Usage
  • 805 views
  • 685 downloads

Alternative Native Boreal Seed and Plant Delivery Systems for Oil Sands Reclamation

  • Author(s) / Creator(s)
  • The purpose of this document is to review traditional and alternative systems of seed and nursery stock treatment and delivery for use in oil sands reclamation. Treatment systems are considered those activities conducted prior to delivery to the field site while delivery systems include those activities involved in physically deploying the seed and plant material on the reclamation site. Traditional systems are those currently in use by the oil sands reclamation community, while alternative systems are those that have potential or promise for use following additional research. The traditional systems included the following seed treatment and/or delivery systems: natural recovery, direct placement of topsoil, nursery production, planting of nursery stock and basic seed broadcasting. Alternative systems were drawn from a variety sources including: forest industry, agriculture, horticulture, mining, and home gardening. Results of peer-reviewed and non-reviewed scientific studies were included when available; in some cases anecdotal observations and unpublished results were presented. The following twelve alternative systems were identified: enhancement of soil stockpiles, seed priming, seed nano-coating, seed pelleting, multi-species propagation, Jiffy peat pellet®, biodegradable containers, disc seed driller and air seeders, harrowing, push-seeder, hydroseeding and aerial seeding. It was clear that for all the alternative systems examined, further testing would be required on native boreal species in order to determine the effectiveness of the individual system. The following systems were highlighted: 1. Inclusion of targeted seed treatment systems, such as seed pelleting and priming, prior to delivering seeds is suggested as a promising area of future research and high application potential for field trials. 2. Seedling delivery from containers with multiple species (multi-species production) and biodegradable containers are most likely to have merit for specialized applications. However, multi-species production requires verification both at the level of identifying appropriate species mixtures, optimizing greenhouse production and quantification of field performance. Biodegradable containers are a suitable option to further test on slow-growing species that are difficult to produce under standard greenhouse conditions in styroblocks. 3. Improving on basic seed broadcasting with the addition of a delivery system that would improve seed-soil contact is also suggested as beneficial. Harrowing is an easily deployable delivery system at small or large scales while large-scale delivery systems such as disc seeders and air seeders also had merit. The main drawbacks of these approaches are the necessity to conduct activities prior to roll back of woody materials on site, as well as any major surface site activities such as mounding or deep ripping. However, hydroseeding is also an option as it could be deployed following roll back of woody materials. 4. Aerial seeding may also have merit, for specific species (to be tested) on large reclamation areas as well as in situations with remote or difficult access. 5. Lastly, enhancement of soil stockpiles is an alternative delivery system that is closely analogous with the traditional delivery system and best practice of direct placement of topsoil. Reforestation of a soil stockpile, is in principle, a straightforward activity and could easily be implemented into broader revegetation and reclamation plans.

  • Date created
    2014-11-21
  • Subjects / Keywords
  • Type of Item
    Report
  • DOI
    https://doi.org/10.7939/R3ZX64
  • License
    Attribution 3.0 International