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An unidentified environmental reservoir of infectivity contributes to the natural transmission of prion diseases
(transmissible spongiform encephalopathies [TSEs]) in sheep, deer, and elk. Prion infectivity may enter soil
environments via shedding from diseased animals and decomposition of infected carcasses. Burial of TSE-infected
cattle, sheep, and deer as a means of disposal has resulted in unintentional introduction of prions into subsurface
environments. We examined the potential for soil to serve as a TSE reservoir by studying the interaction of the disease-
associated prion protein (PrPSc) with common soil minerals. In this study, we demonstrated substantial PrPSc

adsorption to two clay minerals, quartz, and four whole soil samples. We quantified the PrPSc-binding capacities of
each mineral. Furthermore, we observed that PrPSc desorbed from montmorillonite clay was cleaved at an N-terminal
site and the interaction between PrPSc and Mte was strong, making desorption of the protein difficult. Despite
cleavage and avid binding, PrPSc bound to Mte remained infectious. Results from our study suggest that PrPSc released
into soil environments may be preserved in a bioavailable form, perpetuating prion disease epizootics and exposing
other species to the infectious agent.
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Introduction

Transmissible spongiform encephalopathies (TSEs, prion
diseases) are a group of fatal neurodegenerative diseases that
affect a variety of mammalian species and include bovine
spongiform encephalopathy (BSE, ‘‘mad cow’’ disease),
chronic wasting disease (CWD) of deer and elk, sheep scrapie,
and Creutzfeldt-Jakob disease in humans [1]. The agricultural,
economic, and social impacts of prion diseases have been
intensified by evidence suggesting transmissibility of BSE to
humans [2]. The putative infectious agent in these diseases,
designated PrPSc, is a misfolded isoform of the normal
cellular prion protein (PrPC). The amino acid sequences of
PrPSc and PrPC are identical [3]; normal and abnormal forms
of the protein differ only in conformation. No differences in
posttranslational covalent modification have been demon-
strated [3]. Circular dichroism and infrared spectroscopy
indicate that the disease-specific isoform has a higher b-sheet
and lower a-helix content than PrPC [4]. The normal isoform
is soluble and primarily monomeric in solution, whereas
PrPSc forms insoluble aggregates.

Sheep scrapie and cervid CWD are unique among TSEs,
because epizootics can be sustained by horizontal (animal-to-
animal) transmission [5,6]. Routes of natural transmission
remain to be clarified, but available evidence indicates that an
environmental reservoir of infectivity contributes to the
maintenance of these diseases in affected populations [6–8].
The expanding range of CWD (several regions of North
America and Korea) increasingly brings domestic livestock,
companion animals, and wildlife species into contact with
infected animals and carcasses, and shedded TSE agent,
raising the possibility of cross-species transmission. This was

demonstrated by the recent detection in Colorado, USA, of a
free-ranging, CWD-infected moose, a species not previously
known to be affected by the disease in the wild [9].
Although other modes of environmental transmission of

scrapie and CWD have been proposed (e.g., flesh flies [10], hay
mites [11]), several lines of evidence point to soil as a reservoir
for TSE infectivity. TSE infectivity exhibits remarkable
resistance to inactivation by most chemical agents, radiation,
and heat [12] and has been shown to persist after burial in soil
for at least 3 y [13]. Anecdotal observations of healthy sheep
contracting scrapie after occupying fields previously contain-
ing diseased animals have been reported [7,8]. Although these
older studies did not account for the genetic susceptibility of
the sheep under study, they suggest that scrapie agent can
persist in the environment for years. Recent controlled field
experiments provide more compelling evidence of the
environmental persistence of prions. Miller et al. [14]
demonstrated that naı̈ve mule deer could contract CWD
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when housed in paddocks previously inhabited by infected
animals or containing decomposed infected carcasses.

TSE agents directly enter the environment when carcasses
of infected animals decompose [13], through alimentary
shedding of the agent from gut-associated lymphoid tissue
[15,16], or from urinary excretion from infected, nephritic
animals [17]. Furthermore, bovine, sheep, and deer TSE
agents have been introduced to soil environments through the
burial of diseased carcasses and other infected material [18].
Animals ingest soil both deliberately and incidentally [19].
Cattle, deer, sheep, and other animals can consume hundreds
of grams of soil daily [20,21]. Taken together, these data
support the notion that PrPSc-contaminated soil may allow
intraspecies TSE transmission and enhance the likelihood of
spread to other species. As a first step toward understanding
the role of soil as a reservoir of TSE infectivity, we investigated
the binding of PrPSc to common soil minerals and whole soils
and examined the infectivity of mineral-bound prions.

Results

Binding of PrPSc to Soil Minerals
We examined the sorption of purified PrPSc to three

common soil minerals (Table S1): quartz, montmorillonite
(Mte, an expandable layered silicate clay mineral), and
kaolinite (Kte, a nonexpandable phyllosilicate mineral).
Quartz of two particle sizes was employed in sorption
experiments: fine sand (hydrodynamic diameter [dh] ¼ 125–
250 lm), representing quartz concentrated in the sand and
silt fractions of soils, and microparticles (dh ¼ 1–5 lm),
representing quartz present in the coarse clay fraction [22].
Purified PrPSc (;0.2 lg) was introduced into aqueous
suspensions (pH 7.0) of each soil mineral and subjected to
2-h mixing. Unbound PrPSc was separated from bound
protein by centrifugation through a 750-mM sucrose cushion.
Bound and unbound fractions were analyzed by SDS-PAGE
and immunoblotting.

The extent of PrPSc sorption differed among the mineral
particles examined. All detectable PrPSc adsorbed to the
expandable clay mineral Mte (Figure 1A). X-ray diffraction

analysis provided no evidence that PrPSc entered Mte
interlayer spaces (Mte d001 spacings were 1.22 nm and 1.47
nm before and after PrPSc adsorption, respectively); prion
protein appeared to adsorb to only external clay surfaces.
PrPSc did not associate with an equal mass of fine quartz sand
at levels detectable by immunoblotting (Figure 1A). A large
degree of PrPSc binding to the nonexpandable clay mineral
Kte was observed when the surface area was matched to that of
external Mte surfaces (Figure 1A). The limited association of
PrPSc with fine quartz sand was at least in part attributable to
the much smaller specific surface area of these particles as
compared to kaolinite and external Mte surfaces (Table S1).
When quartz surface area was matched to that of external Mte
surfaces, all detectable PrPSc adsorbed to quartz (Figure 1A).

Adsorption Capacities of Soil Minerals for PrPSc

The amount of PrPSc adsorbed to Mte was semiquantita-
tively assessed by serial dilution of samples to the limit of
immunoblotting detection. The dilution at which no detect-
able immunoreactivity remained provided a basis for
comparison with samples lacking immunoreactivity before
dilution. PrPSc desorbed from Mte still exhibited immunor-
eactivity after 100-fold dilution, indicating that the amount of
prion protein adsorbed to Mte exceeded that in samples
without immunoreactivity (e.g., unbound PrPSc in experi-
ments with Mte) by at least two orders of magnitude (Figure
1B). Furthermore, this result suggests that fine quartz sand
was saturated by at least 100-fold less PrPSc (� 0.002 lg) than
used for sorption experiments (Figure 1A).
To assess the PrPSc-binding capacity of the other soil

minerals, increasing quantities of PrPSc were added to each
mineral. Protein desorbed from mineral particles was serially

Figure 1. PrPSc Adsorption to Clay Minerals and Quartz Microparticles

Substantially Exceeded That to Fine Quartz Sand

(A) Detectable amounts of PrPSc adsorbed to Mte and Kte but not to fine
quartz sand (dh ¼ 125–250 lm). PrPSc desorbed from Mte was of lower
molecular mass than the starting material. Adsorption to quartz was
observed when quartz microparticles (dh¼ 1–5 lm) were employed and
surface area was matched to Mte.
(B) Immunoblotting sensitivity was determined by dilution of Mte-
adsorbed PrPSc to the limit of detection. Protein was desorbed from Mte
in 50 ll of SDS-PAGE sample buffer at 100 8C and serially diluted.
Immunoblots used monoclonal antibody (mAb) 3F4. Pel, PrPSc associated
with pelleted mineral particles; Sup, unbound PrPSc in supernatant.
DOI: 10.1371/journal.ppat.0020032.g001
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Synopsis

Transmissible spongiform encephalopathies (TSEs) are a group of
incurable diseases likely caused by a misfolded form of the prion
protein (PrPSc). TSEs include scrapie in sheep, bovine spongiform
encephalopathy (‘‘mad cow’’ disease) in cattle, chronic wasting
disease (CWD) in deer and elk, and Creutzfeldt-Jakob disease in
humans. Scrapie and CWD are unique among TSEs because they can
be transmitted between animals, and the disease agents appear to
persist in environments previously inhabited by infected animals.
Soil has been hypothesized to act as a reservoir of infectivity,
because PrPSc likely enters soil environments through urinary or
alimentary shedding and decomposition of infected animals. In this
manuscript, the authors test the potential for soil to serve as a
reservoir for PrPSc and TSE infectivity. They demonstrate that PrPSc

binds to a variety of soil minerals and to whole soils. They also
quantitate the levels of protein binding to three common soil
minerals and show that the interaction of PrPSc with montmor-
illonite, a common clay mineral, is remarkably strong. PrPSc bound to
Mte remained infectious to laboratory animals, suggesting that soil
can serve as a reservoir of TSE infectivity.



diluted and subjected to SDS-PAGE and immunoblotting to
semiquantitate the amount of sorbed protein. The binding
capacity of a mineral was attained when subsequent PrPSc

additions did not further increase the dilution factor
required to reach the limit of immunoblotting detection
(Table 1). Of the minerals examined, Mte exhibited the
highest PrPSc adsorption capacity (;100 lgprotein mgMte

�1).
The adsorption capacity of the quartz microparticles was
nearly 10-fold less (;15.6 lgprotein mgmicroparticle

�1), and that
of Kte was nearly 100-fold less than Mte (;2 lgprotein mgKte

�1).
When expressed on a surface-area basis (Table 1), the
adsorption capacities of Mte and quartz microparticles were
indistinguishable by our measurement method; that of Kte
was 25 times less. These data demonstrate that mineral
surface properties contribute to differences in the amount of
PrPSc bound.

PrPSc Desorbed from Mte Surfaces Is Cleaved
Unexpectedly, PrPSc desorbed from Mte surfaces exhibited

a lower molecular mass (;27–31 kDa) than the starting
material (;33–35 kDa) (Figure 1A). Neither contaminant
proteases nor metal oxide coatings on Mte particles appeared
responsible for PrPSc cleavage, as treatments to counteract
each did not prevent cleavage (unpublished data). Prior to
sorption experiments, Mte was boiled in a solution of 10 mM
NaCl for 10 min to denature contaminant proteases, or
binding experiments were performed in the presence of a
cocktail of protease inhibitors to inactivate them. Neither
treatment prevented PrPSc cleavage. Amorphous metal oxide
coatings on clay mineral particles can alter their surface
reactivities and could potentially be responsible for PrPSc

cleavage. The size-fractionated Mte used in this study has
been reported to not contain such impurities at levels
detectable by X-ray diffraction analysis [23], and precau-
tionary pretreatment of the clay with a buffered neutral
citrate-bicarbonate-dithionate solution to remove metal
oxide coatings [24] failed to prevent cleavage.

Prion protein desorbed from Kte and quartz did not
exhibit a change in molecular mass (Figure 1A), suggesting
that surface properties specific to Mte were responsible for
the cleavage. Previous studies on protein interaction with Mte
have not noted reductions in molecular mass upon desorp-
tion [25,26]. We incubated PrPSc with Mte for short time
periods (1–15 min) to qualitatively investigate initial adsorp-
tion and cleavage kinetics. Adsorption of PrPSc to Mte was
apparent within 1 min, and reduction in protein molecular

mass was discernable (Figure 2A). Prion protein cleavage
consistently occurred early within the first 15 min of contact
with Mte and appeared maximal by 60 min. Cleavage of PrPSc

caused by sorption to or desorption from Mte seemed to be a
phenomenon specific to this protein. We examined sorption
and desorption of scrapie-infected hamster brain homoge-
nate (BH) to Mte. Desorption of brain proteins from Mte
produced no changes in the overall molecular mass distribu-
tion as visualized by Coomassie blue staining (unpublished
data). Subunit C2 of the 20S proteasome (;29 kDa), an
unrelated protein similar in size to PrP likewise did not
appear cleaved upon desorption from Mte (Figure 2B). In
contrast, PrPSc in BH was cleaved (Figure 2C).
Cleavage of PrPSc involved loss of the N-terminal portion

of the protein, which is not necessary for infectivity [3]. Prion
protein desorbed from Mte lost immunoreactivity with an
antibody directed against amino acids 23–37 on the protein N
terminus, indicating that all or part of the epitope of this
antibody was missing from the desorbed protein (Figure 2D).

Table 1. PrPSc Adsorption Capacities for the Minerals Examineda

Mineral Binding Capacity

(Sorbent Mass Basis)

(lgprotein mgmineral
�1)

Binding Capacity

(Sorbent Surface Area Basis)

(mgprotein mmineral
�2)

Mte 87–174 2.8–5.7

Kte 1.7–2.6 0.15–0.22

Quartz

microparticles

13.6–27.1 2.7–5.4

aProtein concentration determined by Bradford assay; PrPSc concentration was taken as
87% of total protein [45]. Reported adsorption capacities represent upper estimates, as
the fraction of PrPSc in clarified preparations may have been lower.
DOI: 10.1371/journal.ppat.0020032.t001

Figure 2. PrPSc Desorbed from Mte Is Cleaved

(A) PrPSc cleavage occurs after short contact times with Mte surfaces.
(B) The molecular mass protein C2 of the 20S proteasome subunit from
BH was unaltered following desorption from Mte.
(C) Cleavage of PrPSc present in infected BH was apparent after
desorption from Mte.
(D) PrPSc desorbed from Mte lost immunoreactivity against an antibody
recognizing the N-terminal portion of the mature protein.
(E) PrPSc pretreated with PK bound to Mte and did not exhibit further
reduction in molecular mass when desorbed.
Immunoblots (A, B, and E) used mAb 3F4. Immunoblots (C and D)
employed anti-C2 and R20 polyclonal antibodies, respectively. Pel, PrPSc

associated with pelleted mineral particles; Sup, unbound PrPSc in
supernatant.
DOI: 10.1371/journal.ppat.0020032.g002
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In contrast, probing identical samples with a polyclonal
antibody against full-length PrP demonstrated that PrPSc was
desorbed from the Mte. Although the precise cleavage site
was not determined, these data suggest that the N terminus of
PrPSc was removed; the fate of the cleaved amino acid
residues is not known, as they may have remained bound to
the clay or may have been extracted but not detected. When
the N-terminal ;70 amino acids were removed from PrPSc by
pretreatment with proteinase K (PK) prior to adsorption to
Mte, we observed sorption to the Mte, but no further
reduction in molecular mass upon desorption, evidence that
other regions of the protein remain intact when associated
with Mte (Figure 2E). These results also indicate that the N
terminus of PrPSc is not necessary for adsorption to Mte.

Strength of PrPSc Binding to Mte
PrPSc attachment to Mte was avid, and sorbed PrPSc was

stable. Washing Mte-PrPSc with the background solution used
in sorption experiments did not induce detachment of
detectable amounts of PrPSc from Mte (unpublished data).
Contact of PrPSc with Mte for up to 1 wk did not result in
additional degradation, indicating that the protein was not
rendered more susceptible to cleavage by further structural
rearrangements on the clay surface (Figure 3A). The strength
of PrPSc attachment to Mte was surprising, even in light of
reports of protein sorption-desorption hysteresis on mineral
surfaces [26]. Conditions previously employed to desorb
other proteins from soil minerals were largely ineffective in
detaching PrPSc from Mte surfaces [26,27]. In our experi-
ments, described above, a solution containing 10% SDS at
100 8C was used to remove the PrPSc from mineral surfaces.
Changes in pH often alter interactions between clay surfaces
and sorbed proteins [27,28]. Incubation of Mte-bound PrPSc

in 100 mM phosphate buffer at pH 2.5 or 11.5, proton
activities substantially higher and lower than the reported

isoelectric points for PrPSc [29], failed to release the protein
(Figure 3B). Likewise, increases in ionic strength (0.1 M or 1 M
NaCl) failed to remove detectable PrPSc from Mte (Figure 3C).
Strong chaotropic agents can be effective in desorbing
proteins from soil minerals by disrupting hydrogen bonds
[26]; however, neither 8 M urea nor 8 M guanidine released
detectable amounts of PrPSc from Mte (Figure 3D). Our data
indicate the interaction between PrPSc and Mte is strong and
of high affinity.

PrPSc Bound to Mte Remains Infectious
Sorption of proteins to soil particles often results in

structural rearrangements that cause loss or diminution of
function [25,27,30]. If binding to Mte surfaces results in
(partial) unfolding of PrPSc, a reduction or loss of infectivity
would be expected, as denaturation renders the protein non-
infectious [31]. We therefore tested whether PrPSc adsorbed
to Mte remained infectious by intracerebrally inoculating
hamsters with Mte-PrPSc complexes (Table 2). The time to
onset of clinical symptoms after inoculation provides a
measure of infectivity [32]. Hamsters inoculated with Mte-
PrPSc exhibited clinical symptoms of scrapie 93 dpi. To
control for any unbound prion protein that may have
cosedimented with Mte particles, mineral-free PrPSc suspen-
sions were processed in the same manner as in sorption
experiments. The sedimented fraction of these control
samples (mock pellets) showed substantially less infectivity
than Mte-PrPSc pellets with a mean incubation period of 178
d, 105 d longer than Mte-PrPSc pellets. Hamsters inoculated
with supernatants from these control samples (mock super-
natants) showed clinical symptoms 103 dpi. Animals intra-
cerebrally inoculated with Mte alone and uninoculated
animals did not exhibit TSE symptoms during the course of
the experiment (200 d).

Figure 3. PrPSc Adsorbed to Mte Avidly and Remained Stable

(A) PrPSc was stable when adsorbed to Mte for at least 7 d. (B) Extremes in pH (100 mM phosphate at pH 2.5 or 11.5), (C) sodium chloride (100 mM or 1
M), and (D) chaotropic agents (8 M urea or 8 M guanidine [Gdn]) did not desorb detectable amounts of PrPSc from Mte. Primary extractions (18) were
followed by secondary extractions (28) extractions with a 10% SDS solution at 1008C. Immunoblots (A–D) employed mAb 3F4. Pel, PrPSc associated with
pelleted mineral particles; Sup, unbound PrPSc in supernatant.
DOI: 10.1371/journal.ppat.0020032.g003
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Whole Soils Bind PrPSc

To examine the extent of prion protein binding by whole
soils, we conducted PrPSc sorption experiments with four
soils differing in texture and mineralogy (Table S2). When
equal masses of soil (0.5 lg) were used, all soils bound PrPSc to
a similar extent (Figure 4); no detectable PrPSc remained in
the supernatant at the level of protein used in this experi-
ment. Prion protein desorbed from the soils did not appear
cleaved. Several nonmutually exclusive factors may have
contributed to this finding, including (1) relatively small
amounts of Mte in some samples, (2) occlusion of Mte
cleavage sites by metal oxide and/or natural organic matter
coatings, and (3) competition among the various sorption
domains (both inorganic and organic) for PrPSc, limiting
interaction with Mte. The amount of immunoreactive PrPSc

recovered from each soil differed slightly; for example, the
immunoreactive protein desorbed from the Elliot soil was less
than that from the Boardman soil. This may have been due to
stronger interaction of PrPSc with the Elliot soil than with the
Boardman soil, leading to incomplete extraction, consistent
with the larger fraction of clay-sized particles in the Elliot soil
(Table S2).

Discussion

Environmental transmission of prion diseases has been
noted for decades [7,8,14]. In this study, we provide evidence
indicating that soil and soil minerals serve as a reservoir of
TSE infectivity. While extrapolation of in vitro studies to the
environment must be made with caution, our findings suggest
that PrPSc released from diseased animals may be sequestered
near the soil surface, maintaining the TSE agent in an
environmental medium with which livestock and wildlife
come in contact. Our experiments demonstrate that Mte-
bound PrPSc remains infectious and suggest that soil may
harbor more TSE agent than previously assumed on the basis
of water extraction of prions from garden soil [13].
Our results demonstrate that all soil mineral surfaces

examined bound PrPSc and that Mte and quartz have larger
specific binding capacities for PrPSc than does Kte (Figure 1).
Although not relevant to TSE transmission, nonglycosylated,
recombinant PrPC has been shown to bind to Mte [33].
Interestingly, the N terminus of PrPSc desorbed from Mte was
truncated (Figures 1A and 2). While Mte is known to catalyze
several reactions, including the deamination of free gluta-
mine and aspartic acid [34] and the polymerization of RNA
into oligomers [35], protease activity has not been noted
previously. The interaction between Mte and PrPSc is
remarkably avid, as the only extractant used in this study
that effected desorption was a solution containing 10% SDS
at 100 8C (Figure 3B–3D). Prion protein appears unlikely to
readily desorb from Mte in the environment. The propensity
for PrPSc to tenaciously bind to Mte could be exploited in
landfills to isolate prion-infected materials and prevent
migration of the infectious agent.
The observation that prions remained infectious when

bound to Mte is intriguing in light of the results of the
desorption experiments; PrPSc adsorbed to Mte was ex-
tremely difficult to remove. Current mechanistic models for
conversion of PrPC to the pathological form require direct
PrPC–PrPSc interaction [36]. The brain is unlikely to possess
microenvironments capable of extracting significant amounts
of PrPSc from clay surfaces. The 10-d increase in incubation
period for Mte-adsorbed PrPSc relative to clay-free controls
(mock supernatant) was statistically significant (p , 0.05) and
would correspond to approximately a 1-log increase in
infectivity [32]. This result suggests that PrPSc-Mte complexes
are inherently more infectious than the unbound protein
and/or adsorption to Mte reduces clearance from the brain.
We consider it likely that PrPSc adsorbed to Mte surfaces was
available to convert PrPC in the brain to the pathological
isoform. Our findings are reminiscent of reports in which
metal wires exposed to scrapie agent harbored significant
infectious agent despite attempts to remove attached PrPSc

[37,38].
The infectivity of soil- and soil mineral-sorbed PrPSc

following oral exposure warrants investigation. The binding
of PrPSc to soil particles could reduce oral bioavailability such
that soil serves as a sink rather than a reservoir for infectivity.
Conversely, association with mineral particles may protect
the agent from degradation in the gastrointestinal tract,
possibly enhancing transmission [39]. For example, bovine
rotaviruses and coronaviruses retain infectivity via the oral
route when bound to clay minerals [40]. While desorption of
the protein from soil particles is more likely to occur in the

Figure 4. Whole Soils Bind PrPSc

Elliot, Dodge, Bluestem, and Boardman soils bound PrPSc (pelleted soils).
No immunoreactivity (i.e., no unbound PrPSc) was detected in the
supernatants. Immunoblot employed mAb 3F4.
DOI: 10.1371/journal.ppat.0020032.g004

Table 2. Prions Adsorbed to Montmorillonite Clay Retain
Infectivity

Inoculum Positive Animals/

Total Animals

Onset of Clinical

Symptoms (dpi)a

None 0/8 .200b

Mte (no PrPSc) 0/8 .200b

Mte-PrPSc complex 10/10c 93 6 4d

Mock supernatante (no Mte) 8/8 103 6 0d

Mock pellete (no Mte) 8/8 178 6 21d

aMean dpi 6 SD to the onset of clinical symptoms of TSE infection.
bNone of the animals showed clinical symptoms of TSE infection or had protease-resistant
PrP accumulation at the termination of the experiment at 200 dpi.
cAlthough 12 animals were inoculated, two non-TSE intercurrent deaths occurred at 8 dpi.
dBrains of infected animals were positive for protease-resistant PrP.
eMock supernatant and mock pellet samples were generated by adding clarified PrPSc

(;0.2 lg) to buffer in the absence of soil minerals and processing identically to samples
containing Mte.
DOI: 10.1371/journal.ppat.0020032.t002
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gut than in the brain, removal of PrPSc from mineral particles
may not be necessary to initiate infection.

In conclusion, soil and soil minerals have the potential to
bind PrPSc and maintain infectivity. These findings will serve
as the basis for further study on the interaction of PrPSc with
other soil components (humic substances, quartz, and other
minerals), the stability of soil-bound PrPSc under typical
environmental conditions (UV light, freeze-thaw cycles) and
the effect of soil microorganisms and extracellular enzymes
on protein integrity. Our current results suggest that sorption
of PrPSc to clay minerals may limit its migration through the
soil column. Maintenance of prion infectivity at the soil
surface may contribute to the propagation of CWD and
scrapie epizootics and enhance the likelihood of interspecies
transmission of these diseases.

Materials and Methods
Preparation of soil minerals and soils. Montmorillonite (SWy-2)

and kaolinite (KGa-1b) clays, obtained from the Clay Minerals Society
Source Clays Repository (West Lafayette, Indiana, United States),
were size-fractionated by wet sedimentation to obtain particles with
dh ¼ 0.5–2 lm and saturated with sodium. These reference clay
samples were extensively characterized previously [23,41]. Fine quartz
sand (dh ¼ 125–250 lm) and SiO2 microparticles (dh ¼ 1–5 lm; 99%
purity) were obtained from Sigma (St. Louis, Missouri, United States).
The fine quartz sand was soaked for 24 h in 12 N HCl to remove
impurities. X-ray diffraction analysis and infrared photoacoustic
spectroscopy indicated that the SiO2 microparticles were composed
of quartz.

We examined PrPSc sorption to four soils (Table S2). The Elliot soil
was a silty clay loam purchased from the International Humic
Substances Society (St. Paul, Minnesota, United States). Organically
amended Dodge soil (sandy clay loam) was obtained from a glaciated
upland area in Madison, Wisconsin. The Bluestem soil was a sandy
clay loam collected from a fluvial deposit in Cedar Rapids, Iowa. The
Boardman soil was a silt loam taken from an eolian deposit in
Boardman, Oregon. Characteristics of these soils are presented in
Table S2.

Source of PrPSc. Syrian hamsters (cared for according to all
institutional animal care and handling protocols of the University of
Wisconsin, Madison) were experimentally infected with the Hyper
strain of hamster-adapted transmissible mink encephalopathy agent.
PrPSc was purified to a P4 pellet from brains of infected hamsters by a
modification of the procedure described by Bolton et al. [42,43]. The
P4 pellet prepared from four brains was resuspended in 1 ml of 10
mM Tris (pH 7.4) with 130 mM NaCl. For experiments employing PK-
treated PrPSc, 20% brain homogenate was treated with 50 lg ml�1 of
proteinase K for 30 min at 37 8C. After blocking PK activity with 5
mM phenylmethylsulfonyl fluoride, purification was performed as
above.

Batch sorption experiments. Larger prion aggregates were
removed from purified PrPSc by collecting supernatants from two
sequential 5-min centrifugations at 800 g (clarification step). Clarified
PrPSc (;0.2 lg) was added to 500 lg of Mte or fine quartz sand, 1,500
lg of Kte, or 3.2 mg of quartz microparticles in 10 mM NaCl buffered
to pH 7.0 with 10 mM 3-N-morpholinopropanesulfonic acid (MOPS)
(500 ll final volume). In some cases, Mte experiments were conducted
in unbuffered 10 mM NaCl. Sorption experiments with Mte
performed in buffered and unbuffered 10 mM NaCl yielded
comparable results. Experiments with Mte, Kte, and quartz micro-
particles each employed equivalent (external) mineral surface areas.
In sorption experiments with whole soil samples, ;2 lg of clarified
PrPSc was added to 5-ml suspensions of each soil (5 mg) in 5 mM
CaCl2. Samples were rotated at ambient temperature for 2 h or an
indicated time period. Sorption appeared complete within 2 h, as
longer incubation times did not result in changes in levels of bound
protein.

Each PrPSc-mineral suspension and a 500-ll aliquot of each PrPSc-
soil suspension was placed over a 750 mM sucrose cushion prepared
in a solution of the same composition as the background solution in
the sorption experiment, and centrifuged at 800 g for 7 min to
sediment mineral or soil particles and adsorbed PrPSc. A sucrose
cushion was found necessary to prevent a fraction of unbound PrPSc

from sedimenting during centrifugation. Clarified PrPSc did not
sediment through the sucrose cushion (Figure S1).

Unbound PrPSc remaining in the supernatant was precipitated
with four volumes of cold methanol and resuspended in SDS-PAGE
sample buffer (100 mM Tris [pH 8.0], 10% SDS, 7.5 mM EDTA, 100
mM dithiothreitol, and 30% glycerol). PrPSc was extracted from
pelleted mineral particles with SDS-PAGE sample buffer at 100 8C for
10 min. The same procedure was followed for PrPSc-soil suspensions.
To determine mineral adsorption capacities for prion protein,
varying volumes of clarified PrPSc preparation were added to a
1:100 dilution of each mineral suspension. All adsorption experi-
ments were repeated at least three times.

For BH sorption experiments, 10% BH was clarified by collecting
supernatants from two sequential 5-min centrifugations at 800 g.
Aliquots (10 or 30 ll) of clarified BH were rotated with Mte in 10 mM
NaCl at ambient temperature for 2 h; complexes of Mte and BH
constituents were then sedimented through a sucrose cushion and
processed as described in the preceding paragraphs.

All samples prepared for SDS-PAGE were separated on 4%�20%
precast gels (BioRad, Hercules, California, United States) under
reducing conditions. Proteins were transferred to polyvinyl difluor-
ide membranes and immunoblotted with mAb 3F4 (1:40,000 dilution),
R20 N-terminal pAb (1:10,000 dilution), Rab 9 pool 2 full-length PrP
pAb (1:10,000 dilution), or anti-20S proteosome subunit C2 pAb (1 lg
ml�1; A.G. Scientific, San Diego, California, United States). Detection
was achieved with an HRP-conjugated goat anti-mouse immunoglo-
bulin G (IgG) (BioRad) for mAb 3F4 and an HRP-conjugated goat
anti-rabbit IgG (BioRad) for all pAbs.

X-ray diffraction analysis. PrPSc preparation (10 lg) was added to
50 lg of Mte in 10 mM NaCl (final volume of 0.5 ml). Samples were
rotated at ambient temperature for 2 h and centrifuged at 16,100 g
for 7 min. After centrifugation, the bulk of the supernatant was
removed, leaving a small amount of solution above the clay pellet.
The clay was resuspended in the remaining supernatant, and the
slurry was placed on silica wafer slides and stored in a desiccator for
over 12 h. The basal d001 spacings of near homoionic Naþ-SWy-2
before and after adsorption of PrPSc were determined by X-ray
diffraction on a Scintag PAD V diffractometer (Cupertino, Califor-
nia, United States) using CuKa radiation and continuous scanning
from 38 to 158 2h with a step size of 0.028 and a dwell time of 2 s.

Extraction experiments. PrPSc adsorbed to Mte was incubated for
30 min at room temperature in 8 M urea or 8 M guanidine HCl (50 ll
per pellet), 0.1 or 1 M NaCl (25 ll per pellet), or 100 mM sodium
phosphate (pH 2.5 or 11.5; 25 ll per pellet). Primary extractions with
these solutions were followed by secondary extractions with SDS-
PAGE sample buffer at 100 8C to assess the efficacy of the primary
extraction. Urea and guanidine primary extracts were dialyzed
against double distilled water for 2 h (nominal molecular weight
cutoff, 12–14 kDa; Fisher Scientific, Pittsburgh, Pennsylvania, United
States) prior to SDS-PAGE analysis.

Infectivity bioassay. PrPSc-Mte pellets prepared as above were
resuspended in pH 7.4 PBS (50 ll per pellet) and intracerebrally
inoculated into male, weanling Syrian hamsters (Harlan, Indianapolis,
Indiana, United States). Equivalent amounts of PrPSc starting
material or Mte without PrPSc were inoculated into control animals.
Hamsters were monitored every 3 d for the onset of clinical
symptoms [32,44]. Brains from clinically positive hamsters and
uninfected controls were analyzed for protease-resistant PrP by
immunoblotting.

Supporting Information

Figure S1. Sucrose Cushion Prevented Sedimentation of Unbound
PrPSc under Conditions Necessary to Pellet Soil Minerals

A substantial amount of unbound PrPSc pelleted when centrifuged
under conditions required to remove Naþ-Mte from suspension, but
was prevented from sedimenting by a sucrose cushion. Sucrose
cushions were therefore employed in batch sorption experiments to
prevent sedimentation of unbound PrPSc. Results from representative
mock adsorption experiments are shown. PrPSc was rotated in a
solution of 10 mM NaCl in the absence of soil minerals for 2 h and
was either placed above a 750 mM sucrose cushion and centrifuged
(two right lanes), or centrifuged without a sucrose cushion (two left
lanes). Supernatants (Sup) and pellets (Pel) were analyzed by
immunoblotting with mAb 3F4.

Found at DOI: 10.1371/journal.ppat.0020032.sg001 (17 KB PDF).

Table S1. Characteristics of Minerals Used in PrPSc Sorption
Experiments

Found at DOI: 10.1371/journal.ppat.0020032.st001 (25 KB DOC).

PLoS Pathogens | www.plospathogens.org April 2006 | Volume 2 | Issue 4 | e320301

Sorption of Prions to Soil



Table S2. Characteristics of Soils Used in PrPSc Sorption Experiments

Found at DOI: 10.1371/journal.ppat.0020032.st002 (26 KB DOC).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/) accession number for
PrPSc is M14054.
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