This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 3Soft Sensor
- 2Particle filters
- 1Bayesian State Estimation
- 1EM algorithm
- 1Model Plant Mismatch
- 1Model Predictive Control
-
Spring 2012
Limitations of measurement techniques and increasingly complex chemical process render difficulties in obtaining certain critical process variables. The hardware sensor reading may have an obvious bias compared with the real value. Off-line laboratory analysis with high accuracy can only be...
-
Particle Filter for Bayesian State Estimation and Its Application to Soft Sensor Development
DownloadSpring 2012
For chemical engineering processes, state estimation plays a key role in various applications such as process monitoring, fault detection, process optimization and model based control. Thanks to their distinct advantages of inference mechanism, Bayesian state estimators have been extensively...
-
Robust Probabilistic Slow Feature Analysis for Soft Sensor Development and Model Quality Assessment
DownloadFall 2022
Model predictive control (MPC) is a popular advanced control technology. Unfortunately, over time the behaviour of the plant may deviate from its initial design conditions resulting in model-plant-mismatch. The detection and diagnosis of such mismatches is an important task to ensure that MPC...