Download the full-sized PDF of Modelling Entrainment in Debris Flow Analysis for Dry Granular MaterialDownload the full-sized PDF



Permanent link (DOI):


Export to: EndNote  |  Zotero  |  Mendeley


This file is in the following communities:

Graduate Studies and Research, Faculty of


This file is in the following collections:

Theses and Dissertations

Modelling Entrainment in Debris Flow Analysis for Dry Granular Material Open Access


Other title
Debris flow
Progressive scouring
Case study
Type of item
Degree grantor
University of Alberta
Author or creator
Kang, Chao
Supervisor and department
Dave Chan (Civil and Environmental Engineering)
Examining committee member and department
David Zhu (Civil and Environmental Engineering)
Derek Apel (Civil and Environmental Engineering)
Lijun Deng (Civil and Environmental Engineering)
Alireza Bayat (Civil and Environmental Engineering)
Department of Civil and Environmental Engineering
Geotechnical Engineering
Date accepted
Graduation date
2016-06:Fall 2016
Doctor of Philosophy
Degree level
Debris flow entrainment refers to the increase in mass by way of erosion of the channel beds or undermining the channel banks. Entrainment makes the calculation of travel distance and velocities of debris flow much more complex and difficult. Shear failure of the material in the channel bed is usually considered to be the dominant mechanism in entrainment analysis. However in granular flow, material at the surface of the channel bed can be eroded by progressive scouring under the base of the debris. This may result in more material being eroded and entrained than just considering the shear failure mechanism. A new analytical model is proposed to calculate entrainment in debris flow analysis by considering both rolling and shearing motion. Newton’s Law of Motion is used to calculate accelerations, velocities, and displacements of granular particles. To study the entrainment process inside granular flow and to verify the new entrainment model, numerical experiments have been carried out using the Discrete Element Method (DEM). Velocities, including translational velocity, rotational velocity and average velocity, total volume, shear stresses are monitored using measurement circles in the numerical experiment. Variations of the depth of erosion at specific locations along the debris flow channel are monitored and the average entrainment rates are calculated. By comparing the numerical experimental results with the analytical solutions, it is found that results from the analytical model agree well with that from the numerical experiments. In order to use the new entrainment model into debris flow runout calculation, the new entrainment model has been incorporated in a runout model based on an energy approach. Entrainment calculation governed by a second order partial differential equation is solved using the finite difference method. The total mass and profile of the channel bed are adjusted during the entrainment calculation. Sensitivity analyses have been carried out on the new model by varying the model parameters including internal friction angle, basal friction angle, turbulent coefficient and mean of Probability Density Function (PDF) etc. Back analysis of historical cases is carried out using the new model. Several case histories have been studied which include the Tsingshan debris flow, Niumian Rock Avalanche, Fjærland debris flow, Faucon debris flow and Zymoetz River rock avalanche. An extremely large rock avalanche occurred on April 9, 2000 at Yigong is also studied in the thesis. Measurements obtained from site investigation, including flow velocity, flow height, entrainment depth at specific locations, run-out distance and total volume at deposition fan, have been used to evaluate the model. The results are encouraging based on comparisons of the run-out distance, front velocity and total volume of the debris. Improvements are required on the entrainment depth and total volume in some cases when lateral spreading of the debris is significant.
This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for the purpose of private, scholarly or scientific research. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
Citation for previous publication
Kang, C., Chan, D., Su, F., & Cui, P. (2016). Runout and entrainment analysis of an extremely large rock avalanche—a case study of Yigong, Tibet, China. Landslides, 1-17.Xing, A. G., Xu, Q., & Gan, J. J. (2015). On characteristics and dynamic analysis of the Niumian valley rock avalanche triggered by the 2008 Wenchuan earthquake, Sichuan, China. Environmental Earth Sciences, 73(7), 3387-3401.Breien, H., De Blasio, F. V., Elverhøi, A., & Høeg, K. (2008). Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides, 5(3), 271-280.Remaître, A., Malet, J. P., & Maquaire, O. (2005). Morphology and sedimentology of a complex debris flow in a clay-shale basin. Earth Surface Processes and Landforms, 30(3), 339-348.Boultbee, N., Stead, D., Schwab, J., & Geertsema, M. (2006). The Zymoetz River rock avalanche, June 2002, British Columbia, Canada. Engineering Geology, 83(1), 76-93.

File Details

Date Uploaded
Date Modified
Audit Status
Audits have not yet been run on this file.
File format: pdf (PDF/A)
Mime type: application/pdf
File size: 10321413
Last modified: 2016:11:16 14:10:34-07:00
Filename: Kang_Chao_201609_PhD.pdf
Original checksum: 4979949818a5559ce4f45b5202f01d8c
Activity of users you follow
User Activity Date