Download the full-sized PDF of Characterization of Particulate Matter Morphology and Volatility for Two Direct-Injection EnginesDownload the full-sized PDF



Permanent link (DOI):


Export to: EndNote  |  Zotero  |  Mendeley


This file is in the following communities:

Graduate Studies and Research, Faculty of


This file is in the following collections:

Theses and Dissertations

Characterization of Particulate Matter Morphology and Volatility for Two Direct-Injection Engines Open Access


Other title
Natural Gas
Direct Injection
Type of item
Degree grantor
University of Alberta
Author or creator
Graves, Brian M
Supervisor and department
Olfert, Jason (Mechanical Engineering)
Examining committee member and department
Olfert, Jason (Mechanical Engineering)
Koch, Bob (Mechanical Engineering)
Kindzierski, Warren (School of Public Health)
Department of Mechanical Engineering

Date accepted
Graduation date
Master of Science
Degree level
Particulate matter emitted from two direct injection engines has been characterized by morphology, volatility, mass-mobility exponent, effective density, and size distribution using tandem measurements from a centrifugal particle mass analyzer (CPMA) and differential mobility analyzers (DMA). The engines consisted of a heavy duty, natural gas, compression ignition engine fitted with a high pressure direct injection (HPDI) system, and a four cylinder gasoline direct injection (GDI) engine fueled with gasoline and ethanol blends. The HPDI engine was tested at six conditions which varied load, speed, EGR fraction, and fuel delivery strategy. The GDI was tested at three engine loads at 2250 RPM (4%, 13%, and 26% of maximum load) in addition to an idle condition, while it was fueled using gasoline mixed with ethanol fractions of 0% (E0), 10% (E10), and 50% (E50) by volume. An increase in engine load increased particle number concentration for both engines, but the GDI idle condition produced approximately as many particles as at 13% load. An increase in ethanol fraction in the GDI decreased number concentration, but E10 produced more particles than E0 at idle and 26% load. HPDI size distributions were log-normal whereas GDI size distributions were not log-normal and were instead skewed. The fraction of the number of purely volatile particles to total number of particles (number volatile fraction, fN) for the HPDI engine decreased as load increased, although the low-speed, partially premixed mode had the lowest fN. The fN for the GDI both overall and as a function of particle mobility-equivalent diameter was under 10 percent at all engine conditions and fuels. The size-segregated ratio of the mass of internally mixed volatile material to total particle mass (fm) was similarly low for the GDI. The fm for the HPDI was higher; however it decreased with an increase in load and with particle mobility-equivalent diameter. HPDI effective density was seen to collapse to approximately a single line, but engine modes with higher fm values had slightly higher effective densities suggesting that the soot structures have collapsed into more dense shapes. Effective density and mass-mobility exponent for the GDI engine increased with load. Effective density decreased with an increase in ethanol fraction and a slight decrease in mass-mobility exponent was also observed for all conditions except idle. Effective density trends from both engines were compared to data from other GDI engines, a port fuel injection engine, and diesels, and the data is relatively similar between all engine types, with 90% of data points being within ±27% of a common trend line.
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.
Citation for previous publication
Graves, B., Olfert, J., Patychuk, B., Dastanpour, R., and Rogak, S. (2015). Characterization of Particulate Matter Morphology and Volatility from a Compression-Ignition Natural Gas Direct-Injection Engine. Aerosol Science and Technology. 49(8): 589–598.

File Details

Date Uploaded
Date Modified
Audit Status
Audits have not yet been run on this file.
File format: pdf (PDF/A)
Mime type: application/pdf
File size: 3924783
Last modified: 2016:06:24 17:16:19-06:00
Filename: Graves_Brian_M_201508_MSc.pdf
Original checksum: cff1371ee55b69e426e6034655fcce55
Activity of users you follow
User Activity Date