
State Evaluation and Opponent Modelling in Real-Time Strategy Games

by

Graham Erickson

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

c©Graham Erickson, 2014

Abstract

Designing competitive Artificial Intelligence (AI) systems for Real-Time Strategy

(RTS) games often requires a large amount of expert knowledge (resulting in hard-

coded rules for the AI system to follow). However, aspects of an RTS agent can

be learned from human replay data. In this thesis, we present two ways in which

information relevant to AI system design can be learned from replays, using the

game StarCraft for experimentation. First we examine the problem of constructing

build-order game payoff matrices from replay data, by clustering build-orders from

real games. Clusters can be regarded as strategies and the resulting matrix can be

populated with the results from the replay data. The matrix can be used to both

examine the balance of a game and find which strategies are effective against which

other strategies. Next we look at state evaluation and opponent modelling. We

identify important features for predicting which player will win a given match.

Model weights are learned from replays using logistic regression. We also present

a metric for estimating player skill, which can be used as features in the predictive

model, that is computed using a battle simulation as a baseline to compare player

performance against. We test our model on human replay data giving a prediction

accuracy of > 70% in later game states. Additionally, our player skill estimation

technique is tested using data from a StarCraft AI system tournament, showing

correlation between skill estimates and tournament standings.

ii

Preface

This thesis involves work done for the purposes of publication. Chapter 3 is orig-
inal work. The work presented in Chapter 4 is being published at AIIDE 2014. I
(Graham Erickson) am the primary author and Professor Michael Buro is the other
author. Chapter 2 is original work, but is adapted from a literature review done for
CMPUT 657.

Acknowledgements

Thanks to my supervisor Michael Buro for guiding me through this thesis and
offering invaluable insight. Thanks to the RTS research group and especially David
Churchill, Marius Stanescu, and Nicolas Barriga who helped me immensely during
my time at the University of Alberta.

I would also like to thank all of my friends (both in Edmonton and Saskatoon)
for helping me through tough times and making my experience in Edmonton all
the more enjoyable.

I owe a lot of gratitude to my parents (Wendy and Kelly) and my sister April.
Their support has been crucial to my success and I would not be where I am today
without them.

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Contributions . 4
1.5 Contents . 5

2 Background 6
2.1 Search in Real-Time Strategy Games 6
2.2 Machine Learning in Real-Time Strategy Games 9
2.3 Replay Data for Building Payoff Matrices 13
2.4 SparCraft . 14
2.5 Baseline . 15

3 Build-Order Clustering 16
3.1 Representing Strategies . 16
3.2 Similarity Matrices . 17

3.2.1 Sequence Alignment . 17
3.2.2 Similarity Metric . 20

3.3 Clustering . 21
3.3.1 Agglomerative Hierarchical Clustering 23

3.4 Applied to StarCraft . 25
3.4.1 Data . 25
3.4.2 Unit Similarity . 27
3.4.3 Cluster Evaluation . 31
3.4.4 Building Payoff Matrices . 39

3.5 Conclusion . 44

4 State Evaluation 45
4.1 Data . 45
4.2 Battles . 46
4.3 Preprocessing . 46
4.4 Features . 49

4.4.1 Economic . 49
4.4.2 Military . 50
4.4.3 Map Coverage . 50
4.4.4 Micro Skill . 50

v

4.4.5 Macro Skill . 52
4.5 Learning . 53
4.6 Feature Set Evaluation . 54
4.7 Battle Metric on Tournament Data . 57
4.8 Conclusion . 60

5 Conclusion and Future Work 61
5.1 Conclusion . 61
5.2 Future Work . 62

Bibliography 63

vi

List of Tables

3.1 Alphabet . 27
3.2 CPCC values for PvP data using different linkage policies 34
3.3 CPCC values for PvT data using different linkage policies 34
3.4 Payoff matrix built from PvP data with 3 clusters 41
3.5 Payoff matrix built from PvT data with 4 clusters 42
3.6 Payoff matrix built from PvT data with 4 clusters using alternate

cluster selection method . 43

4.1 A breakdown of how many games were discarded 48
4.2 A breakdown of how examples were split by time-stamp 55
4.3 Individual feature (group) and feature set prediction performance

reported as accuracy(%) (avg L) in each game time period; A = eco-
nomic/military features Rcur, I, U, UC; B = A + map control feature
MC; C = B + skill features βvar, SF, PF,Q 56

4.4 Feature set prediction performance [accuracy(%) (avg L)]; If time in-
terval is [k,l] training is done on examples in [k,∞) and tested on
examples in [k,l] . 56

4.5 Accuracy(%) on terminal states with training done on the provided
time interval . 56

4.6 Accuracy(%) on terminal states with training done on the provided
time interval . 57

4.7 Ranking from AIIDE 2013 StarCraft Competition (program name
and win percentage) . 58

4.8 Ranking using βavg . 59
4.9 Ranking using βvar . 59

vii

List of Figures

3.1 Hierarchical Clustering . 22
3.2 Top layers of the Protoss Ontology . 29
3.3 Bottom layers of the Protoss Ontology 29
3.4 Alignments between build-orders from the PvT dataset less than 50

units in length . 31
3.5 Alignments between build-orders from the PvT dataset between 200

and 250 units in length . 32
3.6 Sep and Co versus the number of clusters for the hierarchical clus-

tering of the PvP dataset . 36
3.7 Sep and Co versus the number of clusters for the hierarchical clus-

tering of the PvP dataset normalized by number of clusters 36
3.8 Sep and Co versus the number of clusters for the hierarchical clus-

tering of the PvP dataset normalized by number of clusters on the
domain of [2,100] . 37

3.9 Sep and Co versus the number of clusters for the hierarchical clus-
tering of the PvT dataset normalized by number of clusters on the
domain of [2,100] just using Protoss players 37

3.10 Sep and Co versus the number of clusters for the hierarchical clus-
tering of the PvT dataset normalized by number of clusters on the
domain of [2,100] just using Terran players 38

viii

Chapter 1

Introduction

1.1 Purpose

Real-Time Strategy (RTS) is a genre of video game in which players compete against

each other to gather resources, build armies and structures, and ultimately defeat

each other in combat. RTS games provide an interesting domain for Artificial In-

telligence (AI) research because they combine several difficult areas for computa-

tional intelligence and are implementations of dynamic, adversarial systems [1].

The research community is currently focusing on developing AI systems to play

against each other, since RTS AI still preforms quite poorly against human play-

ers [2]. The RTS game StarCraft (en.wikipedia.org/wiki/StarCraft) is currently

the most common game used by the research community, and is chosen for this

work because of the online availability of replay files and the open-source interface

BWAPI (code.google.com/p/bwapi).

This thesis combines two distinct projects (which are related thematically). The

first deals with the abstract notion of strategy. In common language, strategy can

be viewed as a high-level plan (or abstraction of a plan) that can be implemented

to achieve a goal. In RTS games strategies are often viewed as general rules that

characterize a way of playing the game (e.g. sacrificing economy to gain an early

military advantage is called a rushing strategy). In this thesis when we discuss

strategy we refer to pure strategies (in the game theoretic sense). Humans players

often have a few different strategies which they implement during matches and

typically have a good sense for which strategies are effective against other strate-

gies. Having such knowledge requires in-depth experience with a game, and using

human opinion as a basis for building strategy into an AI system introduces bias

and removes the possibility of novel strategies to emerge. The purpose of part of

1

this thesis is to provide an empirical basis for identifying strategies and discovering

inter-strategy strengths and weaknesses.

The second project concerns the value (another abstract concept) of states in

RTS. When human players are playing RTS games, they have a sense of when they

are winning or losing the game. Certain aspects of the game which can be ob-

served by the player are used to tell players if they are ahead or behind the other

player. The goal of a match is to get the other player to give up or to destroy all that

player’s units and structures, and achieving that includes but isn’t limited to hav-

ing a steady income of resources, building a large and diverse army, controlling the

map, and outperforming the other player in combat. Human players have a good

sense of how such features contribute to their chances of winning the game, and

will adjust their strategies accordingly. They also are adept at determining the skill

of their opponent, based on decisions the other player made and their proficiency

at combat. We want to enable an AI system to do similar. The purpose of our work

is to identify quantifiable aspects of a game which can be used to determine 1) if a

particular game-state is advantageous to the player or not; and 2) the relative skill

level of the opponent.

1.2 Motivation

The most successful RTS AI systems still use hard coded rules as parts of their de-

cision making processes [3]. Which policies are used can be determined by making

the system aware of certain aspects of the opponent. For example, if you have de-

termined that the opponent is implementing strategy A, and you have previously

determined that strategy B is a good response to A, then you can start executing

strategy B [4]. Knowing that strategy B is effective against A, however, merely

comes from expert knowledge, which can often overlook novel relationships be-

tween strategies. Having an empirical basis for which strategies are strong against

which other strategies also gives game designers a way of analyzing the balance

of their game. Finding groupings of like strategies automatically from data would

allow game designers to automate game balance detection processes and simplify

the development of RTS games. Polishing RTS games is a very complex process,

as seen by the length of time that it took to fine-tune StarCraft (the game was still

receiving patches up until 2009).

2

Search algorithms have been used successfully to play the combat aspect of RTS

games [5]. Classical tree search algorithms (excluding Monte Carlo based methods)

require some sort of evaluation technique; that is, search algorithms require an effi-

cient way of determining if a state is advantageous for the player or not. Currently,

there is work being done to create a tree search framework that can be used for

playing full RTS game [6]. Evaluation can be done via simulation [7] for combat,

but for the full game different techniques will be needed. Also, in the context of

a complex search framework that uses simulations, state evaluation could be used

to prune search branches which are considered strongly disadvantageous. As we

will show in Chapter 4, the type of evaluation we are proposing can be computed

much faster than performing a game simulation.

Most RTS AI systems still use hard-coded rules to make decisions, but some

are starting to incorporate more sophisticated methods into their decision making

process. For example, UAlbertaBot (code.google.com/p/ualbertabot), which won

last year’s AIIDE StarCraft AI competition, currently uses simulation results to

determine if it should engage the opponent in combat scenarios or not. This is

based on the assumption that the opponent is proficient at the combat portion of

StarCraft. If there is evidence that the opponent is not skilled at combat, one might

be willing to engage the opponent even when their army composition is superior

(or if they are strong, not engage the opponent unless the player has a large army

composition advantage).

1.3 Objectives

The main objective for this thesis is to provide insight into two machine learning

problems which have not been acknowledged in the RTS literature. Regarding the

strategy clustering problem, we provide a clear method for identifying groups of

strategies from RTS replay data and provide our findings on real data. Our method

uses agglomerative hierarchical clustering to cluster strategies. We also provide a

method for developing distance functions between strategies, which borrows from

sequence alignment techniques mostly used in the field of bio-informatics.

We attempt to solve the result prediction problem by presenting a model for

evaluating RTS game states. More specifically, we are providing a possible solution

to the game result prediction problem: given a game state predict which player will

3

go on to win the game. Our model uses logistic regression to give a response or

probability of the player winning (which can be looked at as a value of the state for

the player). Presenting our model will then come down to describing the features

we compute from a given game state. The features come in two distinct types:

features that represent attributes of the state itself (which can be correlated with

win status), and features which represent the players skill (which is a much more

abstract notion). Our model assumes perfect information; StarCraft is an imperfect

information game, but for the purposes of preliminary investigation we assume

that the complete game-state is known.

1.4 Contributions

This thesis contains three main contributions to the field of RTS AI. The first is

a technique for clustering build-orders. This allows a researcher to group build-

orders (found in a data-set of replays of a RTS game). The point of this is get a

sense of what kinds of build-orders players are generally using. The benefit to this

technique is that novel build-order groupings can emerge from the data-set and

it removes the need for advanced expert knowledge when choosing strategies for

an AI system to implement. The clusterings can be used to build and populate

payoff matrices using the match outcomes from the replay data-set. These payoff

matrices can be used to gain insight into which types of build-orders tend to beat

which other types of build-orders in real games. Such information can be consid-

ered when designing AI systems, in terms of response strategies. Payoff matrices

have also seen to be useful for analyzing the balance of a game. Our process can

be used to automate balance detection (which is very important when developing

commercial RTS games).

Predicting the result of an RTS match is a noisy problem. There are many fac-

tors that contribute to a player winning or losing a match and key moments can

quickly shift the momentum of a game. In this thesis, we provide a set of features

that can be used to predict the outcome of a game (i.e. which player will win) with

fairly decent accuracy (> 70% in later game stages). AI systems can use our feature

set for state evaluation both to prune nodes in a global search and to inform deci-

sion making. Our feature set also reveals which features are most important to the

outcome of a match. Future works could focus on having systems try to improve

4

the values of certain features when in losing situations in a game. We also provide

a metric for estimating the skill of a player at the level of micro-managing units in a

battle. Micro skill is considered an important part of playing RTS games well. Our

metric provides an empirical basis for estimating the micro skill of a player. This

technique can be used to model our adept an opponent is at managing units in

battle, which can influence decision making (an AI system could be more aggres-

sive against subpar opponents and defensive against competent opponents). Our

method can also be used to add information to player rankings or to allow players

to have a metric for quantifying how proficient they are at battle management (in

case they need to improve).

1.5 Contents

The next chapter presents a brief literature survey of RTS games. In Chapter 3

we describe the build-order clustering scheme and show how it can be applied to

StarCraft. Then in Chapter 4 we explore the result prediction problem, present our

feature set, along with the battle skill estimator, and show our experiments with

real data. The strengths and weaknesses of our model, along with future plans are

discussed in Chapter 5.

5

Chapter 2

Background

Research into RTS is a growing field and before presenting the different works that

have been done, we will briefly explain the different games which are commonly

used as experimental domains. One of the first games used to research RTS is

called ORTS (open real-time strategy) [8]. ORTS is an open-source RTS engine that

allows researchers to create games that are particular to a use or a purpose. It is

designed to be easy to use, and is open-source so there are no problems with in-

teracting with an obfuscated game system (which can be a problem when trying

to develop AI system to play a commercial game). Wargus has also seen some use

in the research community [9]. Wargus is a clone of the older RTS game WarCraft

II. Currently, StarCraft is the most popular game for RTS research. StarCraft was a

very commercially successful game and has many replay files freely available on-

line. StarCraft is known to be a very well-balanced game and has three different

factions (called Protoss, Zerg, and Terran) which benefit from varying play mechan-

ics. For RTS AI research, StarCraft can be interacted with using BWAPI (Brood War

API) and AI system development competitions using BWAPI have shown to be

popular and interesting ways of promoting and testing RTS research [2].

2.1 Search in Real-Time Strategy Games

Search algorithms have a long history in classic game playing. Minimax search

using Alpha-Beta pruning has had great success in games like chess and checkers

[10], and the technique has been given modifications that have proved successful

in games like Othello [11]. Chess and checkers are perfect information games and

have sequential moves (which make them simpler games to adapt minimax to, as

opposed to imperfect information RTS games which feature simultaneous moves).

6

RTS games also have extremely large branching factors and there are many dif-

ferent ways to play a game successfully. Consider the amount of moves available

to players at any one time; players can build units and buildings and command

any of potentially hundreds of units. Couple the amount of moves available with

problems in temporal and spatial reasoning and RTS games appear to be a very dif-

ficult domain for tree search algorithms to play. For large domains, an evaluation

function is required (i.e. a method for telling how advantageous a state is for the

player), since a search cannot be done on the complete tree in a reasonable amount

of time.

More recently, Monte Carlo search techniques have seen success in games with

large branching factors, like Go [12]. Monte Carlo search is stochastic in nature

(which is different from Alpha-Beta search, which is deterministic) and has been

applied to non-deterministic, imperfect information games like Poker [13]. Monte

Carlo search focuses on simulating full play-outs of a game and collecting statistics

regarding which moves tend to lead toward victories for the player. Both Monte

Carlo techniques and Alpha-Beta search have seen applications in RTS games.

MCPlan is a Monte Carlo style planning algorithm which was developed and

implemented for a capture-the-flag style game in ORTS [14]. MCPlan incorporates

both abstractions and random sampling. In a general sense, MCPlan works by

randomly generating plans for both the player and opponents. The results of the

plan for the player are recorded, and the process is repeated for as long as time con-

straints allow. Then the player actually executes the plan which had the most statis-

tically significant success during the random play-outs. In implementing MCPlan

for the capture-the-flag game, an evaluation function is needed (i.e. a way of mea-

suring the success of a play-out is needed, since in this case play-outs are not done

to a terminal state). The authors use a combination of material evaluation (units

are weighted based on their health, and material is a sum of the player weights

subtracted by the opponent weights), visibility evaluation (value is given to plans

that explore and reveal the map), and flag capture evaluation (plans are rewarded

for player proximity to the opponent flag and punished for opponent proximity to

the player flag). It should be noted that the parameters for each evaluation scheme

were tuned manually, instead of learned from data. The evaluation function is then

a weighted sum of the three evaluation schemes.

Monte Carlo tree search has also been applied to Wargus, for planning at the

7

tactical level [15]. In the paper, UCT (a Monte Carlo style algorithm that has had

great success in Go [16]) is adapted to what they call the tactical assault problem

(i.e. the shooting game in which each player has a certain number of units, and the

AI player seeks to defeat all the enemy units while maximizing the leftover health

of the player units). The state space of even just the tactical assault portion of the

game is very complex (PSPACE-hard to be exact [17]). To compensate, an abstract

version of the game is used. Groups of units are reasoned with instead of just

individual units (groups are made based on spatial proximity). So the planning

is done using properties of unit sets, and the primary abstract actions are to join

groups and to attack groups. Also, the paper notes that the work done in ORTS

[14] relies on a good evaluation function, which might not be easily developed

and adapted for different applications, and that the work here differentiates itself

because the UCT play-outs go to the end of the tactical assault matches (and thus do

not require intermediate evaluation) and that the tactical assault scenario is more

general than the capture-the-flag scenario. The UCT algorithm is implemented as

part of an online planner. At certain time steps, known as decision epochs, the units

are clustered to form abstract unit groups and the UCT algorithm is ran on the unit

groups. Then the actions that the algorithm decides upon are ran until the next

decision epoch, when the whole process is repeated. For the actual search, states

(nodes) are a set of groups of units (each having a collective health and position), a

set of actions given to the unit groups, and a time stamp. Arcs are actions given to

a group of units.

Alpha-Beta search has been shown to be useful for playing RTS games at the

micro level [7]. Combat scenarios can be modeled as an individual game (or rather

a sub-game), where two players controlling a fixed number of units must try to

defeat the opponent’s units while maximizing their unit’s left-over health. Since

StarCraft is very complex, an abstract model of the combat game is required for

search purposes. The abstract game works on sets of units and moves apply to sets

of units as well. To simplify the problem, many complex aspects of StarCraft are

ignored (spell-casters, hit-point regeneration, imperfect information and unit colli-

sions). Levels in the game tree which represent simultaneous moves in the abstract

game can be replaced with two levels representing alternating player moves. Eval-

uation is used as part of the search. A very useful evaluation function in this work

is a sum of the square-root of player unit hit-points (the square-root smooths out

8

the hp distribution), weighted by a ratio that describes the rate at which units can

deal damage (which offers a very fast form of evaluation). Evaluation is also done

using scripts, which deterministically play the game from a given state (using a

heuristic). Script-based evaluation is slower than using weighted sums, but allows

evaluation to be done in terms of terminal play-outs. A search method has also

been built for the combat game that searches over a set of possible scripts [5].

Work is currently being done to develop search algorithms that can be applied

to a higher level of RTS game (instead of simplified combat). This work is currently

in preliminary stages [6], but the general idea is to create a hierarchy of abstract

searches that take advantage of solutions to sub-problems. Although research has

not reached the level of a search algorithm that plays over states that encompass

the entire game, work into hierarchical search methods show promise that such a

search algorithm exists. As part of the search process, intermediate (but global)

states would be searched over. Global evaluation could benefit such searches im-

mensely, by allowing intermediate states to be pruned when the evaluation shows

that the states are much worse than others (for the player).

2.2 Machine Learning in Real-Time Strategy Games

Techniques have been used in developing RTS AI that use data to develop decision-

making models, or to give insight into the game itself. Machine learning is often

used to predict the opponent’s actions or model the opponent in some way. Op-

ponent modelling in RTS was first done using an RTS engine called SPRING, and

did not use machine learning at all [18]. Instead it used an expertly designed fuzzy

logic system for opponent strategy identification. Replay data was used soon af-

ter for modelling how RTS games can be played [19]. This work was done before

BWAPI existed however, and never saw use in the context of an RTS AI system.

One trend that can be seen in the RTS AI literature is the application of Case-

Based Reasoning (CBR) techniques [20] [21] [22]. In general, the idea is to identify

particular cases where a certain tactic or strategy should be used. The area is a

combination of machine learning and planning. The approach starts with a set

of previous experiences (also called cases). Then in live play, the system selects

counter strategies from the previous cases and applies them to the current situation.

Cases are selected based on their similarity to the current situation. The results

9

are then used to update the previous cases. CBR using fuzzy set logic has also

been applied to StarCraft, with success against the built-in StarCraft AI system

[23]. It should be noted that the built-in StarCraft AI system is quite simple and is

well-known to be not particularly good at playing RTS. A similar concept know as

transfer learning has been applied to an RTS game called MadRTS [24]. Previous

experiences take the form of plans, are applied when applicable and are evaluated

for further use depending on the outcome.

Currently, many of the competitive AI systems use models learned from replay

data in some way. The trend can be traced to Weber and Mateas’ work in 2009

[25], which is one of the earliest examples of using machine learning on StarCraft

replay data to develop an opponent model and applying the resulting to model to

a StarCraft playing AI system. A player’s strategy is considered to be a general-

ization of a player’s build-order. The problem the paper is concerned with is how

to detect what strategy the opponent is executing given some evidence about the

opponent. Human players in RTS games are often concerned with trying to figure

out what strategy the opponent is executing, so that the player can try to execute

a counter-strategy. RTS games are imperfect information games and most of the

opponent’s actions (especially early on in a game) are hidden from the player. In

order to get hints at what sort of strategy the opponent is executing, players must

scout (by sending units into unknown areas of the map purely with the intention

of gathering information). When a player sees what sort of units and structures the

opponent has built, they can make an educated guess at what sort of strategy the

opponent is executing (based on past experiences). Analogously, when a system

gathers evidence about the opponent by scouting, the system can refer to models

developed on replay data (which can be seen as past experiences) to guess at what

strategy the opponent is executing. In [25], vectors were extracted from replay files

that have a feature for each unit or structure type. The value for the feature is the

time in a match that the player in the replay first produced a unit or structure of

that unit or structure type. The vectors were labeled with the names of high-level

strategies (assigned by a set of rules). Ten-fold cross-validation was run using a

few different machine learning algorithms. Logistic regression with boosting was

found to be the most effective at predicting the strategy labels from the vectors.

Our work does not deal with strategy prediction, but borrows the idea of strategies

and build-orders being analogous and uses replay data to develop models.

10

StarCraft has the built-in functionality to record a match and save it in a specific

binary format that can then be reinterpreted by the game engine (for the purpose of

replaying the match using the StarCraft software). Communities have developed

around the web where amateur players can post match replays and where the re-

plays of top matches on amateur competitive brackets are posted. Replays can then

be downloaded and parsed to extract the relevant information. Parsing replay files

requires either loading the replay into StarCraft and extracting the desired infor-

mation using BWAPI and an AI system, or using some sort of proprietary software

tool to parse the raw StarCraft replay data.

There has also been some work that uses probabilistic graphical models as part

of the opponent modelling process. Hidden Markov models (HMMs) have been

used as part of a system to detect opponent behaviours in the form of plans [26].

They have also been used to actually learn the strategies themselves from data as

well [4]. The advantage of this approach is that strategies aren’t pre-determined

by experts, which allows the emergence of novel strategies and gives an empirical

basis for strategy specifications (i.e. when labeling feature sets manually, a human

may inject biases or inconsistencies). Games are split up into thirty second inter-

vals (the states in the HMM). Each interval is given a vector that has a feature for

each unit/structure type (the observations in the HMM). A few hundred replays of

Protoss players facing Terran opponents were gathered and expectation maximiza-

tion was used to learn the model. After the state model was learned, the authors

graphed the states as nodes and drew arcs between one node and another if the

first node’s state has a non-zero probability of transitioning into the other node’s

state. A path through the resulting state transition graph (including loops) is un-

derstood to be a strategy which represents the player’s behaviour throughout a

match. The interesting thing is that strategies which are well known by the com-

munity emerged from the data and can be seen quite clearly in the state transition

graph. The work is a primary example of how data analysis of human replays can

be used to learn information about the game itself.

Bayesian models can be used to model player behaviour (for various purposes),

as shown in the work of Synnaeve. In [27] and [28] a Bayesian model is described

that can be used to predict opponent opening strategies and build orders. Here

games are represented as feature sets (representing when a unit/structure started

to be produced) and each feature set is given a label that describes the strategy

11

being used (the work here is concerned primarily with identifying the opening

strategy of a player). A difference between Synnaeve’s strategy labeling and that

of Weber and Mateas, is that here labeling is done using a semi-supervised method.

Clustering is used to identify strategy groups and those are manually given labels

(as opposed to simply giving each feature set a label manually or via a set of rules).

Clustering is done on the feature sets and not the build-order sequences them-

selves. The data is used to learn parameters for a Bayesian model, which can be

used to predict opponent strategies given observations (like seen units). The per-

formance of the model is compared as a classifier against the performance of Weber

and Mateas’ model (which isn’t a completely fair comparison since they use differ-

ent labellings of the data). Synnaeve’s model is found to be slightly less accurate

overall (although way more accurate for some faction match-ups). Their model is

considered by the authors to be quite robust to noise, and since the the model is

probabilistic, uncertainty is quantified as part of the model itself. Similar models

have been developed for making tactical decisions [29] and controlling units at a

lower level of abstraction [30].

A problem facing researchers experimenting with learning models from replay

data is that up until recently, a large general easily-usable data-set did not exist.

The data used by Weber and Mateas can be obtained from them, but the informa-

tion about each match only contains what is relevant to their work. If a researcher

wanted to analyze replay data for other purposes, they would have to scour the

web looking for various replay files on matches between experienced players. Syn-

naeve et al. performed the collection and formatting of a large, general data-set

for StarCraft AI research [31]. The authors collected nearly eight-thousand replay

files on one-versus-one StarCraft matches between experienced players, and used

BWAPI to gather a large amount of data about each match. The collected data was

then written to text files. The work done makes the job much easier for future re-

searchers, who can now bypass the data collection and extraction phases, and sim-

ply parse Synnaeve’s text files to mold the data into the desired format. The data

parsed from the replays includes all observable player actions, a running count of

both player’s resources (dumped every twenty-five frames or approximately ev-

ery second), times for when units are seen by the various players (to incorporate

fog-of-war), and the effects and timing of attacks executed by all units. We use

the dataset for the projects presented in this thesis. We use the parsed files for

12

the work done in Chapter 3, but we opted to build our own parser for Chapter 4

because we wanted complete control over the information we gathered (e.g. we re-

defined what constitutes a battle). Synnaeve also describes an experiment in unit

clustering as an example for how the dataset could be used. The clustering is done

on “army” compositions (groups of units that engage in battle) so it differs from

our clustering project.

There have been a few other modern examples of learning and probabilistic

modelling in RTS games. Weber et al. dealt with the uncertainty caused by imper-

fect information using a particle filter to predict unit positions in fog-of-war [32].

Reinforcement learning has been used to develop micro-management techniques

for small combat scenarios [33]. The model works with a simplified version of

a StarCraft battle, where units are allowed to either attack or retreat. The learner

then rewards or punishes the AI system after each decision and the system changes

its decision-making process accordingly. Gemine et al. looked at replay data from

StarCraft II to genetically develop production policies (rules for different unit types

about when they should be produced) [34]. Evolutionary computation has been

used to improve the tactical decision-making of a StarCraft AI system [35]. A com-

bination of evolutionary computation and a neural net was used to teach a program

to play Wargus [36].

As far as we can tell, little to no work has been done in predicting game out-

come. [37] tries to predict game outcomes in Massively Online Battle Arena (MOBA)

games, a different but similar genre of game. They represent battles as graphs

and extract patterns that they use to make decisions about which team will win.

Bayesian techniques have seen success in predicting the outcome of individual

battles, using data from a simulator [38]. That work focused just on individual

skirmishes and did not include the whole match. [39] extracted features from Star-

Craft II replays and showed that they can be used to predict the league a player is

in.

2.3 Replay Data for Building Payoff Matrices

The project described in Chapter 3 is largely an extension of part of the work de-

scribed in Long’s Master’s thesis [40]. In that work, game theoretic definitions con-

cerning the balance of a game are established. Balance can mean either that there

13

is no faction that isn’t useful in some situation or that there is no strategy that isn’t

useful in some situation (this is a simplified definition, but it captures the intuition,

which is acceptable for our purposes). Long proposes building payoff matrices

from replay data to analyze a game for balance. The idea is that for a particular

faction match-up, game replays from human matches can be used to populate a

payoff matrix. The rows and columns of the matrix represent different strategy

choices for the two factions. The thesis presents a study in which 100 WarCraft III

replays are hand labeled by expert observers (labels are high-level descriptions of

the strategy used). Strategy here corresponds to the build-order used (the order

units are produced in). The results of the game replay can then be used to populate

a payoff matrix to check if the game is balanced. We are interested in discovering

rock-paper-scissors patterns; matrices that show that strategies have other strate-

gies they are strong against and others they are weak against. Our work differs

from Long’s because we do not label replays, and instead use clustering to identify

natural strategic groupings in replay data. We also use significantly larger datasets.

Long’s thesis also uses the labeled replays data to stage a machine learning

problem. He models the strategy labels as target values, and the build-order se-

quences as the examples. A model can then be learned with predicts the strategy

label given a build-order. This work suggests a method for determining the dis-

tance between one build-order to another (distance here is a measure of how simi-

lar or different two build orders are, and is used in learning the predictive models).

The method borrows from the field of bio-informatics, which has long used se-

quence alignment techniques to make sense of large amounts of data in the form

of sequences. Long uses alignment scores as distances between build-orders. We

use a similar approach to develop a similarity function between build-orders that

is used in the clustering process. More details are given in Chapter 3.

2.4 SparCraft

SparCraft is an open-source StarCraft battle simulator developed by Churchill [41].

StarCraft is a complex piece of software and because it is not open-source, it must

be treated as a black box. This can cause complications when trying to develop

more sophisticated algorithms for StarCraft AI (such as search) [42]. Also, when

running searches in a game, it is useful to have a general and abstract version of

14

the RTS game that can be used to perform play-outs from various states (this is not

yet feasible for the entire game but can be done for sub-problems). SparCraft was

developed as general StarCraft combat simulator that could be used as both for

experimenting in a simplified (but still StarCraft applicable) environment and as a

tool for use during a game (either as part of a search or for other forms of decision

making). We use SparCraft in Chapter 4 as part of a method for determining a

player’s skill at the combat portion of the game.

SparCraft makes several simplifications of the full StarCraft game. Spell-casters

are ignored (expect for Terran medics) because of their diversity and complexity.

Flying units are not allowed (also for simplicity). Collisions between units are ig-

nored (collisions do not affect a battle significantly). Projectile attacks happen in-

stantaneously. We modified SparCraft so that it allowed for buildings (with colli-

sions) to be included, and allowed units to enter battles are varying times (since in

a real match players often reinforce their in-battle units with additional units).

2.5 Baseline

As presented in [43], a control variate is a way of reducing the variance in an esti-

mate of a random variable. The authors apply control variates (in conjunction with

a baseline scripted player) to Poker, as a way of estimating a player’s skill. The

main idea, that is relevant to our work, is to use a scripted (or simply computation-

ally less complex) player to provide a comparison against which to consider the

performance of an agent. The scripted player plays out the same scenario which

the agent encountered and both performances are evaluated. The two values can

then be compared to give an empirical measure of the skill of the agent. We apply

the idea to the combat portion of StarCraft. We use a StarCraft combat simulator

(SparCraft) to replay battles with a baseline player, and the control variate tech-

nique to reduce the variance of the resulting skill feature estimate. More details are

given in Chapter 4, where the resulting skill estimate is used as part of our feature

set for the game result prediction problem.

15

Chapter 3

Build-Order Clustering

The work done in Long’s thesis leaves an interesting possible extension: instead of

hand-labeling build-orders with strategy labels, use clustering techniques to iden-

tify groups of build-orders that embody similar strategies. In this Chapter we de-

scribe a general process for representing and clustering build-orders to identify

groupings in a dataset of game replays. We also show how the general process can

be adapted for a particular game, using the RTS game StarCraft.

3.1 Representing Strategies

Recall that strategy refers to the highest level of decision making. Strategy can be

seen as more long-term planning, in the sense that strategic plans tend to charac-

terize a whole game (or at least a significant portion of a game). However, strategy

does not refer to a specific single thing and is a combination of aspects of high-

level decision making. In order to quantify strategy a suitable abstraction is needed.

Choosing a good abstraction comes down to choosing which quantifiable aspects

of a player’s decisions best capture strategy as a whole.

For a particular match, the high-level plan followed by a player is a strategy.

Much like Jeff Long [40], we choose to represent strategy in terms of build-order. A

build-order is the order that units and structures are built by a single player in a

game [44]. Build-orders are suitable stand-ins for the abstract concept of strategy

because the essence of high-level strategy is the existence of certain units, and the

order units are built in reflects the other more abstract aspects of strategy (e.g. lots

of military units early on represent rushing strategies, build-orders dominated by

flying units correspond to an air-based assault, etc.).

Build-orders are sequences, where the elements in the sequence represent a

16

corresponding unit or structure being built. Thus we can encode build-orders as

strings. Each of the available units and structures in the game is assigned a unique

character. The order that characters appear in a build-order string corresponds to

the order that the corresponding units or structures were built in the game.

3.2 Similarity Matrices

We wish to cluster strategies, so since we are representing strategies with build-

orders, we need a way of clustering build-orders. Since build-orders are not vec-

tors, common clustering methods such as k-means (which require both distance

metrics and a way to compute the mean of a group of elements) will not work. We

propose first creating a similarity matrix, and then clustering build-orders based

on the contents of the similarity matrix. A similarity matrix is a matrix which

contains pair-wise similarity scores for a set of elements. For our case, the rows

and columns represent build-orders and the contents represent how similar corre-

sponding build-orders are. For a similarity matrix S, for build-orders at row i and

column j (i can equal j), the similarity score between the build-orders represented

at i and j is Sij . The similarity score itself is a function of two build-orders which

results in a real number. In general, higher values mean two build-orders are more

similar and lower values mean they are more dis-similar.

3.2.1 Sequence Alignment

To populate our similarity matrix, we need an appropriate function of how similar

two build orders are. Since build-orders are sequences, we can examine the concept

of sequence alignment as a way of developing a similarity score. Sequence alignment

can be used as a measure of how similar two sequences are [40]. Sequence align-

ment is mostly studied in the area of bio-informatics [45], but has also been applied

to other domains, such as natural language processing [46] and transactional data

mining [47]. In general, sequence alignment is the task of identifying similar pat-

terns between sequences. Alignments can be done over complete sequences (global

alignment) or just with parts of sequences (local alignment). For the purposes of

this thesis, when we refer to sequence alignment, we are referring to the problem

of global sequence alignment, as described by Needleman and Wunsch [48].

The basic problem is given two sequences, at what places in the sequences

17

should “gaps” be inserted in either sequence in order to maximize the similarity

(alignment score) between them. Take S(a, b) to be the similarity between two char-

acters a and b, and take S(−, a) to be the gap penalty for some character a. Typically,

S is chosen so that scores of the form S(a, a) are positive integers and scores of the

form S(a, b) with a 6= b are negative integers (but not necessarily). Two sequences

do not need to be the same length to be aligned, but will be the same length after

they are aligned. Let A and B be two unaligned sequences, and let A′ and B′ be

the aligned versions of A and B respectively. The length of A′ and B′ is n. The

alignment score between A and B is then:

n∑
i=0

S(A′i, B
′
i)

The Needleman-Wunsch algorithm itself maximizes the alignment score. For

example, if the two sequences are abba and ba and S is

S(a, b) =

{
0 if a = b
−1 if a 6= b

a resulting alignment is

abba

b a

which has an alignment score of -2. When 0 is used for a match and−1 for a gap or

a mis-match the resulting alignment score is equivalent to a commonly used string

distance metric called the Levenshtein or edit distance [49].

The Needleman-Wunsch sequence alignment algorithm is a dynamic program

that follows a greedy approach. Let n and m be the lengths of sequences A and

B respectively. The algorithm fills in a matrix M that is n-by-m. The idea is that

row i in M represents the i-th character in A and column j in M represents the j-th

character in B. The entry at Mij is the score of an optimal alignment between the

first i characters in A and the first j characters in B.

To computeM , first the 0-th row and 0-th column must be filled in. The column

at index 0 contains the alignment scores for the characters up to and including i in

A being aligned with an empty string (so every character is matched with a gap).

Likewise, the row at index 0 contains the alignment scores for the characters up to

and including j in B being aligned with an empty string. Algorithm 1 shows how

this part of M is initialized.

18

Algorithm 1 Initializing M

T = 0
for i ∈ [1...n] do

Mi0 = T + S(−, Ai)
T = Mi0

end for
T = 0
for j ∈ [1...m] do

M0j = T + S(−, Bj)
T = M0j

end for
M00 = 0

After the 0 row and column are initialized the rest of M can be computed. The

alignment score at Mij is found by comparing and choosing the maximum of the

scores that would happen if Ai was matched with Bj , or Ai was paired with a gap,

or Bj was paired with a gap. Pseudo-code is presented in Algorithm 2. Once M is

computed the entry at Mnm contains the optimal alignment score for A and B.

Algorithm 2 Needleman-Wunsch algorithm

for i ∈ [1...n] do
for j ∈ [1...m] do

match = Mi−1,j−1 + S(Ai, Bj)
gapA = Mi−1,j + S(−, Ai)
gapB = Mi,j−1 + S(−, Bj)
Mi,j = max(match, gapA, gapB)

end for
end for

Notice that Algorithm 2 computes M but does not compute the aligned strings

A′ and B′. Fortunately, the aligned strings can easily be reconstructed by back-

tracking through M . This is done by starting at Mn,m and checking to see if the

value there corresponds to match, gapA, or gapB being chosen in the correspond-

ing iteration of Algorithm 2. If match was chosen An and Bm are aligned and we

can move to Mn−1,m−1. If gapA was chosen An is aligned with a gap and we move

to Mn−1,m. If gapB was chosen Bm is aligned with a gap and we move to Mn,m−1.

This process is repeated until M00 is reached.

19

3.2.2 Similarity Metric

We use the alignment score as part of a similarity metric, as proposed in [50]. The

authors of that work propose a method for computing similarity between two se-

quences representing web usage patterns for two users of an online system. They

let characters represent different web pages. A web usage session is then a string

of characters showing the order that users visited web pages in. The authors use

sequence alignment to compute similarity between strings (letting them quantify

similarity between sessions).

The actual similarity score used combines scores for the actual alignment and

the significance of the alignment. The alignment score is computed as a ratio of

the alignment score taken from M and the alignment score when just considering

characters that were correctly matched. Duraiswamy et al. use the max value in M

instead of M0,0, but we feel both methods are worth considering (since M0,0 gives

the actual global alignment score).

dis(A,B) = M0,0

S′(a, b) =

{
S(a, b) if a = b
0 if a 6= b

discorrect(A,B) =
n∑
i=0

S′(Ai, Bi)

Simalign(A,B) = dis(A,B)/discorrect(A,B)

The second part of the score, which scores the significance of the alignment,

is a ratio of the number of characters correctly matched to the total length of the

alignment.

cor(a, b) =

{
1 if a = b
0 if a 6= b

Num Correct(A,B) =
n∑
i=0

cor(Ai, Bi)

SimSignificance(A,B) = Num Correct(A,B)/n

Then we can put together the two scores to get a similarity metric. The similar-

ity metric can have values between−1 and 1, with higher values denoting a higher

similarity between two sequences.

20

Sim(A,B) = Simalign(A,B) ∗ SimSignificance(A,B)

3.3 Clustering

Machine learning can be categorized based on two dimensions: one being super-

vised or unsupervised, the other classification or regression. Supervised machine learn-

ing methods use labeled data i.e. a training data set is available that has explicit

target values for each given example (data-point). Unsupervised methods work

without pre-labeled data. Unsupervised techniques try to discover structure or

meaning in a data-set. On the other dimension, classification tasks are a class of

problems where examples need to be mapped to elements of a finite set of val-

ues. The target values are referred to as classes. Regression is when examples are

mapped to a real number. Regression and classification are closely related, as they

both concern making predictions about examples.

For this section of the thesis we are most concerned with unsupervised classi-

fication. How does one make sense of an unlabeled data-set? How can the dif-

ferent examples be separated and categorized as to add meaning to the data-set?

The most common approach to unsupervised classification is called clustering [51].

Clustering is the process of separating data-points into groups known as clusters. A

particular way of assigning examples to clusters can also be known as a clustering.

There are a few distinctions that can be made regarding clusterings. One is

the notion of hierarchical clustering. A standard clustering is partitional or non-

hierarchical, meaning that each example is assigned to one cluster and clusters are

simply sets of examples. A hierarchical clustering is one that allows sub-clusters.

Clusters are sets of clusters, except for clusters of a single element, which will con-

tain an example (these are also known as leaves). Hierarchical clusterings are easily

visualized as trees, as shown in Figure 3.1. Note that a hierarchical clustering im-

plicitly gives a sequence of partitional clusterings, because at each height of the tree

there is a partitional clustering. The partitional clustering is obtained by pruning

all nodes with a height greater than the desired height and selecting the leaf nodes.

For example, in Figure 3.1 the partitional clustering {a}, {b}, {c, d} can be obtained

by pruning the tree at height 3. As will be explained shortly, we used hierarchical

clustering techniques, with the end goal of obtaining partitional clusterings.

21

Figure 3.1: Hierarchical Clustering

abcd

a

a

a

bcd

b

b

cd

c d

Clusterings can be exclusive or overlapping. Exclusive clusterings assign exam-

ples to single clusters. Overlapping or non-exclusive clusterings allow examples

to belong to multiple clusters. Overlapping clustering is appropriate for situations

where multiple categories can be assigned to a single example. For example, an

animal can live in water and on land. For this work we chose to use exclusive clus-

terings because we want to be able to describe build orders with single strategies

(mostly for the sake of constructing game matrices). Also related is the concept of

fuzzy clustering [52] where each example has a vector of real numbers in [0, 1] where

each dimension in the vector represents the degree of the example’s assignment to

a corresponding cluster. Fuzzy clustering is used in situations where even human

labeling of data tends to cause ambiguities between what examples should be in

what clusters.

A complete clustering is when every example in a data-set is assigned to a clus-

tering. Alternatively, a partial clustering is when some examples may not be as-

signed to a cluster. Partial clusterings are used primarily to deal with data-sets

that contain outliers. Although the techniques we look at here typically generate

complete clusterings, we will also present a simple method for computing a par-

tial clustering from a complete clustering. A partial clustering is appropriate for

clustering strategies, because it is possible that not every game replay in a given

data-set will have a coherent high level strategy associated with it [40].

Since a data-set can be clustered in different ways, a common issue in data-

mining is deciding which clustering is the best. This could mean better for a specific

22

task, or better at providing insight into understanding the data-set. In general,

cluster evaluation is a difficult problem, although there are properties of clusters

that are desirable, depending on the context. Different properties might be desired

for different data-sets. For our work, we refer to the properties of well-separatedness

and conceptual coherence. A clustering is well-separated if examples in a cluster

are closer (more similar) to the other examples in that cluster than to examples

in any other cluster [53]. The well-separated property is valued when “natural”

clusters are believed to exist in the data-set. We use well-separatedness in this work

because there have been shown to be naturally distinct strategies in RTS games

before [25]. Conceptual coherence refers to the semantics of the clusters. Clusters

should represent some abstract idea, and the examples in the cluster should reflect

that idea. For clustering build-orders, we want clusters to represent strategies and

for the build-orders themselves to reflect the strategy of the cluster in some way.

3.3.1 Agglomerative Hierarchical Clustering

To cluster build-orders we chose to use a well known hierarchical clustering tech-

nique called agglomerative hierarchical clustering. Agglomerative hierarchical clus-

tering was chosen because of relative simplicity and because the input to the al-

gorithm is just a similarity matrix [54]. There are two main types of hierarchical

clustering techniques: agglomerative and divisive. Agglomerative techniques begin

with each example in its own cluster. Each level of the hierarchy is then created

by merging clusters together. Divisive techniques work in the opposite direction.

They start with all of the examples in a single cluster, and create the hierarchy by

splitting up clusters according to some policy. Agglomerative techniques are more

common and tend to be the type that data mining software packages implement.

We chose to use an agglomerative technique for the work presented here because

of their widespread use and simplicity.

The general agglomerative hierarchical clustering algorithm is fairly simple.

The algorithm takes a similarity matrix between examples as input. Also needed is

some notion of cluster proximity. Proximity is a measure of closeness between clus-

ters (like similarity is to examples). Proximity is usually computed as a function

of the similarity scores of examples e.g. a common proximity measure is the max-

imum similarity score between the examples of two clusters. The first step of the

algorithm is to re-compute the similarity matrix in terms of cluster proximity (de-

23

pending on the chosen proximity measure this may not be necessary). So now the

rows and columns of the matrix represent clusters. Cluster merging is then done

iteratively until all the examples are in a single cluster. Each iteration, the clusters

with the highest proximity are chosen and merged together. The proximity matrix

is then updated to reflect the merge. Algorithm 3 formalizes this method.

Algorithm 3 Agglomerative Hierarchical Clustering

Input: Similarity matrix S
Compute proximity matrix P from S
while |P | > 1 do

Merge clusters i and j where Pij is maximized
Update P

end while

The most common proximity measures are max, min, and average. Max uses

the two cross-cluster examples closest to each other as a measure for the proxim-

ity of the two whole clusters i.e. it selects the maximum similarity that includes a

member examples from each cluster and uses that as the cluster proximity. Min

uses the two cross-cluster examples which are farthest away from each other (so

it minimizes similarity). Average takes the average similarity among all pairs of

examples between the two clusters, and uses that value as the proximity between

the two clusters. We decided to use the average proximity measure because it takes

into account all the examples of each cluster, and we desire that clusters have the

well-separated property. Formally, for two clusters C1 and C2 and a similarity ma-

trix S, the proximity measures are:

Max(C1, C2) = max({Sij |i ∈ C1, j ∈ C2})

Min(C1, C2) = min({Sij |i ∈ C1, j ∈ C2})

Average(C1, C2) =

∑
i∈C1

∑
j∈C2

Sij

|C1| ∗ |C2|

Another linkage policy in use is the Ward linkage policy [55]. Ward’s method

is distinct from the other methods because it attempts to incorporate a global ob-

jective into the merge step. The clustering itself still cannot be viewed as having a

global objective function, but at the merge steps the policy chooses to do the merge

24

that minimizes the squared error. Ward’s method can be implemented as a recur-

sive formula, allowing it to just use the similarity matrix as a basis for the proximity

matrix (which can be updated over each iteration). Let C ′1 and C ′′1 be the two clus-

ters which were merged to make C1. Let n′1 = |C ′1|, n′′1 = |C ′′1 | and n2 = |C2|. We

can then look at proximity in terms of:

Ward(C1, C2) =
n′1 + n2

n′1 + n′′1 + n2
Ward(C ′1, C2) +

n′′1 + n2
n′1 + n′′1 + n2

Ward(C ′′1 , C2)

− n2
n′1 + n′′1 + n2

Ward(C ′1, C
′′
1)

The Ward linkage ends up behaving similar to the Average linkage policy. All

the linkage policies discussed here are specific parameterizations of the more gen-

eral Lance-Williams formula [56]. The Lance-Williams is simply a generalized form

of proximity measure that includes Max,Min,Average, and Ward.

3.4 Applied to StarCraft

We have now introduced a scheme for clustering sequences. Sequence alignment is

used to provide similarity between sequences. Agglomerative hierarchical cluster-

ing is used to cluster the resulting similarity matrix. This section will give details

about how the scheme can be applied to data-mining replays of a real-time strat-

egy game, along with some experimental results. As explained earlier, we use the

game StarCraft for experimental purposes. StarCraft has had a large user commu-

nity, has freely available replays online, and is the main real-time strategy game

that AI systems compete in.

3.4.1 Data

The work presented in this section of the thesis uses the parsed data provided by

Synnaeve et al. [31]. We looked at the datasets for the Protoss-versus-Protoss (PvP)

and Protoss-versus-Terran (PvT) match-ups. Synnaeve’s parsed data-set contains

various kinds of information about each match, kept in one of three text files. In

one of the text files, events signifying the creation of a new unit are recorded along

with timestamps. This information seemed recorded mostly properly at least, and

can be parsed easily to get the build-order sequences for each game. We mapped

25

each unit to a unique character, so build-order sequences are simply strings that

represent the order units were built in.

Synnaeve’s dataset includes most of the amateur replays freely available at the

time that the dataset was released (which was mid 2012). The dataset contains

many matches between proficient players, but since the games are of an amateur

nature not all of the matches contain high-level play. The majority of the dataset

contains good matches though, so we regard the outliers as noise. We focus on re-

plays that use the Protoss faction for a few reasons. The AI system being developed

at the University of Alberta (named UAlbertaBot) plays primarily with the Protoss

faction, so any findings would be most useful if they dealt with Protoss. The ma-

jority of the AI systems being developed play with Protoss, so related works tend

to deal with Protoss [4]. Finally, this a preliminary work (the problem has not been

dealt with for StarCraft, as far as we know), and Protoss has relatively simple me-

chanics. The PvP dataset is smaller and symmetric and was used in testing, and

the PvT dataset is larger and non-symmetric. We chose Terran over Zerg simply

because of the author’s lack of familiarity with the Zerg faction.

We follow Jeff Long’s scheme of just using units for build-orders. That is, we ex-

clude buildings and workers from the build-orders. We exclude buildings because

there is a large correlation between building existence and the types of units being

made, and units are much more indicative of the actual strategy being carried out

(so including buildings would not provide significant information gain and would

increase computation time). Leaving out workers could be seen as a more con-

troversial decision. Workers are a part of every build order, so their presence is

not indicative of strategy. A counter-argument is that the order workers and other

units/structures are built are crucial to identifying different strategies, especially

in the early game. We argue that such subtleties are most important in the early

game and we are concerned with strategic abstractions that encompass the whole

game. For a study that looked only at openings, including workers would proba-

bly be useful. Also, when worker creation order is important, it is usually in terms

of the order workers and buildings are created in (e.g. probes and pylons for the

Protoss faction). Since buildings are being excluded, workers may not be particular

illuminating.

Recall that each unit type is mapped to a unique character in order to encode

build-orders as sequences. The set of characters is our alphabet for the sequence

26

alignment. Since we explore both Protoss and Terran build-order clusterings, there

are alphabets for both factions. The Protoss alphabet contains 15 characters and the

Terran alphabet contains 12 characters. Table 3.1 shows the characters assignments

for both alphabets. The Protoss alphabet is on the left and the Terran alphabet is on

the right. Note that upper and lower case characters are different characters.

Observer B Marine A
Dragoon D Ghost B

Zealot E Vulture C
Archon I Goliath E
Reaver J Siege Tank F

High Templar P Wraith G
Arbiter T Science Vessel H
Carrier W Battlecruiser I
Shuttle Y Firebat K
Scout Z Medic L
Pylon e Valkyrie M
Nexus g Dropship N
Corsair m

Protoss Dark Templar n
Protoss Dark Archon A

Table 3.1: Alphabet

3.4.2 Unit Similarity

Recall that the Needleman-Wunsch sequence alignment algorithm requires a sim-

ilarity function (also called a cost function) that rewards matches and penalizes

mis-matches between characters. We could use a naive, domain-independent cost

function like the edit distance, but we feel it is more interesting to propose a domain

particular cost function that adds semantics to the characters themselves. Since our

domain is StarCraft and the characters in the sequences are units, we propose to use

a cost function that operates on in-game attributes of the units themselves. Let ρ be

a cost function on two characters a and b which represent units. The general form

of ρ is

ρ(a, b) =

{
k ∗ c(a) if a == b
|c(a)− c(b)| − φ(a, b) otherwise

where c is a function of a single character that assigns a singular value to that

character, k is a constant, and φ is a function of two characters that works as a

27

possible additional mis-match penalty. φ is there to provide an additional sense of

how different two characters are. φ should also use attributes of the units a and

b represent, although the chosen attributes do not need to be the same as what c

uses. ρ is a general form for a cost function, and the choices for k, c, and φ decide

the particular cost function.

ρ is much like the cost function used by Jeff Long [40], and is in-fact a general-

ization of the custom cost function presented in that work. That work was done on

a different RTS game called WarCraft III, where units have a food attribute that de-

scribes the economic cost of the unit. Food value for a unit a is used as the value of

c(a) and they use 16 as the value of k. The value of 16 for k seems to be the result of

trial-and-error, although the exact value may not be that important (k should just

be relatively small or large compared to c depending on the level of importance

one wants to place on correct matches).

We decided to use the in-game of concept of supply as the analogous measure

to food for StarCraft. Supply is a mechanic in StarCraft that limits how many units

a player can have at one time. Each player starts with a supply cap, and they

can build certain buildings to increase the supply cap (this works slightly different

depending on the faction choice). Every unit has a supply value associated with

it. A player’s total supply cannot exceed their supply cap. Since different units

have different supply values based on their perceived importance by StarCraft’s

designers, supply seemed like a good measure of value. For our implementation

of ρ, we use a units supply as the value for c. We decided to use 16 for the value

of k, because supply values are not significantly different in magnitude from food

values, and we desire to place high importance on correct unit matches.

φ is a function that should not penalize mis-matches when the units are rela-

tively similar, and should punish mis-matches where the units are fairly different.

In Jeff Long’s implementation of ρ, φ is zero when a and b are produced from the

same building and a non-zero constant when a and b are produced from different

buildings (the value of the constant was not provided). Inspired by Jeff Long’s

penalty, we propose the use of a varying penalty depending on how categorically

similar a and b are. For deciding unit similarity, we design a sort of unit ontology

based on expert knowledge. Units can be categorized based on their use and at-

tributes. We propose to use an ontology (which is a hierarchical categorization)

which is hand crafted based on the units themselves. If units lie in the same im-

28

mediate categorization then φ is small. If the units differ by their immediate cate-

gorization but fall in the same parent category of their immediate categorization,

then φ is slightly larger, and so on.

We used knowledge of the unit types to design the ontology. Ontologies were

designed for Protoss and Terran, with Protoss presented here. The most severe

categorical distinctions for Protoss can be seen in Figure 3.2. At the highest level

of the ontology we separate units into three categories. Drop refers to drop ships

(used to transport other units). Recon refers to information gather units, which for

Protoss is the Observer. Military refers to combat units, which are the rest of the

units. If units differ by the highest layer of the ontology, φ is an integer value of 4

(which is our most severe mis-match penalty). Military is then divided into flying

and ground depending the units mobility. If units differ at this level then φ is 3. The

divisions in ground represent the lowest categorical differences and can be seen in

Figure 3.3. Ground is divided based on the unit’s primary mode of attack. Ranged

is for units that attack from afar, Melee units attack close up, and Spellcaster is for

units that cast spells (which have various purposes). Units that differ within either

ground or flying get a penalty of 2. Units that are in the same bottom category get

a penalty of 1, which is the smallest value we decided to use for φ.

Military

Flying

ArbiterCorsairScoutCarrier

Ground

Recon

Observer

Drop

Shuttle

Figure 3.2: Top layers of the Protoss Ontology

Ground

Spellcaster

High TemplarArchon

Melee

Zealot

Ranged

ReaverDragoon

Figure 3.3: Bottom layers of the Protoss Ontology

29

We used the custom cost function presented here in clustering both the Protoss-

versus-Protoss (PvP) and Protoss-versus-Terran (PvT) datasets. φ for the Terran

cost function uses an analogous ontology for assigning penalties. The only major

differences is that there is no recon category and instead of spellcaster we just used

single unit categories for the units medic and ghost (which are unique units).

To give additional insight into the nature of the alignments being done in this

work, we present an example of a real build-order sequence alignment. The follow-

ing example is using Protoss build-orders from the Protoss-versus-Terran dataset

and uses the Protoss alphabet found in Table 3.1. Let there be two independant

build orders:

EEEEEDDDDnnDDDDDD

EEEEDDDDDDEEDDYEJDDDDJDDDDY

Using the custom Cost function described previously, the alignment given by

the Needleman-Wunsch algorithm is:

EEE EEDD DDnnDD DDDD

EEEEDDDDDDEEDDYEJDD DD J DDDDY

Before evaluation of the clustering process is explored, we feel it important to

give some insight into how effective the sequence alignment procedure is at pro-

ducing meaningful alignments. Let A and B be two build orders being aligned

and let n and m be their respective lengths. The minimum length of the aligned

strings is given by best = max(n,m) and the maximum length is worst = n + m.

Alignment lengths that are closer to best involve fewer gaps and suggest that the

alignment contains information about the sequence. Alignments that are closer to

worst involve a large number of gaps and show that the two sequences aren’t being

aligned so much as mis-aligned. To investigate the effectiveness of our scheme in

providing meaningful alignments we suggest the following metric:

actual − best
worst− best

30

where actual is the length of the aligned strings. When the metric is 0 the align-

ment represents a best case. When the metric is 1 the alignment represents a worst

case. We chose subsets of the Protoss-versus-Terran dataset to examine the effec-

tiveness of the alignments. Figure 3.4 shows the alignment metric on alignments

between short build-orders. In particular, figure 3.4 involves all alignments be-

tween build-orders with a length less than 50 units. It can be seen that for short

build-orders our alignment scheme produces reasonable alignments. Figure 3.5

shows the alignment metric between longer build-orders. For figure 3.5 we analyze

alignments between build-orders between 200 and 250 units in length. Alignments

on longer build-orders are still reasonable in terms of the alignment metric, but the

overall trend suggests that as build-orders grow in length the effectiveness of our

technique diminishes.

Figure 3.4: Alignments between build-orders from the PvT dataset less than 50
units in length

3.4.3 Cluster Evaluation

Two issues became apparent when we started experimentation: How should a clus-

tering be evaluated (i.e. what makes a clustering good?) and what level of the

hierarchical clustering should be chosen to create a partitional clustering. These

two concerns are not unrelated. If we have a technique for evaluating a partitional

31

Figure 3.5: Alignments between build-orders from the PvT dataset between 200
and 250 units in length

clustering, then that technique can be used to select the level of the hierarchy to

use as a partitional clustering. The idea would be simply to iterate over the levels

of a hierarchical clustering, selecting the current leaves as clusters in a partitional

clustering and evaluating. Levels that maximize the evaluation (in either a global

or a local sense) make good candidates for clusterings. Evaluation metrics will be

explored shortly.

We also consider our end goal when deciding if a clustering is good or not.

Since the purpose of the work in this chapter is to build payoff matrices, a good

clustering is a clustering that can be used to build a payoff matrix that offers en-

lightening information. If one can learn something useful from a payoff matrix,

then the clusterings which were used to build the matrix can be considered good.

Since we are using agglomerative hierarchical clustering as the primary cluster-

ing technique, it is also desirable to have a metric for evaluating different hierarchi-

cal clusterings. From a set of different hierarchical clusterings, a single hierarchical

clustering that maximizes such a metric could be chosen, and that clustering could

be examined to select a partitional clustering. Fortunately, a well-established met-

ric for selecting hierarchical clusterings exists.

The CoPhenetic Correlation Coefficient can be used to evaluate hierarchical clus-

32

terings [57]. Recall that the agglomerative hierarchical clustering algorithm uses a

proximity matrix P . Also recall that at the start of the agglomerative process all the

examples are in their own clusters, and at the end of the process all the examples

are in the same cluster. So for two examples x and y, there will be an iteration i

when x and y are first in the same cluster. For iterations < i, x and y will be in dif-

ferent clusters and for iterations ≥ i, x and y will be in the same cluster. For every

pair of examples x and y, i exists. At the start of iteration i, x ∈ Cj and y ∈ Ck

where Cx and Cy are clusters and Cx 6= Cy. Let j and k be the indices into P that

represent Cj and Ck respectively. Then for every x ∈ Cj and y ∈ Ck, Pj,k is the

proximity that x and y were first chosen to be in the same cluster. Note that be-

cause of the need for a proximity measure, this value is not the same as the original

similarity between x and y, Sxy. Pj,k is known as the cophenetic distance between x

and y. Also note that when two clusters Cj and Ck are first merged, the cophenetic

distance is the same for every pair x and y where x ∈ Cj and y ∈ Ck. Also note

that cophenetic distance depends on a hierarchical clustering and not just the set of

examples. So cophenetic distances can be different for different clusterings of the

same set of examples.

For every pair of examples x and y in the dataset, a cophenetic distance can

be computed. This allows the creation of a cophenetic distance matrix P ′. Every

example is represented by P ′, so it is the same size and shape as S. The values

in P ′ can be the same as the values in S but most of them will be different. The

cophenetic correlation coefficient (CPCC) is then the correlation between S and P ′.

Basically it says to what degree a hierarchical clustering reflects the distances that

exists between examples. Higher CPCC values show a closer fit between clustering

and data, and lower values show a worse fit. The CPCC is most useful for trying

out different linkage policies and selecting the policy with the largest CPCC. Re-

member that the linkage policies presented in this thesis are Min,Max,Average,

and Ward.

To show how the CPCC can be used to select a linkage policy, we have com-

puted cophenetic distance matrices and their corresponding CPCC for clusterings

using different linkages on two of our datasets. The numbers presented here are

from the units only versions of the Protoss-versus-Protoss (PvP) and Protoss-versus-

Terran (PvT) data-sets, excluding workers and using the custom score matrix dur-

ing sequence alignment. The PvP results can be found in Table 3.2. Since the PvT

33

dataset involves two separate clusterings (one for each faction), the results for the

PvT dataset are reported separately for each race, as found in Table 3.3. In all cases,

the Average linkage policy yields the highest CPCC value.

Linkage Policy CPCC
Min 0.62337
Max 0.21094

Average 0.76905
Ward 0.56441

Table 3.2: CPCC values for PvP data using different linkage policies

Linkage Policy Protoss CPCC Terran CPCC
Min 0.68256 0.77136
Max 0.18612 0.16551

Average 0.83518 0.85562
Ward 0.61552 0.54474

Table 3.3: CPCC values for PvT data using different linkage policies

At the beginning of this subsection we mentioned how a metric for evaluating

partitional clusterings could be used to select the level of a hierarchical clustering

used as a partitional clustering. Here we will present a metric for cluster evaluation

and show the level selection process on real data. Recall that the desired metric

rewards well-separatedness in a clustering. We use the formal concepts of cohesion

and separation [51]. The well-separated quality requires that examples in the same

cluster are similar to each other and are different from examples in other clusters.

Cohesion is a measure of how similar a cluster is to itself. We define it here for a

cluster C simply as a sum of the similarities between member examples, using the

similarity matrix S:

Cohesion(C) =
∑
i∈C

∑
j∈C

Si,j

Cohesion is a function of a single cluster. Separation is a function of two clus-

ters, C and C ′. Separation quantifies how different two clusters are from one an-

other:

Sep(C,C ′) =
∑
i∈C

∑
j∈C′

Si,j

34

Sep gives the separation between two clusters. Separation can also be viewed

as a measure of a single cluster’s separation from all other clusters. Let κ be the

clustering currently being evaluated, of which C is a member:

Separation(C) =
∑
C′∈κ
C′ 6=C

Sep(C,C ′)

Above Cohesion and Separation are defined for clusters. We can also define a

combined metric that measures Cohesion and Separation for a clustering κ. The

metric Sep and Co captures the idea of Well-Separatedness for a clustering. Notice

that well-separatedness requires Cohesion to be high and Separation to be low. So

the smaller Sep and Co is, the more well-separated κ is.

Sep and Co(κ) =
∑
C∈κ

Separation(C)

Cohesion(C)

We will now report how we used the metric to investigate the Protoss-versus-

Protoss (PvP) dataset. This is using the hierarchical clustering obtained using

build-orders with units only, our custom scoring matrix for the sequence align-

ment and the Average linkage policy. Figure 3.6 shows the Sep and Co score

for partitional clusterings taken at each level of the hierarchical clustering of the

PvP dataset. The top (or last in terms of iterations of the agglomerative clustering

method) level of the hierarchical clustering corresponds to a partitional clustering

containing a single cluster. The next level corresponds to a partitional clustering

with two clusters, and so on. So in the following diagrams, when we report the

number of clusters in a clustering, that number is also referring to the level of the

hierarchical clustering that the partitional clustering was taken from. The domain

of the number of clusters is from 1 to n where n is the number of examples.

It is obvious from Figure 3.6 that the Sep and Co score on its own is not very

enlightening. One problem is that Separation is zero for clusterings of a single

cluster. The other problem is that there is simply less cross-cluster comparisons

involved in generating the Separation part of the score for lower cluster counts. We

attempt to rectify these issues by normalizing with the number of clusters involved

in the clustering. We disregard clusterings of a single clustering, since that is not

very enlightening, and point out that since identifying possibly interesting levels

to take partitional clusterings from, local minima could be just as useful as global

minima. Figure 3.7 shows the same data but normalized by the number of clusters.

35

Figure 3.6: Sep and Co versus the number of clusters for the hierarchical clustering
of the PvP dataset

Figure 3.7: Sep and Co versus the number of clusters for the hierarchical clustering
of the PvP dataset normalized by number of clusters

Figure 3.7 shows signs of local minima. Clusterings with a large number of

clusters (large meaning n > 50) are not particularly useful, since one of the goals of

this work is to provide steps in building human-readable payoff matrices. Figure

3.8 shows a close up view of levels 2 to 100. Local minima are labeled with their

36

Figure 3.8: Sep and Co versus the number of clusters for the hierarchical clustering
of the PvP dataset normalized by number of clusters on the domain of [2,100]

Figure 3.9: Sep and Co versus the number of clusters for the hierarchical clustering
of the PvT dataset normalized by number of clusters on the domain of [2,100] just
using Protoss players

respective number of clusters.

As shown by Figure 3.8, the clustering with 3 clusters globally minimizes Sep and Co

if clusterings with a single cluster are disregarded. The clusterings of size 5 and 8

37

Figure 3.10: Sep and Co versus the number of clusters for the hierarchical cluster-
ing of the PvT dataset normalized by number of clusters on the domain of [2,100]
just using Terran players

are also of interest, as they are local minima and relatively small in the number of

clusters. One of the issues with using clusterings that contain many clusters is that

in order for a payoff matrix based on the clustering to be well populated, a large

dataset is required. Since our dataset (especially for the PvP dataset) is somewhat

small, the clustering with 3 clusterings seems like the most appropriate choice.

We can do a similar process for level selection in clusterings done on the Protoss-

versus-Terran (PvT) dataset. The figures presented here use the hierarchical clus-

terings of the PvT dataset using only units in the build-orders and the custom scor-

ing function during sequence alignment. PvT is different from PvP because it is a

non-symmetric match-up and it is significantly larger. Since PvT is non-symmetric

it requires two clusterings: one for build-orders just using Protoss players and one

for Terran players. For PvT we will just show the close-up and normalized ver-

sions of the Sep and Co plots, since they are what contain the interesting infor-

mation. Figure 3.9 shows the Protoss clusterings and figure 3.10 shows the Terran

clusterings

Figure 3.9, the Protoss plot, shows the global minima at the clustering with 4

clusters, with 3 being very close to the global minima. Overall, figure 3.9 is sim-

ilar to figure 3.8. Figure 3.10, however, has some differences. We observe a local

38

minima 4, but the global minima is at 2. 2 clusters however is not as interesting, es-

pecially since one of the clusters has a much larger population than the other (and

we would like our examples to be spread out between clusters).

3.4.4 Building Payoff Matrices

Now that clustering build orders has been discussed, it is important to be able use

the discovered clusters for something. We propose using the clusterings to con-

struct payoff matrices, which continues in the vein of Jeff Long’s work. Although

the clustering techniques presented here have some interest in and of themselves,

mainly in terms of identifying natural groupings of build orders, forming payoff

matrices moves the work from purely academic to having more practical applica-

tions. The usage Jeff Long recommends is for analyzing the balance of a game. A

major limitation of Jeff Long’s work is that at least a training set of games has to be

hand labeled by experts. This is time consuming and introduces human error. It

also does not allow novel strategies to emerge that humans might not have a high-

level abstraction for. Using clustering provides researchers a method (or a set of

methods) for automating balance detection for a game, provided that a sufficient

amount of replays for the game are available. Jeff Long’s thesis discusses the game

theory behind the properties a payoff matrix must hold for a game to be considered

balanced.

The other way such a payoff matrix can be used is to identify counter strategies.

Work has been done on predicting opponent strategy [4] [27], showing that detec-

tion of opponent strategy is possible. If in a game, a player learns the opponent’s

strategy, it would be desirable to have a known counter-strategy to employ (i.e. a

strategy that is known to be effective at defeating the opponent’s strategy). If a pay-

off matrix for strategies exists then the problem is trivial; look up the opponent’s

strategy and find which player strategy has the highest probability of winning and

employ that strategy. Depending on the game and on the data, these rock-paper-

scissors patterns might not exist. Some RTS games might just be very well tuned,

so that in terms of high-level strategies, strategies do not dominate other strate-

gies. The other problem is that if the replays are from matches between proficient

players, players may be smart enough to not employ losing strategies. In this case,

rock-paper-scissors patterns would exist in the game, but do not show up in the

data and would not be visible from a payoff matrix built from the data.

39

Building the matrix is also simple. The rows of the matrix represent the strat-

egy clusters for the player found during the clustering. The columns represent

strategy clusters for the opponent. The clusters contain build-orders, which came

from game replays. So each cluster can be associated with a set of matches. Each

match involves two players, and so can be connected to both a cluster on the rows

and a cluster on the columns (note that for a symmetric match-up these might be

the same cluster). The elements of the payoff matrix can then be populated in terms

of the results of the matches. LetG be the payoff matrix being populated. The form

suggested by Jeff Long is as follows:

Gij =
wij − lij
tij

where wij is the number of wins for cluster i (the row player) that can be found

from games between cluster i (a row) and cluster j (a column). lij is the number of

losses for cluster j and tij is the total number of matches between the two clusters

(i.e. tij = wij + lij).

An entryGij is called a payoff. Payoffs can take values from−1.0 to 1.0. A payoff

of 1.0 means that strategy cluster i wins against strategy cluster j all the time, and

a payoff of −1.0 means that strategy cluster i loses against strategy cluster j all the

time. A value of 0 means that i and j beat each other an equal number of times.

Positive values mean that i is more likely to win and negative values mean that j

is likely to win.

Because of the nature of the data, there are some cases where the payoff seman-

tics are not intact. For starters, there can be matrix cells Gij where no games can

between i and j were observed. By the definition of G, the value of Gij in that case

is 0. This is different from the case where there were many observed matches and

the number of wins and losses for i is equal. Similar is the case where there is only

one observed match between i and j. In that case the payoff will be either 1.0 or

−1.0, which looks like one strategy always wins against the other strategy, but that

might not be true (especially if the one game used to populate Gij is an outlier).

When reporting payoff matrices built this way, we suggest reporting the value of

tij along with Gij so that semantic discrepancies are visible.

The other issue is the diagonal of the matrix in a symmetric match-up. Since

the cells of the diagonal have the form Gii and in the case of a symmetric match the

rows and columns represent the same clustering, the diagonal represents games

40

from the same strategy cluster. Therefore the value at Gii for a symmetric match-

up will always be 0 (i.e. for every game in cluster i, one player will win, increasing

wii by 1 and one player will lose, increasing lii by 1). So the diagonal of a symmetric

match-up does not show particularly useful information using this scheme.

For the rest of this section, we present some examples of payoff matrices built

using the Synnaeve data-set, along with a discussion of the information encoded by

them. We first worked using the Protoss-versus-Protoss match-up, which is a sym-

metric match-up. We used 376 games for this experiment (we just used games that

had clearly labeled winners and did not use any pre-processing/filtering). Since

the match-up is symmetric, that gives 752 players. We used the clustering scheme

shown in section 3.4.3 (i.e. the custom cost function was used for computing simi-

larities and the average linkage policy was used for the agglomerative hierarchical

clustering). We decided to use the partitional clustering with 3 clusters because of

the results shown in figure 3.8 and explained in section 3.4.3.

1 2 3
1 0 (0) -1.0 (1) 0 (0)
2 1.0 (1) 0.0 (640) 0.2 (25)
3 0 (0) -0.2 (25) 0 (60)

Table 3.4: Payoff matrix built from PvP data with 3 clusters

The payoff matrix for the PvP data can be found in table 3.4. The numbers along

the rows and columns (outside the matrix) are simply labels. The labels along the

rows correspond to the same clusters along the columns. The cells between the

lines represent the cells of G. The first number listed is the value of the payoff. The

second number (the one in brackets) is the value for tij (i.e. the number of examples

used to populate the cell). Note that the value listed for tij is in terms of players

(there are two players per match).

The most interesting part of table 3.4 is the cellsG3,2 andG2,3. Over 25 matches,

cluster 2 does defeat cluster 3 more often. Cells G2,1 and G1,2 are not particular

enlightening because they represent singular examples (and along with the cells

with zero examples show that cluster zero is simply lacking examples). We would

like a matrix that shows several clear patterns like the one shown by cells G3,2

and G2,3. The cells along the diagonal offer little insight (as discussed before), and

unfortunately the vast majority of examples in this data-set fall along the diagonal.

41

So the two main problems with the PvP matrix are the small number of examples

in cluster 1 and the fact that the diagonal uses up most of the examples.

We propose working around the problems caused by a symmetric match-up

by simply moving to a non-symmetric match-up. Next we will show the results

found from constructing payoff matrices using the Protoss-versus-Terran data-set,

which is significantly larger and non-symmetric. For the following experiment, we

used 2089 games from the PvT match-up. This gives 2089 Protoss players and 2089

Terran players. As discussed previously in the chapter, a non-symmetric match-

up requires two separate clusterings (one for each faction). The clusterings were

both done using the custom cost functions and an average linkage policy. Also,

because of the results shown in figures 3.9 and 3.10 and explained in section 3.4.3,

we decided to use clusterings of size 4 for both factions.

1 2 3 4
1 0 (2) 0 (0) 1.0 (2) 0 (0)
2 1.0 (1) -1.0 (1) 0 (0) 0 (0)
3 -1.0 (1) 0 (0) -0.09 (33) 0.07 (15)
4 0.15 (1858) 0.2 (10) 0.32 (60) 0.5 (4)

Table 3.5: Payoff matrix built from PvT data with 4 clusters

The payoff matrix built from the PvT data can be found in Table 3.5. The format

is the same as for the PvP payoff matrix, although since this is for a non-symmetric

match-up the row and column labels do not refer to the same clusters. For Table

3.5 the rows correspond to Protoss clusters and the columns refer to Terran clusters.

This payoff matrix does not have the problems with the diagonal that the PvP ma-

trix has. It also has a quite a few more cells that have potentially useful information

(i.e. there are more non-zero cells). However, there still are many cells where tij is 0

or 1. Part of the problem is that the clusters are of vastly different sizes. Some clus-

ters have the majority of the examples (like cluster 4 for the Protoss), while some

clusters are still very small (like cluster 2 for the Protoss).

One idea is that the clusters with few examples do not represent coherent strate-

gies, and act more like outliers or noise. Jeff Long found that when humans would

label strategies in WarCraft III, some games would not fit a particular label (he

made a special label called none for these examples). It might be beneficial then

to select partitional clusterings such that small clusters are not included and only

42

larger clusters are kept.

We implemented a scheme for selecting a partitional clustering from a hierar-

chical clustering in such a way that would not include small clusterings. Let C be

the topmost cluster of the hierarchical clustering, let P be a set of clusters that we

are keeping for the partitional clustering (this is initialized to the empty set), and

let T be a threshold size that determines how large a cluster needs to be to be kept.

First we splitC into two clustersCL andCR according to the hierarchical clustering

(i.e. CL and CR are C’s left and right children in the hierarchy). The larger of CL

and CR is assigned to be the new value of C. If the smaller is larger than or equal

to T it is added to P , otherwise it is discarded. This continues until P contains the

desired number of clusters.

1 2 3 4
1 0.07 (15) -0.09 (33) 0 (0) -1.0 (1)
2 0 (0) 1.0 (2) -1.0 (1) 0.33 (3)
3 0.5 (4) 0.30 (158) 0.11 (9) -0.03 (203)
4 0 (0) 1.0 (4) 1.0 (1) 0.17 (1655)

Table 3.6: Payoff matrix built from PvT data with 4 clusters using alternate cluster
selection method

We used this scheme to select clusters to build a second payoff matrix for the

PvT dataset with. Using a T of 5 we built a payoff matrix which can be seen in

Table 3.6. This version of G for PvT has one less zero cell. There is still a single cell

which has the vast majority of examples (G4,4 in Table 3.6), but it is significantly

smaller than in Table 3.5 (1655 examples from 1858 examples).

The cluster labels in the payoff matrices are just labels (they lack semantics).

In order to get real meaning from the payoff matrices it is crucial to examine the

cluster member elements. Quantitative methods and automated procedures for

extracting meaning from clusters is left as future work. Here we will give a brief

qualitative overview of the cluster contents, starting with the Protoss clusters (the

row labels in Table 3.6). Cluster 1 consists mostly of smaller (in length) build-

orders, with Zealots and Dragoons being the dominate units. The build-orders

mostly embody rushing strategies. Cluster 2 is the smallest cluster, and scouts,

shuttles, reavers, and carriers are all common in cluster 2. In particular, there are

a few clusters that have shuttles and reavers built close (in the sequence) to each

other. This suggests that these build-orders were used to implement the reaver-

43

drop strategy (which is a well known tactic that tries to drop reavers in the enemy

base before the opponent is equipped to deal with them). Cluster 3 has mostly

mid-length build-orders and is fairly Dragoon heavy. Qualitatively summarizing

cluster 4 is particularly difficult because it is very large. The only clear unifying

characteristic is that all the build-orders in cluster 4 are quite long. This shows that

future work may benefit from breaking up large clusters (at least for the purposes of

understanding cluster meaning). Moving to the Terran clusters (the column labels

in Table 3.6), cluster 1 contains short build-orders that use mostly just marines.

These could be rushes or possibly victims rushes. The build-orders in cluster 2

are mostly mid-length and start with marines but quickly move to either a mix of

vultures and siege tanks or just siege tanks. Cluster 3 has build-orders of varying

lengths and they tend to contain lots of goliaths (along with drop ships). The cluster

3 build-orders seem to represent strategies that rely on quickly creating a large

amount of goliaths, along with dropships to move them around the map. Cluster 4

is the largest cluster and has the same characteristics as cluster 4 for Protoss. Build-

orders are long and the cluster is too large to easily see high-level similarities.

3.5 Conclusion

In this chapter we presented a method for clustering strategies for Real-Time Strat-

egy games. Strategies are taken to be build-orders and build-orders are just se-

quences of characters. We use sequence alignment algorithms to provide a family

of similarity metrics between build-orders, and show how a metric can be devel-

oped using the game StarCraft. We use a agglomerative hierarchical clustering

technique to cluster build-orders and show how payoff matrices can be built us-

ing replay data. Clusters show some cognitive coherence, which is encouraging.

Our work is preliminary in the sense that it has not been applied to actual RTS

game playing and future works include trying different clustering techniques, ex-

perimenting with custom cost functions, and using payoff matrices to influence

in-game decision making.

44

Chapter 4

State Evaluation

When an experienced humans play RTS games, they often have a good sense of

when they are winning or losing. The goal of this chapter is to identify features

of an RTS match that can be used to predict which player will win. We provide an

empirical study using StarCraft replays and show the predictive power of our tech-

nique. We also present a metric for estimating a player’s skill at micro-managing

their units (which can also be used as a predictive feature). The work in this chapter

is being published at AIIDE 2014 [58].

4.1 Data

For our data set, we used a collection of replays collected by Synnaeve [31]. Since

professional tournaments usually only release videos of matches and not the re-

play files themselves, the replays were taken from amateur ladders (GosuGamer

(http://www.gosugamers.net), ICCUP (http://iccup.com/en/starcraft), and TeamLiq-

uid (http://www.teamliquid.net)). Synnaeve et al. released both the replay files

themselves and parsed text files (http://emotion.inrialpes.fr/people/synnaeve/),

but we decided to write our own parser (github.com/gkericks/SCFeatureExtractor),

because of the specific nature of our task and to reduce the possible sources of er-

ror. Synnaeve et al. collected ∼8000 replays of all different faction match-ups, but

we decided to focus on just the ∼400 Protoss versus Protoss matches because the

Protoss faction is the most popular faction among AI systems and our in-house

StarCraft system plays Protoss.

We wrote our replay parser in C++ and it uses BWAPI to extract information

from replay file which use a compact representation that needs to be interpreted by

the StarCraft engine itself. BWAPI then lets one inject a program like our parser into

45

the StarCraft process. The parser outputs two text files: one with feature values for

every player and one with information about the different battles that happened.

The first file also includes information about the end of the game, including infor-

mation about who won the game (which is not always available from the replays)

and the final game score, which is computed by the StarCraft game engine. The ex-

act way that the game score is computed is obfuscated by the engine, and the score

could not be computed for the opponent in a real game, because of the imperfect

information nature of StarCraft, so the game score itself is not a viable feature. In

the first file, feature values are extracted for each player according to some period

of frames, which is an adjustable parameter in the program.

4.2 Battles

Our technique for identifying battles, as shown by Algorithm 4, is very similar to

one presented in [31]. The main difference is what information is logged. Syn-

naeve et al. were concerned with analyzing army compositions, but we want to

be able to actually recreate the battles (the details of which are explained in Sec-

tion 4.4.4). In Algorithm 4, ON ATTACK is function that gets called when a unit

is executing an attack (during a replay) and UPDATE is a function called every

frame. All ON ATTACK instances for a single frame are called before UPDATE is

called. When a new unit is encountered in both the ON ATTACK and UPDATE

functions, the unit’s absolute position, health, shield, and the time the unit entered

the battle are recorded. When the battle is found to be over (which happens when

one side is out of units or no attack actions have happened for some threshold time

∆), the health and shields are recorded for each unit, as well as the time that the

battle ended at. Another significant difference is that we start battles based on at-

tacks actions happening (whereas Synnaeve et al. start battles only when a unit is

destroyed).

4.3 Preprocessing

From viewing the replays themselves, it became apparent that some of the replays

would be problematic for our type of analysis. Some games contained endings

where the players would appear to be away from their computers, or where one

player was obviously winning but appeared to give up. Such discrepancies could

46

Algorithm 4 Technique for extracting battles from replays. Note that UPDATE is
called every frame and ON ATTACK is called when a unit is found to be in an
attacking state.

Global: List CurrentBattles = []
Global Output: List Battles = []
function ON ATTACK(Unit u)

if u in radius of a current battle then
return

end if
U ← Units in MIN RAD of u.position
B ← Buildings in MIN RAD of u.position
if U does not contain Units from both players then

return
end if
Battle b
b.units← U ∪ B
UPDATE BATTLE(b, U)
CurrentBattles.add(b)

end function
function UPDATE

for all b in CurrentBattles do
U ← getUnitsInRadius(b.center, b.radius)
if U = ∅ then

end(b); continue
end if
b.units← U . also log unit info
if ∃ u ∈ U such that ATTACK(u) then

UPDATE BATTLE(b,U)
end if
if b.timestamp−CurrentTime() ≥ ∆ then

end(b); continue;
end if

end for
move ended battles from CurrentBattles to Battles

end function

cause mis-labeling of our data (in terms of who won each game), so we chose to

filter the data based on a set of rules. Table 4.1 shows how many replays were

discarded in each step.

When extracting the features from the replays BWAPI has two flags (of inter-

est) that can be true or false for each player: isWinner and playerLeft. If isWinner

is present the game is kept and that player is marked as the winner. If isWinner is

not present, then two things are considered: the playerLeft flags (which come with

47

Algorithm 4 continued

function UPDATE BATTLE(Battle b, UnitSet U)
center ← average(u.position : u ∈ U)
maxRad← 0
for u ∈ U do

rad← distance(u, center) + range(u)
if rad ≥maxRad then

maxRad← rad
end if

end for
b.center← center
b.radius← maxRad
b.timestamp← CurrentTime()

end function

Games Number of Games
Original 447

Kept 391
No Status Close Score 30

Conflict Type A 24
Conflict Type B 1

Corrupt 1

Table 4.1: A breakdown of how many games were discarded

a time-stamp denoting when the player left) and the game score. The game score

is a positive number computed by the StarCraft engine. If neither player has a

playerLeft flag, then we look at the game score. If the game score is close (deter-

mined by an arbitrary threshold; for this work, we used a value of 5000), the game

is discarded. We chose a relatively large threshold because we want to be confident

that the player we picked to be the winner is actually the winner. Otherwise, the

player with the larger score is selected as the winner. If there is one playerLeft flag,

the opposite player is taken as the winner, unless that conflicts with the winner as

suggested by the game score, in which case the game is discarded (Conflict Type

A). If there are two playerLeft flags, the player that left second is taken as the winner

unless that conflicts with the winner as suggested by the game score, in which case

the game is discarded (Conflict Type B). If a replay file was corrupted (i.e. caused

StarCraft to crash at some point) we discarded it as well.

48

4.4 Features

After the replays are parsed and preprocessed, we represent the data in the form

of a machine learning problem. For our matrix X the examples come from the

sample states from the games in the Protoss versus Protoss data set. States were

taken every 10 seconds for each replay, so each game gave several examples. Since

the match-up is symmetric, we let the features be in terms of the difference between

feature values for each player and put in two examples for every game state. For

example, if player A has DA Dragoons and player B has DB Dragoons and player

A wins the game, then one example will have DA−DB as the number of Dragoons

and a target value of 1 and the other example will have DB −DA as the number of

Dragoons and a target value of 0. This ensures that the number of 1s and 0s in Y is

equal and the learned model is not biased toward either target value.

4.4.1 Economic

Economic features are features that relate to a player’s resources. In StarCraft there

are two types of resources, minerals and gas. For both resource types we include

the current amount that the player has Rcur (unspent). A forum post on TeamLiq-

uid (http://www.teamliquid.net/forum/starcraft-2/266019-do-you-macro-like-a-

pro) showed that the ladder StarCraft 2 players were in was correlated with both

average unspent resources U and income I . We included both quantities as fea-

tures in our model. Average unspent resources is computed by taking the current

resources a player has at each frame, and dividing that total by the number of

frames. Income is a rate of the in-flow of resources and can be computed as simply

the total resourcesRtot divided by the time passed (T). We stress that it is important

that these features are included together because an ideal player will keep their un-

spent resources low (showing that they spend quickly) and keep their income high

(showing that they have a good economy).

U = (
∑
t≤T

Rcur)/T

I =
Rtot
T

49

4.4.2 Military

Every unit and building type has its own feature in the model. As discussed pre-

viously, these features are differences between the counts of that unit type for each

player. Features for the Scarab and Interceptor unit types were not included, as

those units are used as ammo by Reavers and Carriers respectively and the infor-

mation gained by their existence would already be captured by the existence of the

units that produce them. In an earlier version of the model features for research

and upgrades were included as well, but we decided to remove them from the fi-

nal version due to scarcity and the balanced nature of the match-up. The set of all

unit count features is UC.

4.4.3 Map Coverage

We chose a simple way of computing map coverage, as a way of approximating

the amount of the map that is visible to each player. Each map is divided into a

grid, where tiles contain 4 build tiles (build tiles are the largest in-game tile). A

tile is considered occupied by a player if the player has a unit on the tile. Tiles can

be occupied by both players. Our map coverage score is then a ratio of the total

number of occupied tiles to the total number of tiles. For the feature included in

the final version of the model, we just count units (not buildings) and only consider

tiles that have walkable space (so the score is map specific). This score can then be

computed for each player at a given state, and the included feature, MC, is the

difference of those two scores. If P is the set of walkable tiles, then for player p MC

can also be formalized as:

MC(p) =
∑
pos∈P

f(pos, p)

f(pos, p) =

{
1 if pos is occupied by p
0 otherwise

4.4.4 Micro Skill

Skill is an abstract concept and different aspects of a player’s skill can be seen by

observing different aspects of a game. The combat portion of the game (also known

as micro-managing) takes a very specific type of skill. We devised a feature to cap-

ture the skill of a player at the micro portion of the game. The feature makes use

of the ideas in [43], where a scripted player is used as a baseline to compare a

50

player’s performance against. We grab battles (as shown in Section 4.2), play them

out using a StarCraft battle simulator (SparCraft, developed by David Churchill

(code.google.com/p/sparcraft), and compare the results of the scripts to the real

battle outcomes. We use a version of SparCraft edited to support buildings as ob-

stacles, as well as units entering the battle at varying times.

We used a scripted player as the baseline. For this work, we use the NOK-AV

(No-OverKill-Attack-Value) script and a version of the LTD2 evaluation function to

get a value from a battle [7]. NOK-AV has units attack an enemy in range with the

highest damage-per-frame / hit-points, and has units switch targets if the current

target has been assigned a lethal amount of damage already. Note that although

we include buildings in the battles, buildings are not acknowledged explicitly by

the script policy, and thus are just used as obstacles.

We need a way of comparing the outcome of the real battle to that of the base-

line, in a way that can be used as a feature in our model. For a single player, with

a set of units U , the Life-Time-Damage-2 (LTD2) [59] score is:

LTD2start(U) =
∑
u∈U

√
HP(u) ·DMG(u)

LTD2 is an evaluation function which favours having multiple units to single

units given equal summed health and rewards keeping units alive that can deal

greater damage quicker. LTD2 is sufficient for calculating the army value at the

end of the battle, but since units can enter the battle at varying times, we need a

way of weighting the value of each unit. Let T be the length of the battle and st(u)

be the time unit u entered the battle (which can take values from 0 to T). Then:

LTD2end(U) =
∑
u∈U

T − st(u)

T
·
√

HP(u) ·DMG(u)

Let one of the players be the player (P) and the other to be the opponent (O).

Which player is which is arbitrary, as there are two examples for each state (where

both possible assignments of player and opponent are represented). Let Pout and

Ps be the player’s units at the end and the start of the battle respectively, and Oout

and Os to be the opponent’s units at the end and the start of the battle respectively.

The value for the battle is then:

V P = (LTD2end(Pout)− LTD2end(Oout))− (LTD2start(Ps)− LTD2start(Os))

51

To get a baseline value for the battle, we take the initial army configuration for

each player (including unit positions and health) and play out the battle in the sim-

ulator until time T has passed. At that point, let Pβ and Oβ be the remaining units

for both player and opponent respectively. Then the value given by the baseline

player is:

V β = (LTD2end(Pβ)− LTD2end(Oβ))− (LTD2start(Ps)− LTD2start(Os))

For a particular state in a game where there have been n battles with values

V P
1 , . . . , V

P
n and V β

1 , . . . , V
β
n , we can get a total battle score (βavg) by:

βtot =

n∑
i=1

(V P
i − V

β
i)

βavg =
βtot
n

Note that βtot the (LTD2start(Ps) − LTD2start(Os)) parts for each Vi will cancel

out. They are left in the definitions above because we can also represent the feature

as a baseline control variate [43]:

βvar =
1

n

n∑
i=1

(V P
i −

Ĉov[V P
i , V

β
i]

V̂ar[V P
i]

· V β
i)

We then use βvar as a feature in our model. We also devise βavg and βvar as

estimates of a player’s skill at the micro game. Although we do not explore the idea

experimentally here, we maintain that βvar could be used in an RTS AI system’s

decision making process: for high values (showing that opponent is skilled) the

system would be conservative about which battles it engaged in, and for low values

(showing that the opponent is not skilled) the system would take more risks in

hopes to exploit the opponent’s poor micro abilities.

4.4.5 Macro Skill

In contrast to the micro game, the macro game refers to high-level decision making,

usually affecting economy and unit production. The macro game is much more

complicated (and it encompasses the micro game) and we do not have a scripted

player for the macro game, so the baseline approach to skill estimation does not

apply. Instead, we have identified features that suggest how good a player is at

managing the macro game. The first, inspired by [60] is the number of frames that

52

supply is maxed out for SF . Supply is an in-game cap on how many units a player

can build. They must construct additional structures to increase the supply cap

(Smax). Thus, if a player has a large amount of frames where their supply Scur was

maxed out, it shows that the player is bad at planning ahead.

SF =
∑
t≤T

f(t)

f(t) =

{
1 if Scur = Smax at time t
0 otherwise

The other feature is the number of idle production facilities PF . A production

facility is any structure that produces units and if a player has a large amount of

production facilities which are not actively producing anything, it suggests that the

player is poor at managing their unit production. A third feature is the number of

units a player has queued Q. Production facilities have queues that units can be

loaded into, and it is considered skillful to keep the queues small (since a player

must pay for the unit the moment it is queued). However, both PF and Q could

never be used as part of a state evaluation tool, since that information is not known

even with a perfect information assumption.

4.5 Learning

This chapter uses logistic regression as the central learning technique. The data is

represented as a matrix X with n examples (rows) and k features (columns). Each

row has a corresponding target value, 1 for a player win 0 for a player loss, shown

in the column vector Y . The logistic regression algorithm takes X and Y and gives

a column vector K of k weights such that

X ·K = Y ′

T (g(Y ′)) ≈ Y

g(s) =
1

1 + e−s

Y ′ predicts Y and the weights K can be used to predict new targets given new

examples by applying the weights to the features as a linear combination and then

53

putting those sums through a sigmoid function (g). The result is a response value

for each example, i.e. a real number between 0 and 1 that can be thresholded (e.g.,

T = Heaviside step function) to act as a prediction for the new examples.

4.6 Feature Set Evaluation

For the purposes of experimentation, we did 10-fold cross validation on games.

Recall that our example matrix X is made up of examples from game states from

different games at different times. If we permuted all the examples and did cross

validation we would be training and testing on states that are from the same games

(which introduces a bias). So instead we chose to split the games into 10 different

folds. When we leave a particular fold out for testing, we are leaving out all the

states that were taken from the games in that fold. So for each fold, logistic re-

gression is ran on all the other folds giving a set of feature weights. Those feature

weights can then be used as the weights for a linear combination of the features

of each of the examples in the testing fold and then putting those sums through

a squashing function (sigmoid function). The result is a response value for each

example i.e. a real number between 0 and 1 that acts as a prediction for the test

examples.

We report two different metrics for showing the quality of our model. The first

is accuracy, which is just the proportion of correct predictions (on the test folds) to

the total number of examples. Predictions are taken from the response values by

thresholding them. We used a threshold value of 0.5, which is standard. The second

is the average log-likelihood [61]. For a single test example, whose actual target

value is given by y and whose response value is r, the log-likelihood is defined as

follows:

L(y, r) = y · log(r) + (1− y) · log(1− r)

We report the average log-likelihood across examples. Values closer to zero

indicate a better fit.

Through experimentation we want to answer the following questions: 1) Can

our model be used to accurately predict game outcomes? 2) Does adding the skill

features to our model improve the accuracy? 3) What times during a game is our

model most applicable to?

To explore these questions we tested a few different feature subsets on examples

54

from different times in the games. Especially in the early game, result prediction

is a very noisy problem because there is little evidence in the early game as to

who is going to win because the important events of the game have not happened

yet. We decided to experiment by running separate cross validation tests just using

examples that fall within certain time intervals. For time intervals, we use 5 minute

stretches and just include any example with a time-stamp greater than 15 minutes

together. Note that not all games are the same length, so for the later time intervals

not all games are included. 5 minute interval lengths were chosen because we

wanted to have a reasonable amount of examples in each interval while still doing

a fine-grained analysis. Table 4.2 shows how examples were divided based on

time-stamps.

Time (min) Games Examples
0-5 391 23418

5-10 386 22616
10-15 364 19836
15-20 289 14996

20- 211 31060

Table 4.2: A breakdown of how examples were split by time-stamp

Table 4.3 shows the performance of using the feature sets individually. The

map coverage featureMC preforms very well in the late game because a goodMC

value near the end of the game is the result of having a good economy earlier in

the game and having a strong army. In general, prediction rates improve in the

later game stages. βvar has a drop in accuracy in the late game because many of

the battles at that stage of the game include unit types which our simulator does

not support and so late game battles (which are important to the game outcome)

are ignored. Table 4.3 also shows feature sets being added, culminating in the full

model in line C. Notice that the skill features make a difference in the late game,

due to there being differences in skill being more noticeable as the game progresses

(SF takes to grow, as players need to make mistakes for it to be useful). When

choosing intervals we had problems with over-fitting. UC especially is prone to

over-fitting if the training set is too small. Table 4.4 shows how we tested with

larger training sets to avoid over-fitting. Results are overall slightly lower because

the early intervals are trained with all or most of the timestamps, and examples

from 20- are never tested on.

55

Features 0-5 5-10 10-15 15-
Rcur,I ,U 54.42 (-0.686) 57.76 (-0.672) 62.98 (-0.647) 64.17 (-0.625)
UC 51.96 (-0.712) 57.84 (-0.682) 66.67 (-0.705) 66.46 (-0.644)
MC 51.27 (-0.693) 55.20 (-0.685) 61.45 (-0.657) 71.39 (-0.561)
βvar 50.23 (-0.693) 53.25 (-0.690) 55.09 (-0.690) 52.82 (-0.690)

SF , PF , Q 51.26 (-0.695) 49.96 (-0.695) 51.75 (-0.694) 54.97 (-0.709)
A 53.91 (-0.708) 58.81 (-0.680) 66.36 (-0.712) 69.22 (-0.613)
B 54.05 (-0.708) 58.66 (-0.681) 66.44 (-0.712) 69.87 (-0.608)
C 53.81 (-0.710) 58.72 (-0.681) 66.41 (-0.708) 72.59 (-0.587)

Table 4.3: Individual feature (group) and feature set prediction performance re-
ported as accuracy(%) (avg L) in each game time period; A = economic/military
features Rcur, I, U, UC; B = A + map control feature MC; C = B + skill features
βvar, SF, PF,Q

Feature Set 0-5 5-10 10-15 15-20
Rcur,I ,U 53.75 (-0.6875) 58.85 (-0.6708) 62.82 (-0.6510) 60.23 (-0.6562)
UC 52.03 (-0.6936) 58.43 (-0.6735) 65.76 (-0.6329) 63.96 (-0.6516)
MC 51.27 (-0.6943) 55.20 (-0.6872) 61.45 (-0.6588) 64.02 (-0.6385)
βvar 50.23 (-0.6931) 53.25 (-0.6896) 55.24 (-0.6899) 56.14 (-0.6868)

SF , PF , Q 52.02 (-0.6925) 50.74 (-0.6939) 52.82 (-0.6916) 55.21 (-0.6857)
A 53.19 (-0.6917) 58.74 (-0.6726) 65.28 (-0.6367) 63.58 (-0.6612)
B 52.60 (-0.6916) 58.56 (-0.6727) 64.89 (-0.6377) 63.99 (-0.6617)
C 52.73 (-0.6914) 58.70 (-0.6669) 65.77 (-0.6267) 65.23 (-0.6510)

Table 4.4: Feature set prediction performance [accuracy(%) (avg L)]; If time interval
is [k,l] training is done on examples in [k,∞) and tested on examples in [k,l]

As an additional evaluation of the performance of the feature set for predicting

game outcome, we provide an experiment where only terminal states are evalu-

ated. The goal is to show that our model gets high accuracy on terminal states. For

this experiment, we took terminal states to be the last examples recorded for each

game. Tables 4.5 and 4.6 show that as long as the training set includes mid or late

game examples, the predictor has very high accuracy.

0-5 5-10 10-15 15-
55.75 82.90 85.71 97.23

Table 4.5: Accuracy(%) on terminal states with training done on the provided time
interval

56

0- 5- 10- 15-
98.21 98.19 97.53 97.23

Table 4.6: Accuracy(%) on terminal states with training done on the provided time
interval

4.7 Battle Metric on Tournament Data

We use the battle metric β as a feature in our feature set for state evaluation. β is

an estimator for a player’s skill at the micro game. By micro game, we are refer-

ring to the management of units on an individual or squad-based level in isolated

skirmishes. We believe that a player’s skill at the micro game is correlated with

their overall skill. This is a difficult thing to show by merely using the metric as

a feature in the result prediction problem. In an individual match, there are many

other factors that can affect the eventual result than simply a player’s micro skill.

Over a large amount of battles irregularities would be less noticeable and a gen-

eral notion of the player’s skill would become apparent. To show the merit of β

as a skill estimator a large amount of battles for each player would be have to be

available. If that was available then β could be compared to some other measure of

the player’s success to show that β and a player’s skill are related. The Synnaeve

data-set could have potentially been used for this if the same players were found

in multiple matches in the dataset. We found that most players could only be lo-

cated in one or two matches, so this was not the case. The Synnaeve dataset could

still have been useful if some other measure of the player’s skill was available. We

looked on the online ladders that the replay files were downloaded from to see if

player standings from different points in time were available, although this was

also not the cases.

To show the effectiveness of β as a skill estimator we decided to use replay data

from the 2013 AIIDE StarCraft AI Tournament [62]. AIIDE (Artificial Intelligence

in Digital Entertainment) is a conference that holds a competition for StarCraft AI

annually. The competition is held at the University of Alberta and is the top com-

petition for open-source StarCraft AI systems. Replays from the tournament are

freely available online, along with the tournament results. In the 2013 competition

eight different systems were entered. Each system played against every other sys-

tem twenty times on each map. Ten different maps were used. Win percentages

57

were tallied and systems were ranked based on their win rate.

The tournament data suites our method for calculating β with SparCraft for

multiple reasons. Players (in this case AI systems) are easily track-able across

a large amount of matches. Rankings for the players are readily available. As

discussed earlier, SparCraft currently has limited support for the different unit

types/features found in StarCraft. Spell-casters, flying units, and any other units

with special features (beside medics) cannot be simulated in SparCraft. In the anal-

ysis of the Synnaeve data, battles that included such units were simply dropped.

We do the same thing here, but in general that is less of an issue for AI systems.

The matches in the tournament tend to end faster than human matches (which

decreases the amount of late-game units encountered) and for tactical simplicity

many systems favour simple units such as Zealots and Dragoons (which are sup-

ported by SparCraft). The downside to the tournament data is that any analysis

is done using programs instead of humans. Humans are capable of playing RTS

games adaptively and effectively and still far better than AI systems at RTS. Thus

findings done with the tournament dataset cannot be claimed to be discovered on

professional quality RTS replays.

For experimentation, we parsed the tournament replays, extracting the battles

from each match. Battles were defined by algorithm 4 (we used our parser). Battles

were replicated in SparCraft using the NOK-AV script and the results were recored.

We then could compute β individually for each player. The sum term in β sums

over the set of all the battles kept for the player being processed. Players can then

be ranked in terms of β and compared to the original tournament standings. The

tournament ranking is given in Table 4.7. The order the systems are listed in refers

to the ranking, and win percentages are also presented for each system.

UAlbertaBot 82.43%
Skynet 72.77%
Aiur 60.29%
Ximp 55.29%

Xelnaga 49.96%
ICEStarCraft 47.82%

Nova 27.47%
BTHAI 3.93%

Table 4.7: Ranking from AIIDE 2013 StarCraft Competition (program name and
win percentage)

58

We calculated values for both βavg and βvar. The ranking found using βavg can

be found in Table 4.8 and the ranking found using βvar can be found in Table 4.9

(the order shows the ranking, β values are listed). The rankings found using βavg

and βvar are very similar (with the only difference being Xelnaga being ranked

slightly higher in the βvar ranking). We speculate this is because the number of

data samples for each player is high enough that the variance reduction method

brought in by βvar is not necessary (i.e. with enough data points the increase in

variance caused by outliers will be lower).

Nova 7.65
UAlbertaBot 3.30

Aiur 1.01
ICEStarCraft -0.026

Ximp -1.91
BTHAI -3.03
Skynet -4.61

Xelnaga -5.60

Table 4.8: Ranking using βavg

Nova 7.59
UAlbertaBot 1.97

Aiur 0.85
ICEStarCraft 0.01

Ximp -1.79
Xelnaga -2.99
BTHAI -3.13
Skynet -4.51

Table 4.9: Ranking using βvar

The rankings provided by using the β terms show some similarities to the orig-

inal tournament ranking and some differences. UAlbertaBot and Aiur are high up

in both the original and β rankings. BTHAI and Xelnaga are both low in both the

original and β rankings. ICEStarCraft is higher in the β rankings (when compared

to the original rankings) and Ximp is slightly lower (as a result of ICEStarCraft be-

ing higher). The biggest changes between the original rankings and the β rankings

are that Skynet and Nova basically switched spots with each other (when moving

from the original rankings to the β rankings). Skynet poor ranking could merely

59

have been because of noise (although we could not identify a more concrete rea-

son). Although Nova preformed poorly in the tournament overall, it is known for

having effective micro tactics. So it is possible that Nova could have preformed

well at battles (which was expected) and lost most of its matches because of mis-

takes made in other areas (such as the macro game). Overall, we are pleased that

the general ranking formed using β is similar to the original tournament ranking,

as this suggests that β works as a skill estimator.

4.8 Conclusion

In this chapter we attempted to solve the problem of predicting which player will

win in an RTS match. We presented a set of features that can be used to predict

the outcome of a match, and showed that our feature set has > 70% accuracy in

the later stages of a match. Of special interest is the battle skill estimator β, which

can be used as a feature in predicting a match’s winner. Search is a powerful game-

playing technique, and as search algorithms become scaled to the global RTS game,

state evaluation will prove useful in pruning search trees and informing decision

making.

60

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we provided techniques for solving two machine-learning problems

in RTS games. First, we presented a scheme for identifying groups of strategies

present in replay data. We showed how similarity metrics between strategies can

be engineered using sequence alignment algorithms and a small amount of expert

knowledge. We also gave examples of how the methods can be applied to real

data, using the RTS game StarCraft, and built a few different payoff matrices using

the results of the replays. We found that non-symmetric match-ups make for more

interesting payoff matrices, and that pruning away clusters with a small number

of examples can lead to more interesting payoff matrices.

We also gave a feature-set based solution to the problem of predicting a match

outcome. Our results show that prediction of the game winner in an RTS game

domain is possible, although the problem is noisy. Prediction is most promising in

later game stages. This gives hope for quick evaluation in future search algorithms.

Of particular interest is the use of simulation for providing a baseline to estimate a

player’s skill at the micro game against. We used the metric as a feature in predic-

tion, with moderate success (the simulator currently has limited functionality). We

also applied the metric to skill estimation in a AI tournament setting and used the

values to rank the players based on their micro skill. We saw similarity between

the skill estimation rankings and the original tournament standings, with a few

interesting discrepancies.

61

5.2 Future Work

The main direction future works should be in is application. The work presented in

this thesis has been applied to real data, so the findings are not purely theoretical,

but the application of the results themselves to develop more intelligent RTS AI has

yet to be done. For the strategy clustering problem, the first step of applying the re-

sults to AI system development will be to map strategy clusters to implementable

strategy policies. This could be done by simply looking at cluster elements and

having an expert describe the policies the strategies represent (the policies could

then be hard-coded for the program). More sophisticated methods could be pur-

sued as well, such as identifying representative elements in each cluster automati-

cally and using those build orders in some way in the AI system (this would limit

the adaptability of the system, but could possibly be effective if paired with a build-

order search algorithm). After this is done the strategies could be loaded into an AI

system along with a strategy detection program (such as Synnaeve’s or Dereszyn-

ski’s). Then when an enemies strategy is predicted, the system could employ the

strategy with the highest corresponding payoff in the payoff matrix.

Future work for the results prediction problem also involves application. Even-

tually we would like to see the evaluator used as part of a search algorithm (for

pruning probably). The micro skill estimator could be used in an AI system to

affect its decision making regarding attacking or retreating. The skill estimator it-

self could be extend to incorporate multiple estimates. We only used one script to

get the baseline values, but multiple baseline scripts could be used to get multi-

ple estimates. The baseline player doesn’t have to be a rigid script either, searches

could be used (even stochastic algorithms are acceptable as long as multiple runs

are averaged over).

Further work could be done on the results predictor. The feature set we pro-

vided here could be expanded to incorporate more complex features. Possible ar-

eas of to explore could be incorporating high-level descriptions of the strategy the

players are using, as features, or modeling the tech tree explicitly (although we feel

that using unit counts supersedes the information gain from using tech trees). Fur-

ther work will have to be done on adapting our model to the imperfect information

case for the model to be effective in actual application. We suggest that this could

be as simple as estimating the unknown quantities using visible evidence.

62

Bibliography

[1] M. Buro, “Real-time strategy games: A new AI research challenge,” in IJCAI

2003, pp. 1534–1535, International Joint Conferences on Artificial Intelligence,

2003.

[2] M. Buro and D. Churchill, “Real-time strategy game competitions,” AI Maga-

zine, vol. 33, no. 3, pp. 106–108, 2012.

[3] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss,

“A survey of real-time strategy game AI research and competition in Star-

Craft,” TCIAIG, 2013.

[4] E. Dereszynski, J. Hostetler, A. Fern, T. D. T.-T. Hoang, and M. Udarbe, “Learn-

ing probabilistic behavior models in real-time strategy games,” in Artificial In-

telligence and Interactive Digital Entertainment (AIIDE) (AAAI, ed.), 2011.

[5] D. Churchill and M. Buro, “Portfolio greedy search and simulation for large-

scale combat in StarCraft,” in IEEE Conference on Computational Intelligence in

Games (CIG), pp. 1–8, IEEE, 2013.

[6] S. Ontañón, “Experiments with game tree search in real-time strategy games,”

arXiv preprint arXiv:1208.1940, 2012.

[7] D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for RTS game

combat scenarios,” in AI and Interactive Digital Entertainment Conference, AIIDE

(AAAI), pp. 112–117, 2012.

[8] M. Buro and T. Furtak, “On the development of a free RTS game engine,” in

GameOn Conference, pp. 23–27, Citeseer, 2005.

[9] J. McCoy and M. Mateas, “An integrated agent for playing real-time strategy

games.,” in AAAI, vol. 8, pp. 1313–1318, 2008.

63

[10] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,” Artificial

Intelligence, vol. 6, no. 4, pp. 293–326, 1976.

[11] M. Buro, “ProbCut: An effective selective extension of the Alpha-Beta algo-

rithm,” ICCA Journal, vol. 18, no. 2, pp. 71–76, 1995.

[12] M. Enzenberger, M. Muller, B. Arneson, and R. Segal, “Fuego—an open-

source framework for board games and go engine based on Monte Carlo tree

search,” Computational Intelligence and AI in Games, IEEE Transactions on, vol. 2,

no. 4, pp. 259–270, 2010.

[13] G. Van den Broeck, K. Driessens, and J. Ramon, “Monte Carlo tree search in

poker using expected reward distributions,” in Advances in Machine Learning,

pp. 367–381, Springer, 2009.

[14] M. Chung, M. Buro, and J. Schaeffer, “Monte Carlo planning in RTS games,”

in IEEE Symposium on Computational Intelligence and Games (CIG), 2005.

[15] R.-K. Balla and A. Fern, “UCT for tactical assault planning in real-time strat-

egy games,” in IJCAI, pp. 40–45, 2009.

[16] L. Kocsis and C. Szepesvari, “Bandit based Monte-Carlo planning,” in Proceed-

ings of the European Conference on Machine Learning, pp. 282–293, 2006.

[17] T. Furtak and M. Buro, “On the complexity of two-player attrition games

played on graphs,” in Proceedings of the Sixth AAAI Conference on Artificial In-

telligence and Interactive Digital Entertainment, AIIDE 2010 (G. M. Youngblood

and V. Bulitko, eds.), (Stanford, California, USA), Oct. 2010.

[18] F. Schadd, S. Bakkes, and P. Spronck, “Opponent modeling in real-time strat-

egy games,” in GAMEON, pp. 61–70, 2007.

[19] J.-L. Hsieh and C.-T. Sun, “Building a player strategy model by analyzing re-

plays of real-time strategy games,” in IJCNN, pp. 3106–3111, 2008.

[20] D. W. Aha, M. Molineaux, and M. J. V. Ponsen, “Learning to win: Case-based

plan selection in a real-time strategy game,” in ICCBR, pp. 5–20, 2005.

[21] K. Mishra, S. Ontañón, and A. Ram, “Situation assessment for plan retrieval

in real-time strategy games,” in ECCBR, pp. 355–369, 2008.

64

[22] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Learning from demonstra-

tion and case-based planning for real-time strategy games,” in Soft Computing

Applications in Industry (B. Prasad, ed.), vol. 226 of Studies in Fuzziness and Soft

Computing, pp. 293–310, Springer Berlin / Heidelberg, 2008.

[23] P. Cadena and L. Garrido, “Fuzzy case-based reasoning for managing strategic

and tactical reasoning in StarCraft,” in MICAI (1), pp. 113–124, 2011.

[24] M. Sharma, M. Holmes, J. Santamaria, A. Irani, C. L. Isbell, and A. Ram,

“Transfer learning in real-time strategy games using hybrid CBR/RL,” in In-

ternational Joint Conference of Artificial Intelligence, IJCAI, 2007.

[25] B. G. Weber and M. Mateas, “A data mining approach to strategy prediction,”

in IEEE Symposium on Computational Intelligence and Games (CIG), 2009.

[26] F. Kabanza, P. Bellefeuille, F. Bisson, A. R. Benaskeur, and H. Irandoust, “Op-

ponent behaviour recognition for real-time strategy games,” in AAAI Work-

shops, 2010.

[27] G. Synnaeve and P. Bessière, “A Bayesian model for plan recognition in RTS

games applied to StarCraft,” in Proceedings of the Seventh Artificial Intelligence

and Interactive Digital Entertainment Conference (AIIDE 2011) (AAAI, ed.), Pro-

ceedings of AIIDE, (Palo Alto, États-Unis), pp. 79–84, Oct. 2011.

[28] G. Synnaeve and P. Bessiere, “A Bayesian model for opening prediction in RTS

games with application to StarCraft,” in Computational Intelligence and Games

(CIG), 2011 IEEE Conference on, pp. 281–288, 2011.

[29] G. Synnaeve and P. Bessiere, “Special tactics: a Bayesian approach to tacti-

cal decision-making,” in Computational Intelligence and Games (CIG), 2012 IEEE

Conference on, pp. 409–416, 2012.

[30] G. Synnaeve and P. Bessiere, “A Bayesian model for RTS units control applied

to StarCraft,” in Proceedings of IEEE CIG 2011, (Seoul, Corée, République De),

p. 000, Sept. 2011.

[31] G. Synnaeve and P. Bessiere, “A dataset for StarCraft AI & an example of

armies clustering,” in AIIDE Workshop on AI in Adversarial Real-time games

2012, 2012.

65

[32] B. G. Weber, M. Mateas, and A. Jhala, “A particle model for state estimation in

real-time strategy games,” in Proceedings of AIIDE, (Stanford, Palo Alto, Cali-

fornia), p. 103–108, AAAI Press, AAAI Press, 2011.

[33] S. Wender and I. Watson, “Applying reinforcement learning to small scale

combat in the real-time strategy game StarCraft:Broodwar,” in CIG (IEEE),

2012.

[34] Q. Gemine, F. Safadi, R. Fonteneau, and D. Ernst, “Imitative learning for real-

time strategy games,” in CIG (IEEE), 2012.

[35] N. Othman, J. Decraene, W. Cai, N. Hu, and A. Gouaillard, “Simulation-based

optimization of StarCraft tactical AI through evolutionary computation,” in

CIG (IEEE), 2012.

[36] J. M. Traish and J. R. Tulip, “Towards adaptive online RTS AI with NEAT,” in

CIG (IEEE), 2012.

[37] P. Yang, B. Harrison, and D. L. Roberts, “Identifying patterns in combat that

are predictive of success in MOBA games,” Proceedings of Foundations of Digital

Games 2014, p. to appear, 2014.

[38] M. Stanescu, S. P. Hernandez, G. Erickson, R. Greiner, and M. Buro, “Pre-

dicting army combat outcomes in StarCraft,” in Ninth Artificial Intelligence and

Interactive Digital Entertainment Conference, 2013.

[39] T. Avontuur, P. Spronck, and M. van Zaanen, “Player skill modeling in Star-

Craft II,” in Ninth Artificial Intelligence and Interactive Digital Entertainment Con-

ference, 2013.

[40] J. Long, “Game theoretic and machine learning techniques for balancing

games,” Master’s thesis, University of Saskatchewan, 2006.

[41] D. Churchill, “SparCraft: open source StarCraft combat simulation.” http:

//code.google.com/p/sparcraft/, 2013.

[42] D. Churchill and M. Buro, “Incorporating search algorithms into RTS game

agents,” in AI and Interactive Digital Entertainment Conference, AIIDE (AAAI),

2012.

66

http://code.google.com/p/sparcraft/
http://code.google.com/p/sparcraft/

[43] J. Davidson, C. Archibald, and M. Bowling, “Baseline: practical control vari-

ates for agent evaluation in zero-sum domains,” in Proceedings of the 2013 inter-

national conference on Autonomous agents and multi-agent systems, pp. 1005–1012,

International Foundation for Autonomous Agents and Multiagent Systems,

2013.

[44] D. Churchill and M. Buro, “Build order optimization in StarCraft,” in AI and

Interactive Digital Entertainment Conference, AIIDE (AAAI), pp. 14–19, 2011.

[45] Y.-K. Yu, “Sequence alignment in bioinformatics,” in New Directions in Statis-

tical Physics, pp. 193–212, Springer, 2004.

[46] E. Sumita, “Example-based machine translation using dp-matching between

word sequences,” in Proceedings of the workshop on Data-driven methods in ma-

chine translation-Volume 14, pp. 1–8, Association for Computational Linguis-

tics, 2001.

[47] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Data Engineering,

1995. Proceedings of the Eleventh International Conference on, pp. 3–14, IEEE, 1995.

[48] S. B. Needleman and C. D. Wunsch, “A general method applicable to the

search for similarities in the amino acid sequence of two proteins,” Journal

of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[49] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions and

reversals,” in Soviet physics doklady, vol. 10, p. 707, 1966.

[50] K. Duraiswamy and V. V. Mayil, “Similarity matrix based session clustering by

sequence alignment using dynamic programming,” Computer and Information

Science, vol. 1, no. 3, p. P66, 2008.

[51] P.-N. Tan, M. Steinbach, and V. Kumar, “Cluster analysis: basic concepts and

algorithms,” Introduction to data mining, pp. 487–568, 2006.

[52] I. Gath and A. B. Geva, “Unsupervised optimal fuzzy clustering,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 11, no. 7, pp. 773–

780, 1989.

[53] J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting

compact well-separated clusters,” 1973.

67

[54] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32, no. 3,

pp. 241–254, 1967.

[55] J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,” Jour-

nal of the American statistical association, vol. 58, no. 301, pp. 236–244, 1963.

[56] G. Lance and W. Williams, “A generalized sorting strategy for computer clas-

sifications,” 1966.

[57] J. S. Farris, “On the cophenetic correlation coefficient,” Systematic Biology,

vol. 18, no. 3, pp. 279–285, 1969.

[58] G. Erickson and M. Buro, “Global state evaluation in StarCraft,” in Tenth Arti-

ficial Intelligence and Interactive Digital Entertainment Conference, 2014 in press.

[59] A. Kovarsky and M. Buro, “Heuristic search applied to abstract combat

games,” Advances in Artificial Intelligence, pp. 66–78, 2005.

[60] J. Belcher, D. Ekins, and A. Wang, “Starcraft 2 oracle,” University of Utah

CS6350 Project, 2013. http://www.eng.utah.edu/˜cs5350/ucml2013/

proceedings.html.

[61] M. E. Glickman, “Parameter estimation in large dynamic paired comparison

experiments,” Journal of the Royal Statistical Society: Series C (Applied Statistics),

vol. 48, no. 3, pp. 377–394, 1999.

[62] D. Churchill, “AIIDE 2013 AIIDE StarCraft AI Competition Report.”

http://webdocs.cs.ualberta.ca/˜cdavid/starcraftaicomp/

report2013.shtml, 2013.

68

http://www.eng.utah.edu/~cs5350/ucml2013/proceedings.html
http://www.eng.utah.edu/~cs5350/ucml2013/proceedings.html
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/report2013.shtml
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/report2013.shtml

	Introduction
	Purpose
	Motivation
	Objectives
	Contributions
	Contents

	Background
	Search in Real-Time Strategy Games
	Machine Learning in Real-Time Strategy Games
	Replay Data for Building Payoff Matrices
	SparCraft
	Baseline

	Build-Order Clustering
	Representing Strategies
	Similarity Matrices
	Sequence Alignment
	Similarity Metric

	Clustering
	Agglomerative Hierarchical Clustering

	Applied to StarCraft
	Data
	Unit Similarity
	Cluster Evaluation
	Building Payoff Matrices

	Conclusion

	State Evaluation
	Data
	Battles
	Preprocessing
	Features
	Economic
	Military
	Map Coverage
	Micro Skill
	Macro Skill

	Learning
	Feature Set Evaluation
	Battle Metric on Tournament Data
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

