Usage
  • 35 views
  • 15 downloads

State Evaluation and Opponent Modelling in Real-Time Strategy Games

  • Author / Creator
    Erickson, Graham KS
  • Designing competitive Artificial Intelligence (AI) systems for Real-Time Strategy (RTS) games often requires a large amount of expert knowledge (resulting in hard-coded rules for the AI system to follow). However, aspects of an RTS agent can be learned from human replay data. In this thesis, we present two ways in which information relevant to AI system design can be learned from replays, using the game StarCraft for experimentation. First we examine the problem of constructing build-order game payoff matrices from replay data, by clustering build-orders from real games. Clusters can be regarded as strategies and the resulting matrix can be populated with the results from the replay data. The matrix can be used to both examine the balance of a game and find which strategies are effective against which other strategies. Next we look at state evaluation and opponent modelling. We identify important features for predicting which player will win a given match. Model weights are learned from replays using logistic regression. We also present a metric for estimating player skill, which can be used as features in the predictive model, that is computed using a battle simulation as a baseline to compare player performance against. We test our model on human replay data giving a prediction accuracy of > 70% in later game states. Additionally, our player skill estimation technique is tested using data from a StarCraft AI system tournament, showing correlation between skill estimates and tournament standings.

  • Subjects / Keywords
  • Graduation date
    2014-11
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3H978
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
    • Department of Computing Science
  • Supervisor / co-supervisor and their department(s)
    • Buro, Michael (Computing Science)
  • Examining committee members and their departments
    • Schaeffer, Jonathan (Computing Science)
    • Musilek, Petr (Electrical and Computer Engineering)
    • Buro, Michael (Computing Science)