Download the full-sized PDF of Characterizing the Mesolimbic Dopamine Reward Pathway in a Magel2-null Mouse, a Model of Prader-Willi SyndromeDownload the full-sized PDF



Permanent link (DOI):


Export to: EndNote  |  Zotero  |  Mendeley


This file is in the following communities:

Graduate Studies and Research, Faculty of


This file is in the following collections:

Theses and Dissertations

Characterizing the Mesolimbic Dopamine Reward Pathway in a Magel2-null Mouse, a Model of Prader-Willi Syndrome Open Access


Other title
Prader-Willi syndrome
Type of item
Degree grantor
University of Alberta
Author or creator
Luck Gibson, Chloe
Supervisor and department
Dr. Rachel Wevrick
Examining committee member and department
Dr. Simonetta Sipione Department of Pharmacology
Dr. Heather McDermid Department of Biological Sciences
Dr. Ted Allison Department of Biological Sciences
Medical Sciences-Medical Genetics

Date accepted
Graduation date
Master of Science
Degree level
Prader-Willi Syndrome (PWS) is a genetic disorder characterized by extreme hyperphagia that can lead to severe obesity. The abnormal motivation to eat in PWS suggests a disruption in the hedonic feeding pathway, which is feeding based on reward as opposed to physiological need. Hedonic feeding is controlled by dopaminergic neurons in the ventral tegmental area (VTA) and other regions of the brain, forming a reward circuit. Magel2 is one of the genes inactivated in PWS, and mice lacking Magel2 have phenotypes that resemble those seen in people with PWS. The aim of this research project is to characterize the dopamine reward circuitry in a mouse model of PWS lacking the Magel2 gene. Regions important for motivative behaviour and reward processing were assessed. Immunohistochemistry, high-performance liquid chromatography (HPLC), and immunoblot analyses were used to identify the baseline differences within the reward pathway of Magel2-null mice. The responses to changes in diet which are similar to biochemical responses observed with drugs of abuse, were also measured by subjecting the mice to a high-fat diet, then withdrawing them from the high fat diet back to a standard diet. Specific molecular changes including the phosphorylation of ERK, AKT and CREB within brain regions that form the reward circuit were identified and measured in response to changes in diet. The levels of biogenic amines within the nuclei of the reward pathway were also assessed by HPLC, in response to the changes in diet. Binge feeding behavior was assessed by exposing the mice to a limited time access of high-fat food. There was no difference between the Magel2-null and wildtype mice in the number of dopamine-producing cells within the nuclei of the reward pathway. However, the HPLC analysis showed a global reduction in the dopaminergic and serotonergic metabolites in the Magel2-null mice. The level of neurofilament was significantly increased in the hypothalamus of Magel2-null mice, and the axonal calibre of forebrain projections from the VTA was significantly smaller in the Magel2-null animals. This could influence how much dopamine is reaching the target nuclei in response to rewarding behaviours. Magel2-null mice consume consistently less high-fat food when given limited access to a high-fat diet. This suggests an impaired bingeing response. This behavioural response suggests decreased dopaminergic responses to the exposure. Magel2-null mice show a loss of HPLC-detected differences between mice fed a chronic high-fat diet or a standard diet. Magel2-null also have an attenuated feeding response to the initial exposure of a HF-diet. This also suggests a decrease in dopamine signaling in response to a palatable food source. In conclusion, Magel2-null mice show deficits throughout the dopamine reward pathway that indicate reduced dopamine-related activity. Deficits were observed both under baseline conditions, and in response to both acute and chronic exposure to a rewarding food source. This is consistent with the attenuated locomotive response to cocaine previously observed in mice lacking Magel2. This phenotype resembles the increased threshold for dopamine signaling and the subsequent feeling of reward that is observed in pathological drug users, driving the compulsive need to obtain the drug. Understanding how the loss of Magel2 influences dopamine signaling and the molecular mechanisms driving the pathology of Prader-Willi Syndrome. This knowledge will be useful for the development or potential treatments for individuals with PWS and other forms of binge eating disorder.
This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for the purpose of private, scholarly or scientific research. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
Citation for previous publication
Luck, C., Vitaterna, M. H., Wevrick, R. (In press). Abnormal brain reward pathways in mice lacking Magel2, a Prader-Willi syndrome candidate gene. Behavioural Neuroscience.

File Details

Date Uploaded
Date Modified
Audit Status
Audits have not yet been run on this file.
File format: pdf (PDF/A)
Mime type: application/pdf
File size: 5979243
Last modified: 2016:11:16 14:47:46-07:00
Filename: Luck Gibson_Chloe_E_201605_Msc.pdf
Original checksum: 8953c3587ce0f6145c663fdb5c8bb496
Activity of users you follow
User Activity Date