Usage
  • 204 views
  • 110 downloads

Prions adhere to soil minerals and remain infectious

  • Author(s) / Creator(s)
  • An unidentified environmental reservoir of infectivity contributes to the natural transmission of prion diseases (transmissible spongiform encephalopathies [TSEs]) in sheep, deer, and elk. Prion infectivity may enter soil environments via shedding from diseased animals and decomposition of infected carcasses. Burial of TSE-infected cattle, sheep, and deer as a means of disposal has resulted in unintentional introduction of prions into subsurface environments. We examined the potential for soil to serve as a TSE reservoir by studying the interaction of the diseaseassociated prion protein (PrPSc) with common soil minerals. In this study, we demonstrated substantial PrPSc adsorption to two clay minerals, quartz, and four whole soil samples. We quantified the PrPSc-binding capacities of each mineral. Furthermore, we observed that PrPSc desorbed from montmorillonite clay was cleaved at an N-terminal site and the interaction between PrPSc and Mte was strong, making desorption of the protein difficult. Despite cleavage and avid binding, PrPSc bound to Mte remained infectious. Results from our study suggest that PrPSc released into soil environments may be preserved in a bioavailable form, perpetuating prion disease epizootics and exposing other species to the infectious agent.

  • Date created
    2006
  • Subjects / Keywords
  • Type of Item
    Article (Published)
  • DOI
    https://doi.org/10.7939/R3125QC3T
  • License
    © 2006 Johnson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • Language
  • Citation for previous publication
    • Johnson CJ, Phillips KE, Schramm PT, McKenzie D, Aiken JM, et al. (2006) Prions adhere to soil minerals and remain infectious. PLoS Pathog 2(4): e32. DOI: 10.1371/ journal.ppat.0020032