to top-k object ranking where the constraints and

aggregation function are linear expressions and the probability distributions are continuous

uniform. Further in Section 7.3, we consider different weights to different positions of

objects and add the aggregation values of objects to top-k ranking such that the ranking

result is more reasonable. In Section 7.4, we compare our ranking theory with related work

in the literature. We show that a number of definitions of top-k objects in the literature

are just special cases of our ranking theory. In addition, our ranking theory can improve

the quality of ranking result or extend the application area of the ranking problems in the

existing approaches. Section 7.5 gives a limited study on the computation of top-k objects

under our definition. Section 7.6 provides a summary.
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7.1 Top-k Ranking for Discrete Domains

In this section, we present a theory of top-k ranking for objects whose data values are from

discrete domains. The theory is formulated using the possible world semantics.

Definition 7.1.1 An uncertain database (or just a database) is a 5-tuple D = 〈O, A, X, P, F 〉,
where O = {o1, ..., on} is a set of objects; A = {a1, ..., am} a set of attributes; X =

{xij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} where xij is a variable representing the value of the object

oi under aj; P = {pij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} where pij is the probability distribution

of variable xij , and F = {f1, f2, ..., fl} where each fi is an equation or inequation on X .

In this section, we assume that each variable xij ∈ X has a finite discrete domain, and

therefore the probability distribution of a variable is also discrete.

Without confusion, given a database D, we will use oi for objects, aj for attributes,

where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

For a database D = 〈O, A, X, P, F 〉, each fi in F can be written as

g(x11, ..., x1m, x21, ..., xnm)R 0

where R ∈ {≤,≥, <, >,=}. We assume that g is a continuous function.

Definition 7.1.2 Let D = 〈O, A, X, P, F 〉 be a database. An aggregation function for D

is a mapping t : <m → <, where < is the set of real numbers.

In our formulation, an application of an aggregation function, written t(xi1, ..., xim)

(sometimes also written t(oi), for convenience) is to compute the collective value of object

oi across all attributes. We call such a value an aggregation value of object oi.

For example, suppose in the given database there are two objects, o1, o2, and three

attributes, a1, a2, a3. Suppose an aggregation function is defined as: t(x, y, z) = 2x +

3y + z. Then, the aggregation value of object o1 is 2x11 + 3x12 + x13 and that of o2 is

2x21 + 3x22 + x23.

Given n objects and m attributes, we are interested in tuples of the form

η = (c11, ..., c1m, c21, ..., cnm) (7.1)

where cij is a value of xij , i.e., a value of object oi under attribute aj . The probability of

this tuple, denoted by Pr(η), is defined by

Pr(η) = p11(c11)...× p21(c21)× ...× pnm(cnm) (7.2)
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A tuple of (7.1) represents one possible set of values for the underlying variables. Thus

a tuple represents a scenario of all objects having their concrete attribute values. Although

we know there is one actual world (the set of actual values for the variables), we do not

know which one it is and thus every such set serves as a “possible world”.

If Pr(η) > 0, the tuple η is nontrivial. Following the general idea of the possible world

semantics, we define a possible world in this context to be a set of the values in η associated

with their variables. Given a tuple η in the form (7.1), this can be conveniently denoted by

η′ = {[x11, c11], ..., [x1m, c1m], [x21, c21], ..., [xnm, cnm])

That is, a possible world consists of n × m elements, each of which is a variable taking

a value from its domain. In other words, η is an assignment of values to variables for

all objects. For notational convenience, we will continue to use the notation of tuple in

the form (7.1) to denote a possible world. Thus, the probability of the possible world η′,

denoted Pr(η′), is defined to be that of the corresponding tuple η, i.e., Pr(η′) = Pr(η).

For notational convenience, in the sequel, given an aggregation function t, an object

oi (1 ≤ i ≤ n), and a tuple η of the form (7.1), the aggregation value of oi w.r.t. η,

denoted toi(η), is the aggregation value of oi computed by t when variable xij take values

cij (1 ≤ j ≤ m).

Then, whether an object oi is a top-k object is determined by how many possible worlds

that “support” oi. Formally, let D = 〈O, A, X, P, F 〉 be a database, η = (c11, ..., c1m,

c21, ..., cnm) a possible world, and t an aggregation function. Given an object oi, if there

are at least n − k other objects oi′ such that toi(η) ≥ toi′ (η), then we say that the possible

world η supports object oi (or, η is a support to oi).

In other words, η supports object oi whenever η places oi ahead of at least n− k other

objects, under the aggregation function t. This is like casting a vote. η supports oi when it

casts its vote to oi as a top-k object.

We now bring the constraints into the formulation.

Definition 7.1.3 Let D = 〈O, A, X, P, F 〉 be a database. A possible world η = (c11, ...,

c1m, c21, ..., cnm) is said to be effective if the values in this possible world satisfy all the

inequations and equations in F.

If a support to an object is effective, it will be called an effective support.

For each object o, we define the support set of o, denoted by So, to be the set of all the

possible worlds that are effective supports to o.
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Figure 7.1: Example 7.1.6

Definition 7.1.4 Let D = 〈O, A, X, P, F 〉 be a database, t an aggregation function. The

support strength of an object o is defined as
∑

η∈So
Pr(η).

Definition 7.1.5 Let D = 〈O, A, X, P, F 〉 be a database, t be an aggregation function.

The top-k objects in D are the k objects with highest support strengthes.

Here we give some examples of ranking problems covered by this formulation of top-k

ranking.

Example 7.1.6 Suppose there are two objects O = {o1, o2} and one attribute A = {a1}.

We thus have two variables X = {x11, x21}. Assume both domains are [0, 1] and the

probability distribution of x11 is p11(x11 = 0.3) = 0.7 (meaning that the probability of the

value of x11 being 0.3 is 0.7, similarly below) and p11(x11 = 0.8) = 0.3, and that of x21 is

p11(x21 = 0.2) = 0.4 and p21(x21 = 0.7) = 0.6. Assume we want to find top-1 object.

The two variables x11, x21 in this example can be viewed intuitively as a 2-dimensional

space. A possible world can then be viewed as a point in this space, and the variable-value

pairs in a possible world as coordinate values. There are 4 possible worlds in this example,

which are shown in Figure 7.1. The probability of the possible world (0.3, 0.2) is 0.28. It

supports o1. The probability of the possible world (0.3, 0.7) is 0.42. It supports o2. The

probability of the possible world (0.8, 0.2) is 0.12. It supports o1. The probability of the
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Figure 7.2: Example 7.1.7

Figure 7.3: Example 7.1.8
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possible world (0.8, 0.7) is 0.18. It supports o1. It can be easily seen that the support

strength of o1 is 0.58 and the support strength of o2 is 0.42. Thus, o1 is the top-1 object.

Example 7.1.7 The conditions are the same as in Example 7.1.6, but we have a constraint,

x21 > 0.2x11 + 0.5. This is shown in Figure 7.2. The constraint is captured by the line

AB in the sense the possible worlds strictly above it (note > in the constraint) satisfy the

constraint. Apparently, there are only two effective possible worlds. The possible world

(0.3, 0.7) supports o2, and the possible world (0.8, 0.7) supports o1. The support strength

of o1 is 0.18 and the support strength of o2 is 0.42. So o2 is the top-1 object.

Example 7.1.8 Let us consider a real example. There are two paintings o1 and o2. We

are interested in knowing which painting is more expensive. But we do not have exact

information about their prices. We have some uncertain information about the prices. We

use the variable x1 to represent the price of o1 and the variable x2 to represent the price of

o2. We know that the price of o1 satisfies the following probability distribution: Pr(x1 =

0.3) = 0.7 (meaning that the probability of the price of o1 being 0.3 million dollars is 0.7,

similarly below) and Pr(x1 = 0.8) = 0.3. We also know that the price of o2 satisfies the

following probability distribution:Pr(x2 = 0.2) = 0.4 and Pr(x2 = 0.7) = 0.6. And we

know that the price of o2 is higher than the price of o1 with 20 percent discount. This can

be represented by an inequation: x2 > 0.8x1.

We can treat two paintings as two objects in our theory. There is only one attribute:

price. We have known the probability distribution of the price of each object. We also know

a constraint between the prices of these two objects: x2 > 0.8x1. We want to find top-1

object. There are 4 possible worlds in this example. The probability of the possible world

(0.3, 0.2) is 0.28. It supports o1. The probability of the possible world (0.3, 0.7) is 0.42.

It supports o2. The probability of the possible world (0.8, 0.2) is 0.12. It supports o1. The

probability of the possible world (0.8, 0.7) is 0.18. It supports o1. All the possible worlds

are shown in Figure 7.3. The possible worlds above the line AB satisfy the constraint x2 >

0.8x1. After considering the constraint, there are only two effective possible worlds. The

effective possible world (0.3, 0.7) supports o2, and the effective possible world (0.8, 0.7)

supports o1. The support strength of o1 is 0.18 and the support strength of o2 is 0.42. So

o2 is the top-1 object. Based on our theory, from the uncertain information we have, we

conclude that the painting o2 has higher probability to be more expensive than the painting

o1.
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7.2 Extension to Continuous Domains in High-Dimensional Space

In the definition above, we used possible worlds to define top-k ranking, where probability

distributions are assumed to be discrete. When a probability distribution is continuous, we

have continuous domains for variables. If we continue to use a possible world to represent a

point in a high-dimensional space, then we are going to have infinitely many possible worlds

(which is fine). In this case, it is equivalent, yet more convenient, to represent a point by

its coordinate values. This does not change the nature of the semantics even for discrete

domains. However, some technical details need to be handled for continuous domains.

The definitions of database D = 〈O, A, X, P, F 〉 and aggregation function are the same

as before. Each variable xij ∈ X can be viewed a dimension in an n×m dimensional space,

and a tuple η = (c11, ..., c1m, c21, ..., cnm) represents a point by its coordinate values. We

then can represent the support set in Section 7.1 by a system of equations and inequations,

which over n variables defines a q-dimensional space, where q ≤ n. This space contains all

the points whose coordinate values satisfy all the equations and inequations and does not

contain any points whose coordinates conflict with any equation or inequation.

We assume that the domain of each variable in X is bounded finitely, i.e.,

lij ≤ xij ≤ uij (1 ≤ i ≤ n, 1 ≤ j ≤ m) (7.3)

where lij and uij are real numbers. To get the top-k objects, we need to define some spaces.

The first space, denoted by Γ, is defined by all the inequations and equations in F and

the domain of each variable in X .

The second space, denoted Vi w.r.t oi, is defined by the domain of each variable in X

and the constraints for the notion of support - η supports an object o iff there are at least

n − k other objects o′ such that to(η) ≥ to′(η). This space can be represented by systems

of equations and inequations and we will describe it later.

Let D = 〈O, A, X, P, F 〉 be a database and t be an aggregation function. For an object

oi, we define the support space to oi to be the space Υi = Vi ∩ Γ. We will say that all the

points in Υi support oi.

For D = 〈O, A, X, P, F 〉, we assume that all the probability distributions in P are

independent. If all the probability distribution in P are discrete, we get the joint probability

mass function of X:

f(x11, x12, ..., x1m, x21, ..., xnm) =
n∏

i=1

m∏

j=1

pij .
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We define the support strength of oi as (assuming η = (c11, ..., c1m, c21, ..., cnm)):

Λ(oi) =
∑

η∈Υi
f(x11 = c11, ..., x21 = c21, ..., xnm = cnm).

If some of the probability distributions in P are continuous, we get the joint probability

density function of X:

f(x11, x12, ..., x1m, x21, ..., xnm) =
n∏

i=1

m∏

j=1

pij .

Let Θ be the set of points which contain all the points with joint probability density function

value greater than 0 and does not contain any point with joint probability density function

value equal to 0.

Consider all the spaces below

Υi ∩Θ (1 ≤ i ≤ n) (7.4)

We discuss these spaces in two cases.

First, if all the spaces in expression (7.4) are empty, we define support strength of any

object oi ∈ O to be 0.

Second, if not all the spaces in (7.4) are empty, let s (0 ≤ s ≤ n×m) be the maximal

dimension among all spaces in (7.4). Given an i (1 ≤ i ≤ n), let χi = {η1, ..., ηq}, where

q is a positive integer, be the set of s-dimensional spaces in Υi ∩Θ, and

xue1ve1 , ..., xuedved

where 1 ≤ e ≤ q, 1 ≤ d ≤ n × m, 1 ≤ uew ≤ n, 1 ≤ vew ≤ m, 1 ≤ w ≤ d, be

the variables which take different values in ηe. Then we define the support strength of oi,

Λ(oi), as follows

• If χi = ∅ then Λ(oi) = 0;

• If χi contains q points, then

Λ(oi) =
∑

(c11,...,cnm)∈χi
f(x11 = c11, ..., xnm = cnm)

• If χi contains q s-dimensional spaces (1 ≤ s ≤ n×m) then

Λ(oi) =
∑

ηe∈χi

∫
..
∫
ηe

f(x11, ..., xnm)dxue1ve1 ...dxuedved

(if variable xij can only take a fixed value cij in ηe, replace xij with cij in
∫
..
∫
ηe

f(x11, ..., xnm)).
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Then, the top-k objects in D are the k objects with the highest support strengthes.

Recall that we have defined Vi w.r.t oi. Now let us see how to formally express Vi in

some systems of equations and inequations. For an object oi ∈ O, let Wij be a set of

n − k objects in O − {oi}, i.e., Wij = {oa1 , oa2 , ..., oan−k
} where oai 6= oi. Because we

can choose any n − k objects from O − {oi}, we know there are Cn−k
n−1 different Wij . So

1 ≤ j ≤ Cn−k
n−1 .

Let Wij = {oa1 , oa2 , ..., oan−k
}. Let Uij denote the following set of inequations

t(xi1, ..., xim)≥ t(xah1, ..., xahm) 1 ≤ h ≤ n− k

lij ≤ xij ≤ uij (1 ≤ i ≤ n, 1 ≤ j ≤ m)

and Vij denote the space defined by Uij . Define

Vi = ∪1≤j≤Cn−k
n−1

Vij

For a database D = 〈O, A, X, P, F 〉, where O = {o1, ..., on} and A = {a1, ..., am},

we assume the maximal dimension of all the support spaces of objects is s. When the

probability distributions in P are all continuous uniform distributions over entire domains,

we just need to calculate the volume of the s dimension support space to each object oi to

get top-k objects. Because each point has the same probability density function value and

the support strength of an object is the product of the the volume of the s dimension support

space to this object and the probability density function value, we can use the volume of s

dimension support space to an object to measure the support strength of an object. So in

this situation, the top-k objects in D is the k objects with largest volumes of s dimension

support spaces. So we have the following theorem.

Theorem 7.2.1 Let D = 〈O, A, X, P, F 〉 be a database, where O = {o1, ..., on} is a set

of objects; A = {a1, ..., am} a set of attributes; X = {xij | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
where xij is a variable representing the value of the object oi under aj; P = {pij | 1 ≤ i ≤
n, 1 ≤ j ≤ m} where pij is continuous uniform probability distribution of variable xij

over the entire domain, and F = {f1, f2, ..., fl} where each fi is an equation or inequation

on X . Assume the maximal dimension of all the support spaces of objects is s. The top-k

objects in D are the k objects with largest k volumes of s dimension support spaces.

Example 7.2.2 We keep all the conditions as in Example 7.1.7, except the probability dis-

tribution. We change the probability distribution of x11 and x21 to be continuous uniform

distribution. The example is illustrated in Figure 7.4. Since the probability distribution of
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Figure 7.4: Example 7.2.2

each variable is continuous uniform distribution, we use volume to measure the support

strength to an object. For this example, as the problem is in 2-dimensional space, we can

use area to measure the support strength to an object. All the points inside S1 support o1

and all the points inside S2 support o2. S1 is the support space to o1 and S2 is the support

space to o2. The maximal dimension of all the support spaces to objects is 2. S1 can be

described by the following inequations:

x11 ≥ x21

x21 > 0.2x11 + 0.5
0 ≤ x11 ≤ 1
0 ≤ x21 ≤ 1

S2 can be described by the following inequations:

x21 ≥ x11

x21 > 0.2x11 + 0.5
0 ≤ x11 ≤ 1
0 ≤ x21 ≤ 1

As the area of S2 is larger than the area of S1, o2 is the top-1 object.

Example 7.2.3 We keep all the conditions as in Example 7.2.2, except the constraint. We

change the constraint to x21 = 0.2x11 + 0.5. The example is shown in Figure 7.5. We can

use the length of a line to measure the support strength of an object. All the points in line
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Figure 7.5: Example 7.2.3

BC supports o1 and all the points in line AB supports o2. Line BC is the support space

to o1 and line AB is the support space to o2. The maximal dimension of all the support

spaces to objects is 1. Because the length of AB is longer than the length of BC, o2 is the

top-1 object. This example shows that constraint can be equations.

Example 7.2.4 We keep all the conditions in Example 7.2.2, except the constraint. We

change the constraint to (x11 − 0.9)2 + (x21 − 1.1)2 = 0.04. The example is shown in

Figure 7.6. All the points in the arc BC support o1 and all the points in the arc AB support

o2. Because the length of the arc AB is longer than the length of the arc BC, o2 is the top-1

object. This example shows that constraint can be non-linear equations or inequations.

Example 7.2.5 We keep all the conditions in Example 7.2.2, except the probability distri-

bution. We change the probability distribution of x11 p11 and the probability distribution of

x21 p21 to continuous non-uniform distribution. The example is also shown in Figure 7.4.

We cannot use volume to measure the support strength. We have to use integration. As all

the points inside S1 support o1, we can use the following integration to compute the sup-

port strength of o1:
∫∫

S1
p11p21dx11dx21. Similarly, we can use the following integration

to compute the support strength of o2:
∫∫

S2
p11p21dx11dx21.
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Figure 7.6: Example 7.2.4

7.3 Further Extensions

From a point in a high-dimensional space, we can rank the underlying objects according to

their aggregation values. In this ranking, each object has a position. In the formulation of

the previous section, there is no difference for an object to be ranked at the first position or

2nd position. Each position in the top k positions has the same influence to the final ranking

result, and each position lower than k has no influence to the final ranking result. This is

reasonable in some applications. But sometimes it is desirable to assign weights to different

positions. For example, if an object ranks the first in a point, it should get more support than

the object ranked the second from the same point. This concept is common in real life. For

example, in a sport event a gold metal weighs more than a silver metal.

In this section, we define the position of an object in a point to be the number of objects

with higher aggregation values.

In our original ranking theory, the aggregation values of objects are used to give an

order of objects in a point. After the order is determined, the aggregation value itself will

not be used in the ranking again. For example, candidate A is preferred over candidate B

for trustworthy, but the extent of this preference is not considered previously. Therefore,

sometimes it is desirable to include the aggregation values in the process of ranking. In

this section, we extend our ranking theory in Section 7.2 so that different positions can get
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different weights and aggregation values of objects themselves can be included in top-k

ranking.

We note that the notion of parameterized ranking functions introduced in [29] embodies

a similar concept.

We now give the details. Let database D = 〈O, A, X, P, F 〉 and aggregation function t

be the same as before.

The space V b
i w.r.t. oi is defined by the domain of each variable in X and the constraints

for the notion of b-support - a point η in a high-dimensional space gives a b-support to an

object o iff there are exactly b other objects o′ such that to′(η) > to(η).

As in the previous section, we let Γ be the space defined by the inequations or equations

in F . We define Υb
i = V b

i ∩ Γ to be the b-support space to oi. Note that oi is in the b-th

position in all the points of the b-support space to oi.

Let us use Position(oi) to represent the position of an object in a point. Let ω :

< × N → < be a weight function. The expression ω(t(oi), Position(oi)) specifies a

weight for an object in a position. This weight function includes the aggregation value of an

object. ω(t(oi), Position(oi)) can be defined in many different ways. It can be independent

of t(oi) or Position(oi). If ω(t(oi), Position(oi)) = 1 (0 ≤ Position(oi)) ≤ k − 1) and

ω(t(oi), Position(oi)) = 0 (k ≤ Position(oi) ≤ n − 1), then we get the same top-k

ranking definition as the one in Section 7.2.

For D = 〈O, A, X, P, F 〉, we still assume that all the probability distributions in P are

independent. If all the probability distributions in P are discrete, we get the joint probability

mass function of X:

f(x11, x12, ..., x1m, x21, ..., xnm) =
n∏

i=1

m∏

j=1

pij

We define the support strength of oi as

Λ(oi) =
∑n−1

b=0

∑
(c11,...,c1m,c21,...,cnm)∈Υb

i
ω(t(oi), b)f(x11 = c11, ..., x1m = c1m, x21 =

c21, ..., xnm = cnm).

If some of the probability distributions in P are continuous, we get the joint probability

density function of X:

f(x11, x12, ..., x1m, x21, ..., xnm) =
n∏

i=1

m∏

j=1

pij

We define Θ to be the same as in Section 7.2.

We observe all the spaces below

Θ ∩Υb
i (1 ≤ i ≤ n, 0 ≤ b ≤ n− 1) (7.5)
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We discuss these spaces in two cases.

First, if all the spaces in (7.5) are empty, we define the support strength of any object

oi ∈ O to be 0.

Second, if not all the spaces in (7.5) are empty, let s (0 ≤ s ≤ n×m) be the maximal

dimension of spaces in (7.5). Given an i (1 ≤ i ≤ n), let χb
i = {η1, ..., ηq}, where q is a

positive integer, be the set of s-dimensional spaces in Υb
i ∩Θ and

xue1ve1 , ..., xuedved

where 1 ≤ e ≤ q, 1 ≤ d ≤ n × m, 1 ≤ uew ≤ n, 1 ≤ vew ≤ m, 1 ≤ w ≤ d, be the

variables which can take different values in ηe, then we define the b-support strength of oi,

Λb(oi), as follows

• If χb
i = ∅ then Λb(oi) = 0;

• If χb
i contains q points, then Λb(oi) =

∑
(c11,...,cnm)∈χb

i
ω(t(oi), b)f(x11 = c11, ..., xnm = cnm)

• If χb
i contains q s-dimension spaces(1 ≤ s ≤ n×m) then

Λb(oi) =
∑

ηe∈χb
i

∫
..
∫
ηe

ω(t(oi), b)f(x11, ..., xnm)dxue1ve1 ...dxuedved

(if variable xij can only take a fixed value cij in ηe, replace xij with cij in
∫
..
∫
ηe

ω(t(oi), b)f(x11, ..., xnm))

We define the support strength of oi: Λ(oi) =
∑n−1

b=0 Λb(oi).

The top-k objects in D are the k objects with highest support strength (if smaller values

of weights are considered more important, then the top-k objects in D are the k objects with

lowest support strength).

Here we show how to express V b
i as some systems of inequations. For an object oi ∈ O,

let W b
ij(0 ≤ b ≤ n − 1) be a set of b objects in O − {oi}. Because we can choose any b

objects in O− {oi}, there are Cb
n−1 different W b

ij for each b. So for each b, 1 ≤ j ≤ Cb
n−1.

Let W b
ij = {oa1 , oa2 , ..., oab

}. And let O−W b
ij −{oi} = {oab+1

, oab+2
, ..., oan−1}. Let

U b
ij denote the following set of inequations:

t(xah1, ..., xahm)>t(xi1, ..., xim) 1 ≤ h ≤ b
t(xi1, ..., xim)≥ t(xah1, ..., xahm) b + 1 ≤ h ≤ n− 1
lij ≤ xij ≤ uij (1 ≤ i ≤ n, 1 ≤ j ≤ m)

Let V b
ij denote the space defined by U b

ij . Let

V b
i = ∪1≤j≤Cb

n−1
V b

ij
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7.4 Comparison with Related Work

7.4.1 Application of Constraint

As introduced in Section 2.5, Agrawal et al. [36] propose a method for ranking objects

when some relations between objects are specified. In [36], an example of actors is given.

We know some preferences between actors and we want to find top-k popular actors. To see

the difference of the method in [36] from ours, assume there is only one set of preferences

which consist of a partial order. When using the method in [36], two actors can rank before

or after each other if there is no preference between them. For instance, suppose there are

100 actors A1, ..., A100. We assume the partial order is: A1 is more popular than A2, ..., A98

and A99 is more popular than A100. Using the method in [36], we cannot tell which one

between A1 and A99 is more popular. But our theory says A1 has more support strength

than A99 . Here we assume each actor has a popularity score and this score is an uniform

probability distribution in [0, 1]. And we assume the weight function is only related to

positions of actors in possible worlds and positions in front have higher weights. The partial

order is the constraints. Then we get our ranking result which ranks A1 ahead of A99. Due

to the preferences, A1 is more popular than most other actors and A99 is more popular than

only one actor, A1 has more chances to be ranked ahead of A99. These observations lead to

the conclusion that out ranking theory gives more reasonable ranking results than the one

in [36].

As introduced in Section 2.6, PageRank is an algorithm for page ranking in the world

wide web [37]. The relations between pages can be described by a group of linear equations:

PR(pi) =
1− d

N
+ d

∑

pj∈M(pi)

PR(pj)
L(pj)

where pi is a page, PR(pi) is the page rank of the page pi, M(pi) is the set of pages that

link to pi, d is the damping factor, L(pj) is the number of outbound links on page pj , and

N is the total number of pages.

One can find that this can be thought of as an extreme case of our ranking theory given

in Section 7.3. One can think of pages as objects, and there is only one attribute page

rank. X = {x11, x21, ..., xn1}. The domain for each variable is [0, 1]. We can assume the

probability distribution of each variable is continuous uniform distribution over the entire

domain. For simplicity, we assume the joint probability density function is 1. The set of

equations above is the constraint set F . The aggregation function t(oi) = xi1. The weight

function is ω(t(oi), Position(oi)) = t(oi) = xi1. And we want to find top-N objects.
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There is only one solution for this system of linear equations. So the support space to each

object is just this point. The support strength of each page is the page rank of each page.

If some equations are missed in the group of equations above such that the number of

variables is more than the number of equations for some reasons, our ranking theory can

still give the page rank for pages using the setting we just introduced because we can still

compute the support strength for each object and it is the page rank of each page.

7.4.2 Comparison with top-k ranking in uncertain databases

As introduced in Subsection 2.2.3, in [34], the authors propose the definition of top-k rank-

ing for attribute-level uncertainty model in uncertain databases. We can think of a tuple

under the attribute-level uncertainty model as an object. Take a look at the definition of the

database D = {O, A, X, P, F} in Section 7.3. The objects set O is the set of tuples. There

is only one attribute to be ranked. So A contains one attribute. X = {x11, x21, ..., xn1}.

Each variable has a discrete probability distribution. There are no constraints. So F is

empty. The weight function ω(t(oi), Position(oi)) = Position(oi). Here Position(oi)

is rankW (ti) (a possible world W can be thought of as a point). So the definition of top-k

ranking under the attribute-level uncertainty model in [34] can be thought of as a special

case of our extended ranking theory in Section 7.3.

For the definition of top-k ranking in [34], our definition can improve the quality of

the ranking result by considering different weights for positions. The weights of positions

in [34] are fixed. But in real applications, we may wish to adjust the weights of positions

depending on different conditions. Sometimes we may want to include the values of objects

into the process of ranking. This is allowed in our ranking theory but not in [34].

7.4.3 Comparison with top-k ranking in continuous probabilistic datasets

As introduced in Section 2.3, in [56], the authors propose parameterized ranking function

(PRF) for top-k ranking in continuous probabilistic datasets. Here, if we treat tuples as

objects and add the following three restrictions, the top-k tuples under the definition PRF

is then the top-k objects defined in Section 7.3. First, we assume each tuple’s existence

probability is 1. That is, it is certain that all the tuples in a given dataset do exist. It

follows that each possible world contains n tuples. Second, we restrict the weight function

as a mapping to real numbers. Finally, we assume that the domain of each tuple’s score

is defined by an interval (whose bounds are real numbers). Under these restrictions, let

the object set O be the set of tuples, the attribute be the only one in A, the variable set be
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X = {x11, x21, ..., xn1}, and F be empty. Then, the answer of top-k query here is just a

special case of our definition of top-k objects in Section 7.3.

As introduced in Section 2.4, in [35], the authors propose to rank records with uncer-

tain scores in databases. Actually, if we treat records as objects, the answer of k-Utop-

Rank(1, k) query is the top-k objects defined in Section 7.2. Take a look at the definition

of the database D = {O, A, X, P, F} in Section 7.2. Here the objects set O is the set of

records. Each record is an object. Each object only has an attribute. So there is only one

attribute in A. X = {x11, x21, ..., xn1}. Each variable has a finite domain: the interval

[loi, upi]. The probability density function of each variable in X is given. There are no

constraints. So F is empty. Thus the answer of k-Utop-Rank(1, k) query is just a special

case of our definition of top-k objects in Section 7.2. In our definition, there is no need to

transfer the score intervals to a partial order.

Both definitions in [56] and [35] consider only one attribute. But our theory can handle

multiple attributes with uncertain values. So our theory extends the application areas of the

ranking on uncertain scores with continuous probability distributions.

7.5 Computation

Due to the high complexity in the computation of top-k objects under the general definition

of our ranking theory, we present a limited study on the method of computation. In this

section, we study the computational problem for two special cases:

• Computing the top-k objects whose strengths are calculated as the volumes of poly-

hedra expressed in linear inquations - this is an exercise to illustrate how to use an

existing algorithm for the latter to compute the former.

• Computing the top-k objects for objects with two attributes with probability distri-

butions - this extends the previous work of [56] in which a polynomial algorithm is

designed to compute top-k tuples with one attribute under a probability distribution.

7.5.1 Computing top-k objects as computing volumes of high-dimensional
polyhedra

Under some restrictions, the problem of computing top-k objects in our theory is equivalent

to computing volumes of high-dimensional polyhedra expressed by linear inequations. In

this section we show this connection.
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Here are the restrictions. Let D = 〈O, A, X, P, F 〉 be a database. We restrict F to

linear inequations and require that the aggregation function be linear. We also restrict the

probability distributions in P to continuous uniform distributions over the whole domains.

Let the maximal dimension of all the support spaces to objects to be s. Based on Theorem

7.2.1, we only need to compute the volumes of s dimension support spaces to objects to get

the top-k objects. Since the aggregation function is linear, we can see that Uij only contains

linear inequations. As F only contains linear inequations, the s dimension support space to

object oi is the union of the high-dimensional spaces each of which is a high-dimensional

polyhedron represented by a system of linear inequations. Thus, under these restrictions,

the computation of top-k objects can be transformed to the subproblems each of which

computes the volume of a high-dimensional polyhedron represented by a system of linear

inequations.

Given an algorithm for the computation of volumes of a high dimensional polyhedron

represented by a system of linear inequations, we can apply it to compute top-k objects.

The computation of the volume of a high-dimensional polyhedron represented by a

system of linear inequalities has been studied in [61],1 in which the authors divide the poly-

hedron into simplices and adds their individual volumes. Here we present an algorithm,

which is adopted from one in [61], to compute the volume of a a high dimensional polyhe-

dron represented by a system of linear inequalities. The pseudo code for the algorithm is

given in Figures 7.7 and 7.8.

Comments on Algorithm 1:

Let Q be a set of vertices with distinct subscripts. vi ∈ Q is said to be minimally indexed

w.r.t. Q if for any vj ∈ Q, j ≥ i. Denote η(Q) the minimally indexed vertex. Similarly for

maximally indexed w.r.t.Q, and denote it by β(Q).

Given the set of vertices of a simplex S = {vu0 , vu1 , ..., vuw}, the formula to compute

the volume is
|Det(vu1 − vu0 , vu2 − vu0 , ..., vun − vu0)|

w!
where vui is the coordinate of the vertex.

Algorithm 1 is adopted from the exact algorithm given in [61] (as compared to an ap-

proximation algorithm). We made some adjustments to make it suite our problem. The
1This paper is one of the early ones in this area of study, and many more improved algorithms have been

published since then. Our goal in this chapter is to focus on the relation between computing top-k objects and
computing the volumes of the corresponding polyhedra. While we address the logical connections, we are not
concerned with the efficiency issues.
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Algorithm 1: Computing Volume of Polyhedron

Input: The collection of inequalities, expressed by

Ax ≥ B

in which A ann B are real arrays with dimension of the matrix A[ω, n×m] and B[ω].

Output: Volume of the polyhedron represented by Ax ≥ B

Associate Gi with the ith inequality, initially set to ∅
H is a set of vertices, initially set to ∅
V is a real number, initially set to 0
p is an integer (intended to index vertices), initially set to 1

For each subsystem of n×m inequalities A′, B′ of Ax ≥ B
If A′x = B′ has a unique solution vp satisfying Ax ≥ B

then
H = H ∪ {vp}
p = p + 1
For each inequality Aix ≥ Bi contained

in A′x ≥ B′

Gi = Gi ∪ {vp}

For each Gi

If |Gi| < n×m then remove Gi

Re-index remaining Gi’s to F1, ...,Fu

Initialize S = {v1}
Call V ol(n×m− 1,H, S)
Return V

Figure 7.7: The main algorithm

algorithm is divided into two stages. The first stage is to get the set of all the vertices of the

polyhedron represented by the given system of linear inequations and the set of vertices of

each face of the polyhedron. The second stage is to use these sets of vertices to divide the

polyhedron into simplices and add all the simplices’ volumes together.

The input to the algorithm is a set of inequations, denoted by a matrix Ax ≥ B. We

assume there are ω inequations. Then we associate a vertex set Gi to each inequation in

the system of linear inequalities. To compute the vertex set of the polyhedron, for each

subsystem A′, B′ of Ax ≥ B having n × m rows, we attempt to generate a solution that

satisfies A′x = B′. If there is such a solution and it satisfy Ax ≥ B, then this solution

consists of the coordinates of one vertex of the polyhedron. Each inequation in Ax ≥ B
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Procedure V ol(d, last, S)
L = ∅
if d > 0 then

for each Fi do
l = Fi ∩ last
if l /∈ L then

L = {l} ∪ L
if η(l) 6∈ S then

V ol(d− 1, l, S ∪ {η(l)})
else

if β(last) /∈ S then
S = S ∪ {β(last)}
V = V + |Det(coordinates of the

vertices in S)|/(n×m)!

Figure 7.8: Computing volume given vertices

corresponds to a hyperplane in the n × m-dimensional space. Some hyperplanes are the

faces of the polyhedron and some are not. If a hyperplane is a face of the polyhedron, the

vertex set corresponds to it contains at least n ×m vertices. So we can check the number

of vertices in each Gi and remove any Gi which contains less than n ×m vertices. Then

we reindex the remaining Gi to Fj , which is the set of vertices of a face of the polyhedron.

After getting the set of all the vertices of the polyhedron H and the set of the vertices

of each face of the polyhedron Fi, we call the procedure V ol to compute the volume of

the polyhedron. Given H and each Fi, the authors of [61] prove that the procedure V ol

divides the polyhedron into simplices and adds the volumes of all simplices together to get

the volume of the polyhedron.

The time complexity of Algorithm 1 is O(ωn×m+1). We assume F contains p linear

inequations. To compute the volume of support space of one object, we need to compute the

volumes of Cn−k
n−1 different polyhedra represented by systems of linear inequations. Then

we add them together to get the volume of the support space of an object. For each system

of linear inequations, it contains n− k + p + 2n×m inequations. So the time complexity

to compute the volume of the support space of an object is O(Cn−k
n−1 (n − k + p + 2n ×

m)n×m+1). The total time complexity to compute top-k objects is O(nCn−k
n−1 (n − k +

p + 2n × m)n×m+1). Cn−k
n−1 is a polynomial in n − 1 of degree k − 1. So the total time

complexity is O(n(n− 1)k−1(n− k + p + 2n×m)n×m+1).

Example 7.5.1 We show an example to illustrate how to use Algorithm 1 to compute the
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volume of a polyhedron represented by a system of linear inequalities. Assume a system of

linear inequalities as below:

0 ≤ xij ≤ 1 1 ≤ i ≤ 2, 1 ≤ j ≤ 2
x11 ≥ x21

x11 + x12 ≥ x21 + x22

Now we use Algorithm 1 to compute the volume of the polyhedron represented by these

inequations. First we generate all the vertices:

v1 = (0, 0, 0, 0) v2 = (0, 0, 1, 0) v3 = (0, 0, 1, 1)
v4 = (1, 0, 0, 0) v5 = (1, 0, 0, 1) v6 = (1, 0, 1, 0)
v7 = (1, 0, 1, 1) v8 = (1, 1, 0, 0) v9 = (1, 1, 1, 0)
v10 = (1, 1, 1, 1)

Then we generate Fi as follows:

F1 = {v1, v2, v3, v4, v5, v6, v7}
F2 = {v1, v4, v5, v8}
F3 = {v1, v2, v4, v6, v8, v9}
F4 = {v4, v5, v6, v7, v8, v9, v10}
F5 = {v2, v3, v6, v7, v9, v10}
F6 = {v3, v5, v7, v10}
F7 = {v1, v2, v3, v8, v9, v10}
F8 = {v1, v3, v5, v8, v10}

Then the procedure V ol computes the volume as: 9/24 = 0.375.

Now we show an example of how to compute top-k objects.

Example 7.5.2 Let D = 〈O, A, X, P, F 〉 be a database, with O = {o1, o2, o3}, A =

{a1, a2}, X = {xij | 1 ≤ i ≤ 3, 1 ≤ j ≤ 2}, and F = {x11 ≥ x21} (i.e., the value

of o1 under a1 is equal or greater than o2 under a1). Assume the aggregation function is

t(xi1, xi2) = xi1 + xi2 and the domain of each variable is [0, 1]. We want to find top-2

objects.

The support space of object o1 composes of two parts, which are the high-dimensional

polyhedra represented by the following two systems of linear inequalities, respectively:

0 ≤ xij ≤ 1 1 ≤ i ≤ 3, 1 ≤ j ≤ 2
x11 ≥ x21

x11 + x12 ≥ x21 + x22

and
0 ≤ xij ≤ 1 1 ≤ i ≤ 3, 1 ≤ j ≤ 2
x11 ≥ x21

x11 + x12 ≥ x31 + x32

99



We can find that the maximal dimension of all the support spaces to objects in D is

6. The support space of o1 is 6 dimension. So we just need to compute the volume of the

support space of o1. Then we can use an algorithm, for example, the one in [61], to compute

the volume of a high-dimensional polyhedron represented by a system of inequations. The

volume of the support space of object o1 is the sum of the volumes of the two polyhedra. The

support space of o2 and o3 is also 6 dimension. We can compute the volume of the support

space of objects o2 and o3 similarly. Then the top-2 objects are the 2 objects with largest 2

volumes of support spaces.

7.5.2 Computing top-k objects with multiple attributes

As we introduced in Subsection 7.4.3, the top-k tuples defined in [56] can be thought of as

a special case of our top-k objects defined in Section 7.3. So the polynomial time algorithm

to compute top-k tuples in [56] (cf. Section 2.3) can be thought of as an algorithm to com-

pute the top-k objects in our definition under some restrictions: there is only one attribute

that needs to be ranked, the probability distribution of the values under this attribute is uni-

form or can be described by a piecewise polynomial function, and there are no constraints.

Here we show that the number of attributes can be relaxed from one to two and after some

processing, we can still use the polynomial time algorithm in [56] to compute the top-k

objects.

We assume the aggregation function is a linear expression with non-negative parame-

ters:

t(x, y) = aX + bY (a ≥ 0, b ≥ 0)

Actually, we only need to compute the probability distribution of t(x, y) from the proba-

bility distributions of X and Y , then we can use the methods in [56] to compute the top-k

objects in polynomial time. We show that the computation of the probability distribution

of t(x, y) from the probability distributions of X and Y takes polynomial time, so that the

overall complexity of computing the top-k objects here is still polynomial. From our anal-

ysis, it is not difficult to see that the method of computing the probability distribution of t

for two attributes can be extended to three attributes.

Simple Case

Here we assume an object has two numerical attributes which are considered in ranking.

We assume X and Y to be the random variables to represent the values of an object under

these two attributes. We assume X and Y are independent.
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We denote fX(x) as the probability density function of X and fY (y) as the probability

density function of Y . fX(x) > 0 when LX ≤ x ≤ UX and fX(x) = 0 when x < LX

or x > UX . fY (y) > 0 when LY ≤ y ≤ UY and fY (y) = 0 when y < LY or y >

UY . We assume fX(X) is composed of only one expression in [LX , UX ] and fY (y) is

only composed of one expression in [LY , UY ]. We know that the joint probability density

function of (X, Y ), f(x, y), is fX(x)× fY (y). We assume the aggregation function

Z = aX + bY (a ≥ 0, b ≥ 0)

where Z is a function of X and Y .

Here we show how to compute the probability density function of Z. We compute the

cumulative distribution function of Z first, then we compute the differential of the cumula-

tive distribution function to get the probability density function. The cumulative distribution

function of Z FZ(z) can be obtained as follows:

FZ(z) = P (Z < z) = P (aX + bY < z) =
∫ ∫

aX+bY <z
f(x, y)dxdy (7.6)

It is easy to see that FZ(z) = 0 when z < aLX + bLY and FZ(z) = 1 when z >

aUX + bUY .

In the 2-dimension space (x, y), Z = aX + bY is a group of lines in which each line

has a different value of Z and is parallel to other lines. We can think of a line as moving

from bottom left to up right of the xy-plane with the increase of the value of Z. The line

Z = aX + bY passes through a point (xi, yi) when z = axi + byi. For two points (x1, y1)

and (x2, y2), if ax1 + by1 > ax2 + by2, the line ax1 + by1 = aX + bY is in the up right of

the line ax2 + by2 = aX + bY . We can also think a line Z = aX + bY passes through the

point (x2, y2) before the point (x1, y1) from bottom left to up right. For any point (x, y) in

xy-plane, we will call ax + by the Z value of this point.

Now we discuss how to get FZ(z) when aLX + bLY ≤ z ≤ aUX + bUY .

From equation (7.6), we know that we need to compute the integration of the probability

density function f(x, y) to get the cumulative distribution function of Z. We need to specify

the integration area.

If the line Z = aX+bY passes through the point (LX , UY ) before (or at the same time)

the point (UX , LY ) (aLX + bUY ≤ aUX + bLY ), we discuss the cumulative distribution

function in the following three cases.

When aLX + bLY ≤ z ≤ aLX + bUY , the integration area is a triangle enclosed by

the lines Z = aX + bY , X = LX and Y = LY . So we have
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FZ(z) =
∫ z−bLY

a

LX

dx

∫ z−ax
b

LY

f(x, y)dy

When aLX + bUY < z ≤ aUX + bLY , the integration area is a trapezoid enclosed by

the lines Z = aX + bY , Y = UY , X = LX and Y = LY . We divide this integration area

into a rectangle enclosed by the lines Y = UY , X = LX , Y = LY , X = z−bUY
a and a

triangle enclosed by the lines X = z−bUY
a , Y = LY , Z = aX + bY . So we have

FZ(z) =
∫ z−bUY

a

LX

dx

∫ UY

LY

f(x, y)dy +
∫ z−bLY

a

z−bUY
a

dx

∫ z−ax
b

LY

f(x, y)dy

When aUX +bLY < z ≤ aUX +bUY , the integration area is a pentagon enclosed by the

line Z = aX + bY , Y = UY , X = LX , Y = LY and X = UX . We divide this integration

area into a rectangle enclosed by the lines Y = UY , X = LX , Y = LY , X = z−bUY
a and a

trapezoid enclosed by the lines X = z−bUY
a , Y = LY ,X = UX , Z = aX+bY . So we have

FZ(z) =
∫ z−bUY

a

LX

dx

∫ UY

LY

f(x, y)dy +
∫ UX

z−bUY
a

dx

∫ z−ax
b

LY

f(x, y)dy

Similarly, if the line Z = aX + bY passes through the point (UX , LY ) before the point

(LX , UY ) (aUX + bLY < aLX + bUY ), we can also discuss the cumulative distribution

function in the following three cases.

When aLX + bLY ≤ z ≤ aUX + bLY , we have

FZ(z) =
∫ z−bLY

a

LX

dx

∫ z−ax
b

LY

f(x, y)dy

When aUX + bLY < z ≤ aLX + bUY , we have

FZ(z) =
∫ UX

LX

dx

∫ z−ax
b

LY

f(x, y)dy

When aLX + bUY < z ≤ aUX + bUY , we have

FZ(z) =
∫ z−bUY

a

LX

dx

∫ UY

LY

f(x, y)dy +
∫ UX

z−bUY
a

dx

∫ z−ax
b

LY

f(x, y)dy

So we get the cumulative distribution function of Z, namely FZ(z), as a piecewise

function. After computing the differential of FZ(z), we get the probability density function

of Z.

From the computational procedure above, we can see that the cost of computing the

probability density function consists of some integrations and differentiations. The costs
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of integrations or differentiations depend on the joint probability density function f(x, y).

Recall that f(x, y) = fX(x) × fY (y). So the costs depend on the probability density

functions fX(x) and fY (y).

Below, let us give an example to show the procedure of computing the probability dis-

tribution.

Example 7.5.3 We assume the probability density function of X is

fX(x) =





0 if x < 0
1
2x if 0 ≤ x ≤ 2
0 if x > 2

and the probability density function of Y is

fY (y) =





0 if y < 0
2y if 0 ≤ y ≤ 1
0 if y > 1

Let the aggregation function be Z = X +Y . We know that LX = 0, UX = 2, LY = 0, and

UY = 1. We also know that Z = X + Y will pass (LX , UY ) first.

When 0 ≤ Z ≤ 1, we have

FZ(z) =
∫ z

0
dx

∫ z−x

0
xydy =

1
24

z4

When 1 < z ≤ 2, we have

FZ(z) =
∫ z−1

0
dx

∫ 1

0
xydy +

∫ z

z−1
dx

∫ z−x

0
xydy =

1
4
z2 − 1

3
z +

1
8

When 2 < z ≤ 3, we have

FZ(z) =
∫ z−1

0
dx

∫ 1

0
xydy +

∫ 2

z−1
dx

∫ z−x

0
xydy = − 1

24
z4 +

5
4
z2 − 3z +

17
8

And we also know that, When z < 0 we have

FZ(z) = 0

When z > 3, we have

FZ(z) = 3

After calculating the differentials of FZ(z), we get the probability density function as

follows:

fZ(z) =





0 if z < 0
1
6z3 if 0 ≤ z ≤ 1
1
2z − 1

3 if 1 < z ≤ 2
−1

6z3 + 5
2z − 3 if 2 < z ≤ 3

0 if z > 3
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Complex Case

Now we assume fX(x) and fY (y) are piecewise functions. fX(x) > 0 when LX0 ≤
x ≤ UXp(p > 0) and fX(x) = 0 when x < LX0 or x > UXp . fY (y) > 0 when

LY0 ≤ y ≤ UYq(q > 0), and fY (y) = 0 when y < LY0 or y > UYq . We assume [LX0 , LXp ]

is divided into p parts:

[LX0 , LX1 ], [LX1 , LX2 ], ..., [LXp−1 , LXp ]

The piecewise function of fX(x) in [LXi−1 , LXi ] is fXi(x). We assume [LY0 , LYq ] is di-

vided into q parts:

[LY0 , LY1 ], [LY1 , LY2 ], ..., [LYq−1 , LYq ]

The piecewise function of fY (y) in [LYi−1 , LYi ] is fYi(y). Then f(x, y) is also piecewise

function. In the domain

LXi−1 ≤ x ≤ LXi , LYj−1 ≤ y ≤ LYj (1 ≤ i ≤ p, 1 ≤ j ≤ q)

the piece expression of f(x, y) is fXi(x)× fYj (y).

We keep the other assumptions the same as for the simple case above. Now we show

how to compute the probability density function of Z.

Again, we first compute the cumulative distribution function of Z. Then we calculate

the differential of the cumulative distribution function of Z to get the probability density

function of Z. The formula in (7.6) can still be used to calculate the cumulative distribution

function of Z. But now we need to discuss the cumulative distribution function in more

cases.

When z < aLX0 + bLY0 , FZ(z) = 0. When z > aLXp + bLYq , FZ(z) = 1. Now we

discuss how to get FZ(z) when aLX0 + bLY0 ≤ z ≤ aLXp + bLYq .

We notice the following points in the xy-plane: (LXi , LYj ) (0 ≤ i ≤ p, 0 ≤ j ≤ q).

We call these points boundary points. All these points form pq small rectangles. A small

rectangle has four vertex:

(LXi , LYj ), (LXi+1 , LYj ), (LXi+1 , LYj+1), (LXi , LYj+1)

The integration area consists of some whole small rectangles and some parts of small rect-

angles. In each small rectangle in the integration area, we need to compute the integration

of f(x, y). Then we add all these together to get the cumulative distribution function of Z.

The integration area will change with the moving of the line Z = aX + bY . When the line
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is moving between two groups of boundary points (the points in each group have the same

Z values), the resulting expression of the integration in each small rectangle (full or part) in

the integration area will not change so that the cumulative distribution function will remain

unchanged. When the line moves over a group of boundary points with the same Z values,

the small rectangles in the integration area will be different so that some of the resulting

expressions in some small rectangles will change. So the cumulative distribution function

needs to be updated. One boundary point can be a vertex of at most 4 small rectangles.

These small rectangle can be in the up right, up left, bottom left or bottom right of this

point. We call these rectangles related rectangles to this point. If the rectangle is in the up

right of the point, we will call it the up right related rectangle to this point. Similarly, we

have the up left related rectangle, bottom left related rectangle, bottom right related rect-

angle to the point. When the line Z = aX + bY moves over this point, the integrations in

related rectangles to this point need to be recomputed. Because the cumulative distribution

function of Z is the sum of the resulting expression of the integration in the small rectangles

in the integration area, we need to update the cumulative distribution function.

We use a two dimensional array M to store the boundary points. Assume there are r

different values among all the Z values of these points (some points may have the same

Z values) . Here r ≤ (p + 1)(q + 1). Let us order the boundary points according to

their Z values, and let the array E store all these values in an increasing order. Each line

M [u](0 ≤ u ≤ r−1) in M stores all the points that have the Z value E[u]. If u1 < u2, the

Z values of the points in M [u1] is smaller than the Z values of the points in M [u2]. In each

line M [u] of M , the points are sorted according to the increasing order of the x-coordinate

values of the points.

We use a two dimension array W to store the resulting expressions of the integrations in

all the small rectangles. When the bottom left vertex of a small rectangle is (LXi , LYj ) (0 ≤
i ≤ p−1, 0 ≤ j ≤ q−1), we use W [i][j] to store the resulting expression of the integration

in this small rectangle.

We use an array S to store the piece expressions of the cumulative distribution function.

There are r− 2 elements in S. The expression S[i] (0 ≤ i ≤ r− 2) is the piece expression

of the cumulative distribution function in the domain E[i] ≤ z < E[i + 1]

We will visit the points in M one by one, and visit M [u] from smaller u to lager u. In

each line M [u], we will visit M [u][v] from smaller v to larger v. Before visiting any point

in M , we set each element in W and S empty.

When a point A is visited, we assume it is stored in M [u][v] and its coordinate is
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(LXi , LYj ). For this point, we check all its related rectangles and do some operations.

For the up right related rectangle to A (if it exists), we calculate the following integra-

tion:

FZ(z) =
∫ z−bLYj

a

LXi

dx

∫ z−ax
b

LYj

f(x, y)dy

Here f(x, y) = fXi+1(x) × fYj+1(y). Then we store the resulting expression of this inte-

gration in W [i][j]. And we add this expression into S[u].

For the bottom left related rectangle to A (if it exists), we calculate the following inte-

gration:

FZ(z) =
∫ LXi

LXi−1

dx

∫ Yj

LYj−1

f(x, y)dy

Here f(x, y) = fXi(x)×fYj (y). We cut the expression in M [i−1][j−1] from S[u]. Then

we store the new expression in M [i− 1][j − 1] and add it into S[u].

For the bottom right related rectangle to A (if it exists), we need to handle it in two

different situations.

If aLXi+1 + bLYj−1 ≥ aLXi + bLYj , we calculate the following integration:

FZ(z) =
∫ z−bLYj

a

LXi

dx

∫ LYj

LYj−1

f(x, y)dy +
∫ z−bLYj−1

a

z−bLYj
a

dx

∫ z−ax
b

LYj−1

f(x, y)dy

If aLXi+1 + bLYj−1 < aLXi + bLYj , we calculate the following integration:

FZ(z) =
∫ z−bLYj

a

LXi

dx

∫ LYj

LYj−1

f(x, y)dy +
∫ LXj+1

z−bLYj
a

dx

∫ z−ax
b

LYj−1

f(x, y)dy

In both of the two situations above, f(x, y) = fXi+1(x)×fYj (y). We cut the expression

in M [i][j − 1] from S[u]. Then we store the new expression in M [i][j − 1] and add it into

S[u].

For the up left related rectangle to A (if it exists), we need to handle it in two different

situations.

If aLXi−1 + bLYj+1 > aLXi + bLYj , we calculate the following integration:

FZ(z) =
∫ LXi

LXi−1

dx

∫ z−ax
b

LYj

f(x, y)dy
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If aLXi−1 + bLYj+1 < aLXi + bLYj , we calculate the following integration:

FZ(z) =
∫ z−bLYj+1

a

LXi−1

dx

∫ LYj+1

LYj

f(x, y)dy +
∫ LXj

z−bLYj+1
a

dx

∫ z−ax
b

LYj

f(x, y)dy

In both of the two situations above, f(x, y) = fXi(x)×fYj+1(y). We cut the expression

in M [i− 1][j] from S[u]. Then we store the new expression in M [i− 1][j] and add it into

S[u].

After all the points in M have been visited and operated, S and E store r − 1 pieces

of expressions of the cumulative distribution function of Z and the domains. The other 2

pieces of expressions of the the cumulative distribution function of Z and the domains are:

FZ(z) = 0 when z < aLX0 + bLY0 and FZ(z) = 1 when z > aLXp + bLYq . So we

have the cumulative distribution function of Z. Then we calculate the differential of the

cumulative distribution function of Z to get the probability density function of Z.

In our method to compute probability density function of Z, the probability density

functions of X and Y could be different functions. Here we restrict the probability den-

sity functions of X and Y to be piecewise polynomials and give the complexity analysis.

We assume there are n objects. And we assume γ is the maximum degree among all the

piecewise polynomials of the probability density functions of values of all the objects under

any attribute. It costs O(γ3) to compute the probability density function of the aggregation

value of an object. For the simple case, the time complexity to compute the probability den-

sity functions of the aggregation values of all the objects is O(nγ3). For the complex case,

we assume p is the maximum pieces of all the piecewise polynomials of the probability

density functions of values of all the objects under any attribute. Then the time complexity

to compute the probability density functions of the aggregation values of all the objects is

O(np2γ3). As we introduced in Subsection 7.4.3, the algorithm in [56] can compute the

top-k objects with one attribute when we know the probability density functions of values

of all the objects under this attribute. When the probability density functions are piecewise

polynomials, the algorithm can find top-k objects in polynomial time. The time complex-

ity is introduced in Subsection 7.4.3. After we get the probability density functions of the

aggregation values of all the objects, we can use the algorithm in [56] to compute top-k

objects. So the total time complexity to compute top-k objects with two attributes is still

polynomial.
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Example 7.5.4 We assume the probability density function of X is

fX(x) =





0 if x < 0
1
4x if 0 ≤ x ≤ 2
1− 1

4x if 2 < x ≤ 4
0 if x > 4

and the probability density function of Y is

fY (y) =





0 if y < 0
y if 0 ≤ y ≤ 1
2− y if 1 < y ≤ 2
0 if y > 2

Let the aggregation function be Z = X + Y . We know that LX0 = 0, LX1 = 2,LX2 = 4,

and LY0 = 0, LY1 = 1, LY2 = 2. There are 9 boundary points :

(0, 0), (0, 1), (0, 2), (2, 0), (2, 1), (2, 2), (4, 0), (4, 1), (4, 2)

There are 7 different Z values for these points. M is as follows:

M [0][0] = (0, 0)
M [1][0] = (0, 1)
M [2][0] = (0, 2) M [2][1] = (2, 0)
M [3][0] = (2, 1)
M [4][0] = (2, 2) M [4][1] = (4, 0)
M [5][0] = (4, 1)
M [6][0] = (4, 2)

E is as follows:
E[0] = 0
E[1] = 1
E[2] = 2
E[3] = 3
E[4] = 4
E[5] = 5
E[6] = 6

We set every element in W and S empty, and visit the points in M one by one. We start the

visiting from M [0][0] = (0, 0). There is only up right related rectangle to (0, 0). We have

FZ(z) =
∫ z

0
dx

∫ z−x

0

1
4
xydy =

1
96

z4

We store FZ(z) in W [0][0] and add it into S[0]. So

W [0][0] =
1
96

z4

and

S[0] =
1
96

z4
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.

Then we visit M [1][0] = (0, 1). For the up right related rectangle to (0, 1), we have

FZ(z) =
∫ z−1

0
dx

∫ z−x

1

1
4
x(2− y)dy = − 1

96
z4 +

1
12

z3 − 3
16

z2 +
1
24

z +
1
96

We store FZ(z) in W [0][1] and add it into S[1]. So

W [0][1] = − 1
96

z4 +
1
12

z3 − 3
16

z2 +
1
24

z +
1
96

and

S[1] = − 1
96

z4 +
1
12

z3 − 3
16

z2 +
1
24

z +
1
96

For the bottom right related rectangle to (0, 1), we have

FZ(z) =
∫ z−1

0
dx

∫ 1

0

1
4
xydy +

∫ z

z−1
dx

∫ z−1

0

1
4
xydy =

1
8
z3 − 1

4
z2 +

1
8
z

We cut W [0][0] from S[1]. So we have

S[1] = S[1]−W [0][0] = − 1
48

z4 +
1
12

z3 − 3
16

z2 +
1
24

z +
1
96

Then we store FZ(z) into W [0][0] and add it into S[1]. So we have

W [0][0] =
1
8
z3 − 1

4
z2 +

1
8
z

and

S[1] = S[1] + W [0][0] = − 1
48

z4 +
5
24

z3 − 7
16

z2 +
1
6
z +

1
96

Similar to the procedure above, we will visit each point in M and compute FZ(z) for

each related rectangle. And we update W and S. After visiting all the points, we have

6 pieces of expressions of the cumulative distribution function of Z in S. We also know

FZ(z) = 0 when z < 0, and FZ(z) = 1 when z > 6. Then we calculate the differential of

FZ(z) to get the probability density function of Z.

7.6 Summary

In this chapter, we propose a ranking theory for objects with uncertain data. We present

this ranking theory in three stages. In the first stage, we consider discrete domains. In the

second, we consider continuous domains, and in the third we consider different weights of

positions and the aggregation values of objects into the result of final ranking. Our ranking

theory is built on the basis of the concept of high-dimensional space in mathematics. In
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comparison with the related work, we show that some top-k ranking semantics in the litera-

ture are just special cases of our ranking theory. Due to the high complexity of computation

of top-k objects in this context, we conduct research on computation only for some special

cases.
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Chapter 8

Conclusion

This thesis addresses two general issues of extensive recent interests in top-k ranking with

uncertain data:

• Given a ranking function, how to efficiently compute the top-k tuples, and

• What is top-k ranking for objects with multiple attributes.

To address the first question, we focus on pruning for recently proposed unifying frame-

work of top-k ranking based on what are called parameterized ranking function (PRF), for

uncertain databases under the x-tuple model. Our theoretical work reveals the insights in

some fundamental properties of how tuples in an uncertain database are intimately related,

in the context of possible worlds. A new representation of PRF value of a tuple is for-

mulated, based on which we develop a generic upper bound method. Then, we show how

practical pruning methods can be derived based on this generic method. Given a tuple set

Q, our upper bound method is independent of the size of Q as long as there are at least two.

This makes it possible to apply the method to pruning using more than two tuples. Our

experiments show that these pruning methods are powerful, which can generate substantial

performance gains in computing top-k tuples.

The second issue addressed in this thesis is a general notion of object ranking with

uncertain data, where objects are modeled by probability distributions of their values in

attributes and by constraints. In this thesis, we propose a ranking theory for object ranking

in this context. A key concept of the strength of an object is its “supports” to be in top-

k. More supports means more strength. We show that our theory can be viewed as a

generalization of a number of ranking definitions in the literature. We also relate this theory

of object ranking with the problem of computing volumes of high-dimensional polyhedra

in mathematics
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Here is a list of future work:

• The pruning methods developed in this thesis is under the x-tuple model for uncertain

databases. But there exist more general data models for uncertain databases such

as probabilistic and/xor tree model. We know that x-tuple model is a special case

of probabilistic and/xor tree model. Actually, the parameterized ranking function is

already defined for the probabilistic and/xor tree model. It would be interesting to see

whether our methods can be extended to general data models for uncertain databases

such as the probabilistic and/xor tree model. Such an extension is non-trivial.

• Parameterized Ranking Fucntions (PRFs) are defined under tuple-level uncertain model.

Our pruning methods are developed under tuple-level uncertain model. The defini-

tion of PRF can be easily extended to attribute-level uncertain model. Our pruning

methods should be able to be updated to improve the efficiency of computation of

top-k tuples for PRF defintion under attribute-level uncertain model.

• In [56], the authors proposed parameterized ranking functions (PRFs) to rank tuples

with uncertain score described by a continuous probability distribution. Actually, this

PRF definition is extended from the PRF definition of the tuples with discrete values

in [29]. The computation of top-k tuples for continuous PRF definition share some

common characteristics with the computation of top-k tuples under the discrete PRF

definition. In Chapter 3, we proposed pruning methods for the discrete PRF defini-

tion. One should be able to extend the pruning methods to improve the performance

of the computation of top-k tuples under the continuous PRF definition.

• As introduced in Section 7.5.2, we show a polynomial algorithm to compute top-k

objects when objects have two numerical attributes under consideration for ranking.

We just need to compute the probability density function of the aggregation value of

an object Z = aX + bY from the probability distribution of X and Y . The method

here can be extended to three attributes easily. When the number of attributes is more

than three, the problem is one in high-dimensional space. Our method of computing

the probability density function of the aggregation value of an object Z = aX + bY

for two attributes should be able to be extended to n attributes. But what is unclear

is the mathematical means of modeling the process in a high-dimensional space. We

believe it can be done.
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