
“This is ten percent luck, twenty percent skill, fifteen percent
concentrated power of will, five percent pleasure, fifty percent
pain, and a hundred percent reason to remember the name!”

Fort Minor – “Remember The Name”



 

 

University of Alberta 
 

 

 

Modeling and Development of Soft Sensors with Particle 

 Filtering Approach 

 
by 

 

Jing Deng 
 

 

 

 

A thesis submitted to the Faculty of Graduate Studies and Research  

in partial fulfillment of the requirements for the degree of  

 

 

Master of Science 

in 

Process Control 
 

 

 

 

Department of Chemical and Materials Engineering 
 

 

 

 

 

©Jing Deng 

Spring 2012 

Edmonton, Alberta 

 

 

 

 

 
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis 

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is 

converted to, or otherwise made available in digital form, the University of Alberta will advise potential 

users of the thesis of these terms. 

 

The author reserves all other publication and other rights in association with the copyright in the thesis and, 

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or 

otherwise reproduced in any material form whatsoever without the author's prior written permission. 



To my beloved Dad, Mom and Grandfather, who give me
unconditional love and support through my life



Abstract

Limitations of measurement techniques and increasingly complex chemical pro-

cess render difficulties in obtaining certain critical process variables. The hard-

ware sensor reading may have an obvious bias compared with the real value.

Off-line laboratory analysis with high accuracy can only be obtained every

certain period, sometimes even with time delay. Soft sensors are inferential

methods that provide real-time estimation for those critical variables. This

thesis deals with modeling, on-line calibration and implementation issues that

are associated with soft sensor development.

In chemical industries, processes are often designed to perform tasks under

various operating conditions. In order to deal with modeling difficulties ren-

dered by multiple operating conditions, the Expectation-Maximization (EM)

algorithm is applied to deal with the identification problem of nonlinear pa-

rameter varying systems. The existing model is updated using the latest ob-

servation data. The particle filter based Bayesian method is proposed in this

thesis to synthesize different sources of measurement information. An aug-

mented state is constructed to deal with processes with time delay problem.
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Chapter 1

Introduction

1.1 Motivation

Obtaining real-time and accurate measurement of critical process variables
is of great importance from the perspectives of both process monitoring and
process control. The availabilities of some key variables are often restricted
by the limitation of measurement technique or high installation cost. The ex-
isting on-line instrument could have large bias compared with the true value
and may even encounter technical failure. Sometimes off-line laboratory anal-
ysis is performed in accompany with the on-line measurement. Although with
higher accuracy, the off-line analysis can only be available every certain pe-
riod. Therefore it is desired to develop a measurement mechanism which can
synthesize various sources of measurements.

Soft sensors are inferential techniques which provide real-time estimation
for key process variable by making use of information of readily-available sec-
ondary process variables. An important step for soft sensor development is
process modeling. Linear modeling techniques such as Ordinary Least Square
Regression (OLSR), Partial Least Squares Regression (PLSR) and Princi-
pal Component Regreesion (PCR) have been quite mature over the past few
decades. Nonlinear process modeling such as Nonlinear Autoregressive eXoge-
nous (NARX), Artificial Neural Network and Wiener or Hammerstein models
have also been widely applied. Nowadays, with the increase of the process
complexity, chemical plants are often driven to operate under different oper-
ating conditions. Conventional single-model modeling method appears insuf-
ficient in describing the processes with multiple operating condition. As a
result, researchers have developed various multiple modeling methods to deal
with the limitations of conventional single-model base modeling techniques
[3], [4] and [17]. These modeling methods adopt linear model structure at
each operating point and approximate the nonlinear process by interpolating
different local linear models. In this thesis, a nonlinear state space model
based multiple modeling method is developed. The identification of nonlin-

1



ear parameter varying system using particle filter under the framework of the
Expectation-Maximization (EM) algorithm is discussed in Chapter 2. Mean-
while, the missing output data problem is also considered, and is dealt with
by particle filtering approximation.

Models that are built based on physical principle such as mass balance and
energy balance are called first principle models. In practice, some variables are
difficult to measure due to the increasing process complexity and the limitation
of instrumentation, leading to the unavailability of first principle models. Black
box models (data-driven models) which are developed from the historical data
have gained a lot of attention during recent years. As a typical model structure,
the state space model is considered in detail in Chapter 3 and the parameter
estimation of the nonlinear state space model is discussed.

One drawback of data-driven models is that there will always exists model-
plant mismatch especially when there is a sudden change in the operating
condition. Therefore, it is desired to update the existing model with the
newest observation. In Chapter 3, the Bayesian model calibration method is
discussed in detail. With the given model, a Bayesian calibration framework
with model calibration parameters is constructed. This formulation makes
use of different output measurement sources and provides estimation of the
process state.

Another challenge that exists in process industries particularly in oil sands
industry is that lab measurements have time delay before arriving at the
distributed control systems. This problem is called Out Of Sequence Mea-
sureemnt (OOSM) problem [3]. One step or multi steps delay problem has
been solved using backward prediction which applied the inverse model of the
process to the current state. However, this method is only suitable for linear
process models while other solution is needed for nonlinear process models
[3], [4]. Challa et al. [5] deals with the OOSM problem using the augmented
state Kalman Filter (ASKF) where the uncertainty of the delay was resolved
by means of Probabilistic Data Association Filter (PDAF). Chapter 4 of this
thesis deals with the infrequently sampled measurement along with time delay
problem.

1.2 Contributions

The main contributions of this thesis are listed below:
1. Formulate and solve the identification problem of nonlinear parameter

varying system under the framework of the EM algorithm.
2. The missing output problem is addressed by particle filters approxima-

tion which is computational efficient.
3. Formulate a Baysian model calibration strategy which synthesize differ-

ent measurement sources.
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4. Evaluation of the proposed Bayesian calibration method is performed
on a semi-fermenter example as well as an oil sands process.

5. Formulate an augmented state to deal with the time delayed measure-
ment problem.

1.3 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 deals with the iden-
tification problem for nonlinear parameter varying system using particle filter
under the framework of the expectation-maximization (EM) algorithm. The
proposed method is validated through both simulation example and an exper-
iment performed on a pilot-scale setup. Chapter 3 formulates the Bayesian
calibration framework which synthesizes both fast-rate sampled and slow-rate
sampled measurements to update the model prediction. This approach is val-
idated through a fermenter simulation example and is applied to an oil sands
industrial process. In Chapter 4 which deals with the output time delay issue,
an augmented state is constructed and the Baysian calibration proposed in
Chapter 3 is applied to estimate the augmented state. The validation is per-
formed based on a numerical simulation and a semi-fermenter example. The
thesis is concluded in Chapter 5 which summarizes the work that has been
done in this thesis and provides some suggestions for the future research.

This thesis is organized in the paper format. There may be some overlap
between the chapters for sake of completeness of each chapter.
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Chapter 2

Identification of Nonlinear
Parameter Varying Systems
with Missing Output Data

1 This chapter is concerned with identification of nonlinear parameter varying
systems using particle filter under the framework of the expectation-maximizaiton
(EM) algorithm. In chemical industries, processes are often designed to per-
form tasks under various operating conditions. In order to circumvent the
modeling difficulties rendered by multiple operating conditions and the tran-
sitions between different working points, the EM algorithm, which iteratively
increases the likelihood function, is applied. Meanwhile the missing output
data problem which is common in real industry is also considered in this work.
Particle filters are adopted to deal with the computation of expectation func-
tions. The efficiency of the proposed method is illustrated through simulated
examples and a pilot-scale experiment.

2.1 Introduction

Over the past few decades, the research of parameter estimation for nonlinear
processes has witnessed rapid progress as it plays a key role in the development
of mathematical models to describe process behavior. Aspects of parameter
estimation and system identification have been discussed extensively in liter-
ature [1]. Linear modeling techniques have been quite mature over the past
few decades. Nonlinear process modeling such as Nonlinear Autoregressive
eXogenous (NARX), Artificial Neural Network and Wiener or Hammerstein
models have also been widely applied. However, studies on parameter esti-
mation for nonlinear parameter varying system have been sparse. The inborn

1Deng, J., Huang, B.. Identification of nonlinear parameter varying systems with missing
output data. Submitted to AICHE Journal, 2011.

4



nonlinearity of the chemical processes and the production complexity brought
by various working conditions have both increased the estimation difficulties.
In general, chemical processes may behave differently when performing differ-
ent production tasks. This includes the feed raw material property changes, a
varying grade in polymer plants, or reaction load changes, etc.

To overcome the limitations of conventional single-model based modeling
techniques, researchers have developed various multiple modeling strategies.
Shamma et al. [3] first introduced a Linear Parameter Varying (LPV) mod-
eling method, which is featured by its linear structure and varying model
parameters. Due to its capability in approximating nonlinear process, the
LPV modeling method has drawn growing attention from researchers. An
LPV modeling method was put forwarded by Xu et al. [4] in their study of
nonlinear MPC. The process is tested around each operating trajectory and
the global LPV model is identified by interpolating each linear local models
using all available data. Jin and Huang [5] proposed an LPV modeling method
under the framework of the expectation and maximization (EM) algorithm,
which identified the LPV models using all data points collected from the ex-
periments. Their work only considered the linear input-output ARX model as
the local models to approximate a global nonlinear model.

Nonlinear state space model is a general class of models to represent nonlin-
ear dynamic systems. Maximum likelihood estimation of nonlinear parameter
invariant state space models has been studied by Schon et al [8]. However, the
process often operates over various conditions which render different model
parameters. The work conducted in this chapter aims at the identification of
parameter varying nonlinear state space models.

On the other hand, missing data or irregularly sampled data is commonly
observed in industrial practice. Parameter estimation of nonlinear dynamic
models in the presence of missing observation has not been well studied. Miss-
ing data could be caused by a sudden mechanical breakdown, hardware sensor
failure or data acquisition system malfunction, etc. Another increasing com-
mon source for this missing data problem is the integration of communication
networks in process control systems and the subsequent potential for data
losses and packet dropouts.

Some common approaches in dealing with missing data have been presented
and summarized in Khatibisepehr’s work [6]. One intuitive way known as case-
wise deletion is to simply exclude the records that contain missing values. Its
major drawback is that some informative data may also be thrown out in the
meantime. In many chemical industries, for example, process variables such
as flow rate, temperature, stream density are frequently sampled while the key
quality variable like composition which often is of the most interest can only be
obtained after hours of laboratory analysis. Arbitrarily removing the records
where lab data is not available leads to a loss of useful information contained
in fast sampled variables. Another popular treatment of incomplete data set is
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called imputation, including mean substitution, regression imputation, multi-
ple imputation, etc. These methods, by their names, replace all missing value
with the mean of that variable or the prediction using information gained from
other data, which appears to be attractive in the sense that it preserves the
complete data size. Nevertheless, as pointed out by Khatibisepehr [6], the
variances of the data may be considerably changed with imputation .

The work by Gopaluni [9] is an important step towards identification of
parameter invariant nonlinear models with missing observations, where the
EM algorithm is adopted for dealing with missing data and hidden state, and
the particle filter based smoother is applied for computation of the expecta-
tion functions. This chapter extends the work of Gopaluni [9] by considering
parameter varying nonlinear systems. In addition, missing output and param-
eter varying problems in nonlinear state space model parameter estimation are
solved simultaneously under the framework EM algorithm. Particle filters are
employed for computation of expectation functions. The use of particle filter
rather than the smoother significantly reduces the computation load.

The remainder of this chapter is organized as follows: Section 2 states the
identification problem of parameter varying nonlinear state space models with
missing output data. Section 3 begins with a revisit of the EM algorithm and
the derivation of the expression for Q function for nonlinear parameter varying
state space models with missing output data is given. Section 4 provides a
brief description of particle filters and the detail of evaluating the Q function
using particle filters is presented. Numerical simulations as well as an exper-
imental example are illustrated in Section 5 which aim at demonstrating the
effectiveness of the proposed method in nonlinear parameter varying system
identification with missing output data. Section 6 draws the conclusion based
on the results obtained in this chapter.

2.2 Problem Statement

Many industrial processes are often operated in certain“orderly” ways to meet
different production objectives. Such orderly ways are also referred as operat-
ing trajectory which consists of several predesigned operating points. In this
chapter, we use “H” to denote the operating variable according to which the
process is operated.

Consider the nonlinear state space model given by

xt = f(xt−1, ut−1,Θ) + ωt (2.1)

yt = h(xt,Θ) + vt (2.2)

where the system parameters are Θ which are functions of the scheduling vari-
able H such that Θ = g(H). Assume that J operating points are pre-defined
such that at each Hi, i = 1, 2, . . . , J , the process has different parameters in
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its (nonlinear) model, and each local set of parameters θi, i = 1, 2, . . . , J are to
be estimated. xt, ut, yt, ωt and vt are state, measured input, measured output,
process noise and measurement noise, respectively; ωt and vt are independent
and identically distributed Gaussian noises with covariance matrices Q and R
respectively. The input sequence {u1, . . . , uT} and the trajectory of scheduling
variable {H1, . . . , HT} are known.

Let X denote the sequence of hidden states {x1, . . . xT}. The outputs
are available at time {t1, . . . , tα} while missing at time {m1, . . . ,mβ}. Yo =
{yt1 , . . . , ytα} and Ym = {ym1 , . . . , ymβ

} stand for the corresponding observed
outputs set and missing outputs set. It is assumed that the data is missing
completely at random (MCAR) [6]. In other words, the probability that data
missing mechanism does not depend on any part of the observed data or miss-
ing data. The nonlinear model structures in Equation 2.1 and Equation 2.2
are known a priori.

Due to the varying operating condition, a single nonlinear model is not suf-
ficient to represent the process dynamics. Therefore, a global nonlinear model
which is a weighted interpolation of each local nonlinear model is adopted as
follows

xt =
J∑

j=1

αtjxtj (2.3)

yt =
J∑

j=1

αtjytj (2.4)

An exponential weighting function is employed here to denote the weight for
each local model [5]

ωtj = exp(
−(Ht −Hj)

2

2(σj)2
) (2.5)

and the normalized weight α can be derived as

αtj =
ωtj∑J
1 ωtj

(2.6)

where σj represents the validity width for each local model which is bounded
by σmin (the lower bound for σj, j = 1 : J) and σmax (the upper bound
for σj, j = 1 : J). Hence the parameters of each local state space model,
θj, j = 1 : J , as well as the model validity σj, j = 1 : J , are of interest. In the
following, we will show how to formulate the parameter estimation problem
under the scheme of the EM algorithm.
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2.3 Expectation-Maximization Algorithm

2.3.1 EM algorithm revisit

Expectation-maximization (EM) algorithm [7] is a well-known maximum like-
lihood based method, which iterates between two steps, the expectation step
and maximization step. The basic principle behind the EM algorithm is that
instead of performing a direct optimization of the likelihood of the observed
data, which is typically not tractable, one augments the observed data set Cobs

with missing data set Cmis to perform a series of iterative optimizations. In
the EM procedure both the complete data log-likelihood, log[(Cobs, Cmis|Θ)]
and the conditional predictive distribution, p(Cmis|Cobs,Θ), are calculated.
Consisting of two steps, namely the expectation step (E-step) and the maxi-
mization step (M-step), the EM algorithm proceeds as follows:

Let Θk be the current best approximation to the mode of the observed
posterior or the best estimated parameters using all available data. With the
parameters currently available and data that are observed, the distribution
function of the missing observations may be determined. Based on the dis-
tribution function the expectation of the complete data with the expectation
taking over the missing observation can be derived, which is known as the Q
function. The E-step is to compute the Q function which is defined by

Q(Θ|Θk) = ECmis|Cobs,Θk{log[p(Cobs, Cmis|Θ)]}

=

∫
Cmis

log[p(Cobs, Cmis)|Θ]p(Cmis|Cobs,Θ
k)dCmis (2.7)

and the M-step is to maximize the Q function with respect to Θ to obtain

Θk+1 = argmax
Θ

Q(Θ|Θk) (2.8)

The E-step and M-step iterate until convergence.

2.3.2 Formulation of the multiple model parameter es-
timation based on the EM algorithm

Consider the state-space model described in Equation 2.1 and Equation 2.2.
A hidden variable It is introduced to represent the identity of the sub model
which takes effect at time t. The observed data set Cobs are Yo = {yt1 , . . . , ytα},
{u1, . . . , uT} and {H1, . . . , HT}, while the hidden states X = {x1, . . . , xT},
the hidden model identity I = {I1, . . . , IT} and the missing outputs Ym =
{ym1 , . . . , ymβ

} can be viewed as the latent or missing data Cmis. Since input
sequence {u1, . . . , uT} are considered known, it will not play a role in the
following derivation and will be omitted for simplicity. Let p(Cobs, Cmis|Θ)
denote the complete likelihood function including both the hidden states and
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observations. The Q function is defined as the expectation of the log-likelihood
function log[p(x1:T , I1:T , H1:T , y1:T |Θ)] with respect to all latent variables or
data which is given by

Q(Θ|Θk) = ECmis|Cobs,Θk{log[p(Cobs, Cmis|Θ)]}
= Ex1:T ,I1:T ,Ym|Cobs,Θk{log[p(Yo, Ym, H1:T , x1:T , I1:T |Θ)]}
= Ex1:T ,I1:T ,Ym|Cobs,Θk{log[p(y1:T , H1:T , x1:T , I1:T |Θ)] (2.9)

In Equation 2.9, the term p(y1:T , H1:T , x1:T , I1:T |Θ) which is the joint density
function of the full data set can be decomposed using the Bayesian property
as

p(y1:T , H1:T , x1:T , I1:T |Θ)

= p(y1:T |H1:T , x1:T , I1:T ,Θ)p(H1:T , x1:T , I1:T |Θ)

= p(y1:T |H1:T , x1:T , I1:T ,Θ)p(x1:T |H1:T , I1:T ,Θ)p(H1:T , I1:T |Θ)

= p(y1:T |H1:T , x1:T , I1:T ,Θ)p(x1:T |H1:T , I1:T ,Θ)p(I1:T |H1:T ,Θ) · p(H1:T |Θ)
(2.10)

The first term can be further written as

p(y1:T |H1:T , x1:T , I1:T ,Θ)

= p(yT |y1:T−1, H1:T , x1:T , I1:T ,Θ)p(y1:T−1|H1:T , x1:T , I1:T ,Θ)

= p(yT |y1:T−1, H1:T , x1:T , I1:T ,Θ)p(yT−1|y1:T−2, H1:T , x1:T , I1:T ,Θ)

. . . p(y2|y1, H1:T , x1:T , I1:T ,Θ)p(y1|H1:T , x1:T , I1:T ,Θ)

= p(yT |xT , IT ,Θ)p(yT−1|xT−1, IT−1,Θ) . . . p(y1|x1, I1,Θ)

=
T∏
t=1

p(yt|xt,ΘIt) (2.11)

where in the derivation of Equation 2.11, we have used Markov property and
the relation that given the model identity I, the conditional distribution of y
is independent of the scheduling variable H. Similarly the second term can be
simplified to

p(x1:T |H1:T , I1:T ,Θ)

= p(xT |x1:T−1, H1:T , I1:T ,Θ)p(x1:T−1|H1:T , I1:T ,Θ)

= p(xT |x1:T−1, H1:T , I1:T ,Θ)p(xT−1|x1:T−2, H1:T , I1:T ,Θ)

. . . p(x2|x1, H1:T , x1:T , I1:T ,Θ)p(x1|H1:T , x1:T , I1:T ,Θ)

= p(xT |xT−1, IT ,Θ)p(xT−1|xT−2, IT−1,Θ) . . . p(x2|x1, I1,Θ)

· p(x1|I1,Θ)

= p(x1|ΘI1)
T∏
t=2

p(xt|xt−1,ΘIt) (2.12)
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where in the derivation of Equation 2.12, the Markov property about the state
has also been applied. The third term can be derived below:

p(I1:T |H1:T ,Θ)

= p(IT |I1:T−1, H1:T ,Θ)p(I1:T−1|H1:T ,Θ)

= p(IT |I1:T−1, H1:TΘ)p(IT−1|I1:T−2, H1:T ,Θ) · · · p(I1|H1:T ,Θ)

= p(IT |HT ,Θ)p(IT−1|HT−1,Θ) . . . p(I1|H1,Θ)

=
T∏
t=1

p(It|Ht,ΘIt) (2.13)

Derivation of the third term has used the fact that the distribution of the model
identity is completely determined by the scheduling variable Ht. Substituting
Equation 2.11, Equation 2.12 and Equation 2.13 into Equation 3.8, the joint
density of the likelihood of the full data set can be rewritten as

p(y1:T , H1:T , x1:T , I1:T |Θ)

=
T∏
t=1

(p(yt|xt,ΘIt)p(It|Ht,ΘIt)) · p(x1|ΘI1)
T∏
t=2

p(xt|xt−1,ΘIt) · C (2.14)

where C = p(H1:T |Θ) is considered as a constant since the trajectory of the
scheduling variable {H1 . . . HT} is known and does not depend on Θ. Further-
more, substituting Equation 3.14 into Equation 2.9, the Q function can be
rearranged as

Q(Θ|Θk)

= Ex1:T ,I1:T ,Ym|Cobs,Θk{log[
T∏
t=1

(p(yt|xt,ΘIt)p(It|Ht,ΘIt)) · p(x1|ΘI1)

T∏
t=2

p(xt|xt−1,ΘIt) · C]}

= Ex1:T ,I1:T ,Ym|Cobs,Θk{
T∑
t=1

[log(p(yt|xt,ΘIt) + logp(It|Ht,ΘIt)] + logp(x1|ΘI1)

+
T∑
t=2

logp(xt|xt−1,ΘIt) + logC} (2.15)

10



Since the possible set of the operating points are known a priori, the expecta-
tion can be taken over the discrete variable It first as:

Q(Θ|Θk) = Ex1:T ,Ym|Cobs,Θk{
T∑
t=1

J∑
j=1

logp(yt|xt,Θj) · p(It = j|Cobs,Θ
k)

+
T∑
t=1

J∑
j=1

logp(It = j|σj, Ht) · p(It = j|Cobs,Θ
k)

+
J∑

j=1

logp(x1|Θ1) · p(It = j|Cobs,Θ
k)

+
T∑
t=2

J∑
j=1

logp(xt|xt−1,Θj) · p(It = j|Cobs,Θ
k)

+
J∑

j=1

logC · p(It = j|Cobs,Θ
k)} (2.16)

Then the expectation is further taken over continuous variables states X(x1:T )
and missing observations Ym:

=

∫
X,Ym

T∑
t=1

J∑
j=1

logp(yt|xt,Θj) · p(It = j|Cobs,Θ
k) · p(x1:T , ym1:mβ

|Cobs,Θ
k)

dx1:Tdym1:mβ

+

∫
X,Ym

T∑
t=1

J∑
j=1

logp(It = j|σj, Ht) · p(It = j|Cobs,Θ
k) · p(x1:T , ym1:mβ

|Cobs,Θ
k)

dx1:Tdym1:mβ

+

∫
X,Ym

J∑
j=1

logp(x1|Θ1) · p(It = j|Cobs,Θ
k) · p(x1:T , ym1:mβ

|Cobs,Θ
k)

dx1:Tdym1:mβ

+

∫
X,Ym

T∑
t=2

J∑
j=1

logp(xt|xt−1,Θj) · p(It = j|Cobs,Θ
k) · p(x1:T , ym1:mβ

|Cobs,Θ
k)

dx1:Tdym1:mβ

+

∫
X,Ym

J∑
j=1

logC · p(It = j|Cobs,Θ
k)} · p(x1:T , ym1:mβ

|Cobs,Θ
k)dx1:Tdym1:mβ

(2.17)
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Given the previous division of the output into observed and missing subset Yo

and Ym, the derivation can be continued as

=
t=tα∑
t=t1

J∑
j=1

∫
X

logp(yt|xt,Θj) · p(It = j|Cobs,Θ
k) · [

∫
Ym

p(x1:T , ym1:mβ
|Cobs,Θ

k)

dym1:mβ
]dx1:T

+

t=mβ∑
t=m1

J∑
j=1

∫
X,Ym

logp(yt|xt,Θj) · p(It = j|Cobs,Θ
k) · p(x1:T , ym1:mβ

|Cobs,Θ
k)

dx1:Tdym1:mβ

+
t=T∑
t=1

J∑
j=1

∫
X

logp(It = j|σj, Ht) · p(It = j|Cobs,Θ
k) · [

∫
Ym

p(x1:T , ym1:mβ
|Cobs,Θ

k)

dym1:mβ
] · dx1:T

+
J∑

j=1

∫
X

logp(x1|Θ1) · p(It = j|Cobs,Θ
k) · [

∫
Ym

p(x1:T , ym1:mβ
|Cobs,Θ

k)

dym1:mβ
]dx1:T

+
t=T∑
t=2

J∑
j=1

∫
X

logp(xt|xt−1,Θj) · p(It = j|Cobs,Θ
k) · [

∫
Ym

p(x1:T , ym1:mβ
|Cobs,Θ

k)

dym1:mβ
] · dx1:T

+
J∑

j=1

∫
X

logC · p(It = j|Cobs,Θ
k) · [

∫
Ym

p(x1:T , ym1:mβ
|Cobs,Θ

k)dym1:mβ
]dx1:T

=
t=tα∑
t=t1

J∑
j=1

∫
X

logp(yt|xt,Θj) · p(It = j|Cobs,Θ
k) · p(x1:T |Cobs,Θ

k)dx1:T

+

t=mβ∑
t=m1

J∑
j=1

∫
X,Ym

logp(yt|xt,Θj) · p(It = j|Cobs,Θ
k) · p(x1:T , ym1:mβ

|Cobs,Θ
k)·

dx1:Tdym1:mβ

+
t=T∑
t=1

J∑
j=1

logp(It = j|σj, Ht) · p(It = j|Cobs,Θ
k)

+
J∑

j=1

∫
X

logp(x1|Θ1) · p(It = j|Cobs,Θ
k) · p(x1|Cobs,Θ

k)dx1

+
t=T∑
t=2

J∑
j=1

∫
X

logp(xt|xt−1,Θj) · p(It = j|Cobs,Θ
k) · p(x1:T |Cobs,Θ

k)dx1:T

+
J∑

j=1

logC · p(It = j|Cobs,Θ
k) (2.18)
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The probability of the jth local model taking effect at the tth sampling time
p(It = j|Cobs,Θ

k) can be calculated as

p(It = j|Cobs,Θ
k) = exp(

−(Ht −Hj)
2

2(σj)2
) (2.19)

where Ht denotes the measurement of the scheduling variable at time t, Hj

is the jth operating point and σj represents the validity width of the jth local
model.

In order to evaluate the Q function in Equation 2.18, the values of density
functions p(x1:T |Cobs,Θ

k) and p(x1:T , ym1:mβ
|Cobs,Θ

k) are needed. Since di-
rect calculations are intractable, those density functions are to be numerically
calculated using particle filter in the next section.

2.4 Computation through Particle Filtering

2.4.1 Particle filters revisit

The basic idea of particle filters is to represent the desired posterior density
function by a series of particles with associated weights, i.e. {xi

t, w
i
t}Ni=1. Then

the density function of the states given the current estimation of parameters
Θk can be discretely approximated as [12]

p(xt|yt1:tβ ,Θk) ≈
N∑
i=1

ωi
tδ(xt − xi

t) (2.20)

where δ(·) is the Dirac delta function, tβ ≤ t; N is the number of particles; ωi
t is

the normalized weight associated with the ith particle such that
∑N

i=1 ω
i
t = 1.

Suppose that at time t− 1, a set of particles {xi
1:t−1}Ni=1 are available and we

want to obtain N particles which represent the hidden state for time t. Since
it is usually difficult to directly draw samples from the true posterior density
p(x1:t|yt1:tβ ,Θk), the principle of importance sampling [10] is adopted. The
idea is to use a so called importance density q(·) from which one can easily
draw samples xi

1:t, i = 1, . . . , N . Then the posterior is obtained by resampling
important sampling. It has been shown that, as long as the support region of
the posterior density belongs to that of the importance density, the particle
approximation is unbiased [11]. The importance sampling is commonly chosen
as the probability of state transition, i.e.

q(xt|yt1:tβ ,Θk) = p(xt|xt−1,Θ
k) (2.21)

With this choice, the weight for each particle can be derived as [12]

ωi
t ∝ ωi

t−1p(yt|xi
t,Θ

k) (2.22)
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For time instants t = m1, . . . ,mβ, when the outputs are not available, draw
particles from the importance density p(xt|xi

t−1,Θ
k) and keep the weights un-

changed, i.e.
ωi
t = ωi

t−1 (2.23)

To avoid the degeneracy problem [12], the importance sampling step is usually
followed by a resampling procedure. The idea is to discard the particles with
small weights and concentrate on those with large weights. After resampling,
each particle’s weight will be reset to ωi

t =
1
N
.

2.4.2 Particle filters approximation and cautious resam-
pling

The problem brought by brute force resampling is that it reduces the diversity
among particles. One solution is to resample the particles only when it is nec-
essary instead of performing it at each step. To be specific, Neff is introduced
to represent the effective particle number [13]

Neff =
1∑N

i=1(ω
i
t)

2
(2.24)

where ωi
t is the normalized weight obtained through Equation 2.22. It implies

that, as the variance of the weights grows very large, the effective sample size
decreases to a small number which indicates a severe degeneracy problem. In
practice, one uses resampling to eliminate useless particles only when a severe
degeneracy problem occurs, say, Neff falls below the threshold Nthred.

Given the current estimation of parameters, the particle filter algorithm is
summarized as follows:

Step 1. Initialization. Draw initial N particles {xi
0}Ni=1 from the prior

density p(x0|Θk) and set each particle’s weight to 1
N
. Set t=1.

Step 2. Importance sampling. Generate predicted particles {xi
t}Ni=1

from the importance density p(xt|xt−1,Θ
k).

Step 3. Assigning weights. Assign the weight to each particle using
Equation 3.12 when yt is available. Otherwise, calculate the weights according
to Equation 2.23.

Step 4. Resampling. Compute the number of effective particles using
Equation 3.13. If Neff is less than the threshold Nthred, then perform resam-
pling and replace the predicted particles in Step 2 with resampled particles.
Reset the weights of resampled particles uniformly as ωi

t =
1
N
. Otherwise, go

to Step 5.
Step 5. Set t = t+ 1 and repeat Step 2 to Step 4 for t ≤ T .
Estimation of p(x1:T |Cobs,Θ

k) and p(x1:T , ym1:mβ
|Cobs,Θ

k) is a problem of
smoothing all states with all available observations. Its computation with
the iterative EM algorithm is intensive. With further marginalization of the
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states and the missing observations following the approach of Gopaluni [9],
the Q function obtained in Equation 2.18 can be rewritten as

Q(Θ|Θk) =
t=tα∑
t=t1

J∑
j=1

∫
X

logp(yt|xt,Θj) · p(It = j|Cobs,Θ
k) · p(xt|Cobs,Θ

k)dxt

+

t=mβ∑
t=m1

J∑
j=1

∫
X,Ym

logp(yt|xt,Θj) · p(It = j|Cobs,Θ
k) · p(xt, yt|Cobs,Θ

k)

dxtdyt

+
t=T∑
t=1

J∑
j=1

logp(It = j|σj, Ht) · p(It = j|Cobs,Θ
k)

+
J∑

j=1

∫
X

logp(x1|Θ1) · p(It = j|Cobs,Θ
k) · p(x1|Cobs,Θ

k)dx1

+
t=T∑
t=2

J∑
j=1

∫
X

logp(xt|xt−1,Θj) · p(It = j|Cobs,Θ
k) · p(xt−1:t|Cobs,Θ

k)

dxt−1:t

+
J∑

j=1

logC · p(It = j|Cobs,Θ
k) (2.25)

Calculation of p(xt|Cobs,Θ
k), p(xt, yt|Cobs,Θ

k) and p(xt−1, xt|Cobs,Θ
k) is a smooth-

ing problem, of which the computation cost is very high. A practical solution
is to apply recursive state filtering such that p(xt|Cobs,Θ

k) is recursively ap-
proximated by p(xt|yt1:tβ ,Θk) for t = 1 : T , p(xt, yt|Cobs,Θ

k) is recursively
approximated by p(xt, yt|yt1:tβ ,Θk) for t = 1 : T , and p(xt, xt+1|Cobs,Θ

k) is re-
cursively approximated by p(xt, xt+1|yt1:tβ ,Θk) for t = 1 : T − 1, where tβ ≤ t.
This solution can significantly reduce the computation complexity and thus
make the solution possible in real-time applications.

In Equation 2.25, the density function p(xt|Cobs,Θ
k) is approximated using

particle filters as

p(xt|Cobs,Θ
k) ≈p(xt|yt1:tβ ,Θk)

=
N∑
i=1

ωi
tδ(xt − xi

t) (2.26)

When the observation is missing, the joint density of xt and yt is required,
which can be derived as

p(xt, yt|Cobs,Θ
k) ≈p(xt, yt|yt1:tβ ,Θk)

=p(yt|xt,Θ
k)p(xt|yt1:tβ ,Θk) (2.27)
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Since yt is missing, one can replace it with the predicted yit which is the pre-
diction using xi

t such that
yit = h(xi

t,Θ
k) (2.28)

Therefore,

p(xt, yt|Cobs,Θ
k) ≈

N∑
i=1

ωi
t|xδ(xt − xi

t)δ(yt − yit) (2.29)

where

ωi
t|x =

p(yit|xi
t,Θ

k)p(xi
t|yt1:tβ ,Θk)∑N

i=1 p(y
i
t|xi

t,Θ
k)p(xi

t|yt1:tβ ,Θk)
(2.30)

Using Equation 2.28,

p(yit|xi
t,Θ

k) =
1√
2πR

exp(−(yit − h(xi
t,Θ

k))2

2R
)

=
1√
2πR

exp(−(h(xi
t,Θ

k)− h(xi
t,Θ

k))2

2R
)

=1 (2.31)

Hence,

ωi
t|x =

p(xi
t|yt1:tβ ,Θk)∑N

i=1 p(x
i
t|yt1:tβ ,Θk)

=ωi
t (2.32)

As for the joint density function of xt and xt+1, it can be approximated as

p(xt, xt+1|Cobs,Θ
k) ≈p(xt, xt+1|yt1:tβ ,Θk)

=p(xt+1|xt,Θ
k)p(xt|yt1:tβ ,Θk)

=
N∑
i=1

ωi
t|t+1δ(xt − xi

t)δ(xt+1 − xi
t+1) (2.33)

where

ωi
t|t+1 =

p(xi
t+1|xi

t,Θ
k)p(xi

t|yt1:tβ ,Θk)∑N
i=1 p(x

i
t+1|xi

t,Θ
k)p(xi

t|yt1:tβ ,Θk)
(2.34)

Substituting these approximated density functions, the Q function in Equation
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2.25 can be finally obtained.

Q(Θ|Θk) ≈
t=tα∑
t=t1

J∑
j=1

N∑
i=1

ωi
tlogp(yt|xi

t,Θj) · p(It = j|Cobs,Θ
k)

+

t=mβ∑
t=m1

J∑
j=1

N∑
i=1

ωi
tlogp(y

i
t|xi

t,Θj) · p(It = j|Cobs,Θ
k)

+
t=T∑
t=1

J∑
j=1

logp(It = j|σj, Ht) · p(It = j|Cobs,Θ
k)

+
J∑

j=1

N∑
i=1

ωi
1logp(x

i
1|Θ1) · p(It = j|Cobs,Θ

k)

+
t=T∑
t=2

J∑
j=1

N∑
i=1

ωi
t−1|tlogp(x

i
t|xi

t−1,Θj) · p(It = j|Cobs,Θ
k)

+
J∑

j=1

logC · p(It = j|Cobs,Θ
k) (2.35)

With the approximated Q function, the EM algorithm can hence be imple-
mented. In the expectation step, the Q function is evaluated according to
Equation 2.35 with the current estimated parameters Θk

j , j = 1 : J . In the

next maximization step, the new parameters Θk+1
j , j = 1 : J , are obtained by

maximizing the Q function.
To maximize the Q function over parameters Θ, derivative operation is

performed with respect to each parameter. Therefore, optimal estimation of
system parameters at each iteration can be calculated by equating the deriva-
tives to zero, i.e. ∂Q

θji
= 0, where θji is the ith system parameter for the jth

local model.
The EM algorithm is summarized as follows:
Step 1. Initialization. Start with the initial parameters Θ0

j , j = 1 : J ,
and set t=0.

Step 2. Expectation. At time t, calculate the approximate Q function
using 2.35, given the current estimation of the system parameters Θk.

Step 3. Maximization. Maximize the approximated Q function and get
the new parameters Θk+1

j , j = 1 : J . Set k=k+1.
Step 4. Repeat Step 2 and Step 3 until the converge condition is satisfied,

i.e. the change of the estimated parameters between two iterations is less than
the tolerance.

The validity for each local model σj, j = 1 : J also needs to be updated
during each iteration. Due to the usage of the exponential function as it is
shown in Equation 2.5, an analytical expression is difficult to obtain when max-
imizing the Q function [5]. The mathematical formulation of the optimization
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problem in the search for optimal oi, i = 1, 2 . . . J values can be expressed as:

max
oj ,j=1,2...J

t=T∑
t=1

N∑
i=1

J∑
j=1

ωi
tlogp(It = j|σj, Ht) · P (It = j|Cobs,Θ

k)

S.t. omin ≤ σj, j = 1, 2 . . . J ≤ σmax (2.36)

where log p(It = j | σj, Ht) can be calculated from Equation 2.6. p(It = j|Cobs,Θ
k)

represents the probability of the data point belonging to ith sub-model at time
t.

In this chapter, a constrained nonlinear optimization function named ‘fmin-
con’ provided by “MATLAB” is adopted in a search for the optimal value for
σj at each iteration of the EM algorithm.

Finally, having all the estimated model parameters Θj, j = 1 : J and
validity σj, j = 1 : J for each local model, the global model can be obtained
by substituting the estimated parameters into Equation 2.4.

2.5 Simulations and Pilot-scale Experiment

In this section, the proposed approach is evaluated through both numerical
simulations as well as experimental verification. Its efficiency in handling
missing outputs with less computational cost will be demonstrated. All the
simulations were run on a 3.00 GHz CPU with 4 GB RAM PC using MATLAB
2009a.

2.5.1 A numerical simulation example

A first order process with varying system parameters is utilized here to demon-
strate the efficiency of the proposed parameter-varying model estimation method.
This process was originally used in Zhu and Xu (2008) [14] as an illustrative
example. It is described by the following equation:

G(s,H) =
K(H)

τ(H)s+ 1
(2.37)

where both the process gain K(H) and the process time constant τ(H) are
nonlinear functions of the scheduling variable H. The specific nonlinear rela-
tion is expressed as follows:

K(H) = 0.6 +H2, H ∈ [1, 4] (2.38)

τ(H) = 3 + 0.5H3, H ∈ [1, 4] (2.39)
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By assuming that the observation yt is a cosine function of the state, this
process can be converted to the following nonlinear state space model:

ẋt = a(H)xt + b(H)ut + ωt

yt = cos(xt) + vt (2.40)

where

a(H) = − 1

τ(H)

b(H) =
K(H)

τ(H)
(2.41)

Apparently, over the whole operating range of the process, the gain as
well as the time constant changes dramatically and one single process model
would hardly capture the dynamics of the process in its complete operating
range. In other words, one local model cannot give a good approximation of
the process behavior throughout the whole operating trajectory. Therefore,
multiple models or a parameter-varying global model is required here in order
to describe the behavior of the process under different operating conditions.

It is pre-determined that the process is to be tested at three predesigned
local operating points:

H1 = 1, H2 = 2.25, H3 = 4 (2.42)

When transition from one operating point to the other, scheduling variable H
is gradually increased by a fixed interval. Figure 2.1 shows the trajectory of
the scheduling variable.

The process input u switches randomly among multiple levels throughout
the whole experiment.

T=250 measurements are collected from the simulation. Note that the re-
lations between parameters and the scheduling variable expressed in Equation
2.38 and Equation 2.39 are assumed unknown in the following identification
process. The proposed multiple model parameter estimation method is then
applied. In order to test the algorithm’s capability in handling the missing
data, different portions of the output data are randomly removed from the
model training data set to simulate missing data problem. N=150 particles
are used for the particle filter computation.

In the expectation step of the EM algorithm, the Q function is calculated
according to 2.35, where

log[p(xi
t|xi

t−1,Θj)] = log[
1√
2πQx

exp[−1

2

(xi
t − ajx

i
t−1 − bjut−1)

2

Qx

] (2.43)

For t = t1 : tα,

log[p(yt|xi
t,Θj)] = log[

1√
2πQy

exp[−1

2

(yt − cos xi
t)

2

Qy

] (2.44)
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Figure 2.1: Trajectory of the scheduling variable H

For t = m1 : mβ,

log[p(yt|xi
t,Θj)] = log[

1√
2πQy

exp[−1

2

(yit − cos xi
t)

2

Qy

] (2.45)

where yit = cos xi
t.

As for p(It = j|Cobs,Θ
k), it can be calculated according to Equation 2.6 as

p(It = j|Cobs,Θ
k) = exp(

−(Ht −Hj)
2

2(σj)2
) (2.46)

In the maximization step of the EM algorithm, by taking derivative over
the Q function and equating it to zero, each individual component of the
parameters is hence calculated as

anewj =

∑T
t=2

∑N
i=1 ω

i
t · exp(

−(Ht−Hj)
2

2(σj)2
) · (xi

tx
i
t−1 − boldxi

t−1ut−1)∑T
t=2

∑N
i=1 ω

i
t · exp(

−(Ht−Hj)2

2(σj)2
) · (xi

t−1)
2

(2.47)

bnewj =

∑T
t=2

∑N
i=1 ω

i
t · exp(

−(Ht−Hj)
2

2(σj)2
) · (xi

tut−1 − aoldxi
t−1ut−1)∑T

t=2

∑N
i=1 ω

i
t · exp(

−(Ht−Hj)2

2(σj)2
) · u2

t−1

(2.48)

The trajectories of the estimated parameters for each local model when
25% output data are missing are shown in Figure 2.2 and Figure 2.3. The
estimated parameter values after 150 iterations are given in Table 2.1 and
Table 2.2.
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Table 2.1: Estimated parameter a after 150 iterations
True value a1 = 0.7143 a2 = 0.8850 a3 = 0.9715

Proportion of missing output a1 a2 a3
Full data set 0.7258 0.8952 0.9628

25% 0.7074 0.8628 0.9615
50% 0.7021 0.8654 0.9751
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Figure 2.2: Trajectories of estimated parameter a for each local model when
25% observations are missing.

Table 2.2: Estimated parameter b after 150 iterations
True value b1 = 0.4571 b2 = 0.6512 b3 = 0.4743

Proportion of missing output b1 b2 b3
Full data set 0.4650 0.6601 0.4798

25% 0.4779 0.6548 0.4534
50% 0.4716 0.6570 0.4681

The comparison result of the identified global model with the true output is
displayed in Figure 2.4. Here to better test the validity of the identified model,
model validation is conducted under other two different operating points:

H4 = 1.75, H5 = 3 (2.49)
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Figure 2.3: Trajectories of estimated parameter b for each local model when
25% observations are missing.

and the comparison of the global model prediction with the true process output
is shown in Figure 2.5.

Figure 2.6 provides a weighting map of each local model under different
scheduling values. Based on this calculated weighting map as well as Figure
2.4, model predictions can be calculated for all the H values.

Comparison result displayed in Figure 2.4 and Figure 2.5 shows that the
identified global model not only can well capture the process dynamics under
the training operating conditions, but also perform well in capturing the pro-
cess dynamics at other operating points that are different from the operating
points within the training data. This confirms the effectiveness of the identi-
fied global model in approximating the real process dynamics throughout the
operating range.

2.5.2 Continuous stirred tank reactor

This model has been utilized as the illustration examples in Gopaluni (2008)
[9] and Jin and Huang (2010) [5]. The system is described by the following set
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Figure 2.4: Validation of the identified global model against the model training
data set.
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Figure 2.5: Cross validation of the identified global model.

of differential equations:

dCA(t)

dt
= q(t)

V
(CA0(t)− CA(t))− k0CA(t)exp(

−E
RT (t)

) (2.50)

dT (t)

dt
= q(t)

V
(T0(t)− T (t))− (∆H)k0CA(t)

ρCp
exp( −E

RT (t)
)

+ ρcCpc

ρCpV
qc(t){1− exp( −hA

qc(t)ρCp
)}(Tc0(t)− T (t)) (2.51)
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Figure 2.6: Weight of each local model at different operating points

where CA is the outlet reagent concentration (g/l); T is the reactor temperature
(g/l); the inlet flow rate q is the system input. The explanations of the system
variables and their corresponding steady state values are given in Table 2.3.
We consider the temperature T as an interested output variable. The coolant
flow rate qc has a direct impact on the process dynamic; and it is the scheduling
variable H from which the operation condition of the process is determined.
The trajectory of the scheduling variable is given in Figure 2.7.
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Figure 2.7: Trajectory of the scheduling variable H
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Table 2.3: CSTR model parameters and their steady state values
parameters steady state value

production concentration of Component A, CA output1
temperature of the reactor, T output2

feed Concentration of Component A, CA0 1mol/L
feed temperature, T0 350.0 K
specific heats, Cp, Cpc 1 cal/(g K)
liquid density, ρ, ρc 1× 103 g/L
heat of reaction, ∆H −2× 105 cal/mol

activation energy term, E/R 1× 104 K
reaction rate constant, k0 7.2× 1010min−1

heat transfer term, hA 7× 105 cal/(min K)
the reactor volume, V 100L

inlet coolant temperature, Tc0 350.0 K
process flow rate, q input
coolant flow rate, qc Scheduling variable

The system parameters to be estimated are θ1 and θ2 which are both func-
tions of the scheduling variable qc such that

θ1 =
ρcCpc

ρCp

H(t) (2.52)

θ2 =
hA

H(t)ρCp

(2.53)

Finally the differential equations can be written in the following form with θ1
and θ2 as varying unknown parameters:

dCA(t)

dt
= q(t)

V
(CA0(t)− CA(t))− k0CA(t)exp(

−E
RT (t)

) (2.54)

dT (t)

dt
= q(t)

V
(T0(t)− T (t))− (∆H)k0CA(t)

ρCp
exp( −E

RT (t)
)

+θ1{1− exp(−θ2)}(Tc0(t)− T (t)) (2.55)

The process is operated at three different operating pointsH1 = 98L/min;H2 =
100L/min;H3 = 102L/min; during the transition period the dilution factor
is increased by a fixed step size and no additional excitation signal is added
to the dilution factor. System parameters θ1 and θ2 vary with the scheduling
variable, resulting in a time varying nonlinear process which cannot be ade-
quately described by a single nonlinear model. The experiment is performed
under these three operation conditions and the training data collected with
25% output data randomly erased.

The algorithm is applied to the training data and an approximate global
model is obtained afterwards. Once again the explicit relations expressed
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in Equation 2.52 and Equation 2.53 are assumed unknown in the following
identification process. The result of the model validation for the training data
is shown in Figure 2.8.
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Figure 2.8: Validation of the identified global model against the model training
data set. Blue line represent the real process output and the red line is the
simulated output from the identified global model

To better test the algorithm, additional simulation is conducted under
another operating point H1 = 99L/min. The cross validation is given in
Figure 2.9.

Figure 2.10 provides a weighting map of each local model under different
scheduling values. Based on this calculated weighting map as well as Figure
2.4, model predictions can be calculated under all the H values within the
operating range.

Comparison results displayed in Figure 2.8 and Figure 2.9 show that the
identified global model can well capture the process dynamics at both training
operating points as well as other operating points that are not included in the
training operating points.

2.5.3 Experimental evaluation: a multi-tank system

In this section, an experimental evaluation on a three-tank system is performed
to further verify the effectiveness of the proposed algorithm. Figure 2.11 il-
lustrates the simplified process setup of the three-tank system which consists
of three tanks placed on top of each other. During the experiment, water is
pumped from the bottom supply tank into the top tank and then flows to
each tank by gravity. There are three valves, one for each tank, by adjusting
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Figure 2.9: Cross validation of the identified global model. Blue line represent
the real process output and the red line is the simulated output from the
identified global model
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Figure 2.10: Weight of each local model at different operating points

which the outflow rate from each tank can be controlled. The nonlinear model
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describing the process dynamics is given by

dH1

dt
= 1

β1
q − 1

C1H
α1
1
C1H

α1
1

dH2

dt
= 1

β2
C1H

α1
1 − 1

β2
C2H

α2
2

dH3

dt
= 1

β3
C2H

α2
2 − 1

β3
C3H

α3
3 (2.56)

where
- q is the inlet flow rate into the upper tank;
- Hi is the water level of the ith tank, i = 1, 2, 3;
- Ci is the resistance of the output orifice of the ith tank, i = 1, 2, 3;
- βi is the cross sectional area of the ith tank, i = 1, 2, 3;
- αi is the flow coefficient of the ith tank, i = 1, 2, 3.

Figure 2.11: Three tank system schematic

The process dynamics of the second tank is of interest in this study. The
state space model with the water level in the second tank H2 as the state is

28



given by

dH2

dt
=

1

β2

C1H
α1
1 − 1

β2

C2H
α2
2 + wt

yt =xt + vt (2.57)

From 2.57, it can be seen that water level of the first tank has a direct impact
on the second tank water level. Therefore, H1 is chosen as the scheduling
variable of the system. Three different operating points are selected as shown
in Table 2.4. The water level of the top tank H1 is maintained at the desired
value through a PID controller by manipulating the inlet flow rate into the
top tank.

Table 2.4: Designed operating point for the experiment
Operating points, H1m,m = 1, 2, 3, 4

5 (cm)
10 (cm)
14 (cm)

When transition from one operating point to the other, the water level in
the top tank increases at a fixed step over the transition period until reaches
the value of the next operating point. The trajectory of the scheduling variable
H1 is shown in Figure 2.12.
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Figure 2.12: Three tank system scheduling variable for the self validation

The value of α2 is chosen as 0.5 according to the multi-tank system experi-
ment manual. This is an appropriate assumption as the inlet flow rate is fairly
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small so that the water dynamic in each tank can be considered as laminar
flow. The output orifice resistance C2 is directly affected by the valve position
of the second tank V2; hence C2 can be approximated as linear function of V2

such that
C2 ≈ α · V2 (2.58)

The sectional area of the second tank is given below

β2 = c · w +
H2

H2max

· b · w (2.59)

where c, w, b, H2max are the geometrical parameters of the second tank with
each value given as

c = 10cm, w = 3.5cm, b = 34.5cm, H2max = 35cm (2.60)

By substituting 2.59 and 2.58 into 2.57, the state equation becomes

dH2

dt
=

H2max · C1 ·Hα1
1

w(cH2max + bH2)
− H2max · α · V2H

0.5
2

w(cH2max + bH2)
+ wt (2.61)

Therefore, the state equation of H2 can be rearranged as

dH2

dt
=

θ1
cH2max + bH2

− θ2 · V2 ·H0.5
2

cH2max + bH2

(2.62)

where θ1 is function of H1 such that

θ1 =
H2max · C1 ·Hα1

1

w
(2.63)

θ2 =
H2max · α

w
(2.64)

A multiple level random signal is designed for the valve position V2 as the
system input. The process input and output data are given in 2.13.

The relations between parameters and the scheduling variable expressed in
Equation 2.63 and Equation 2.64 are assumed unknown in identification. The
collected experimental data is then passed through the proposed algorithm
with 20% output data randomly removed. The self validation result is given
in Figure 2.14.

It can be seen from Figure 2.14 that the estimated global model performs
well in the self validation. Another experiment is conducted for the cross vali-
dation in order to test the global model’s capability in predicting the dynamics
of the process at different operating points. In the cross validation experiment,
the scheduling variable H1 is maintained at 8 cm during the whole cross vali-
dation experiment. The input signal and the output data for cross validation
is shown in Figure 2.15.

Figure 2.16 gives the result of the cross validation which shows a good
match between the real process output and the prediction of the identified
global model, confirming the effectiveness of the proposed algorithm.
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Figure 2.13: Three tank system input-output data (a) water level of the second
tank, process output (b) valve position V2, process input
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Figure 2.14: Self-validation result. Blue solid line is the collected process data,
red dash line is the simulated output of the identified global model

2.6 Discussion and Conclusion

This chapter described a Bayesian approach for identifying parameter-varying
nonlinear state space model with missing output data within the framework of
the EM algorithm. Particle filter is used for the calculation in the Expectation
step. The capability of the proposed algorithm in handling missing observa-
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Figure 2.15: Three tank system input-output data (a) water level of the second
tank, process output (b) valve position V2, process input
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Figure 2.16: Cross-validation result. Blue solid line is the collected process
data, red dash line is the simulated output of the identified global model

tions in the presence of varying parameters is demonstrated through numerical
examples as well as a pilot-scale experiment.

What have been discussed in this chapter so far mainly focus on the pa-
rameter estimation using a complete data set which is usually considered as
an off-line analysis. The particle filtering approximation used in this chapter
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reduced the computation burden compared with the particle smoothers. The
Expectation-Maximization algorithm is an iterative method which takes cer-
tain time for the estimation to reach convergence. For example, for the data
set with the length of 500 data point, the EM algorithm would take a couple
of minutes to reach convergence. When it comes to on-line implementation,
it is possible to apply the proposed method for model parameter estimation
with proper sampling time and data length.

The model identification is an important step towards process monitoring
and process control. Obtaining a fairly accurate model not only help better
understand the process behavior, but can also be used for controller design
purpose. For example, in the Model Predictive Control (MPC) which is a
multivariable control algorithm, an internal dynamic model of the process is
a prerequisite. For nonlinear systems with multiple operating points, single
model may not be sufficient to describe the process and thus not suitable
for controller design. The algorithm proposed in this chapter takes all the
operating conditions into account and provides estimation of the global model
parameters. Therefore, it is possible to design a MPC controller based on this
identified global model and the control signal can be accordingly calculated.

It is doable to extend the proposed algorithm to deal with the parame-
ter identification problem for hybrid systems. In this chapter, the parameter
estimation problem is formulated under the framework of the Expectation
Maximization (EM) algorithm. In addition to the hidden state x1:T and miss-
ing output Ym, the hidden model identity I is introduced to denote which local
model takes effect. As for hybrid system, take the linear piecewise AutoRe-
gressive eXogenous (PWARX) process as an example which is formulated as
below:

yk =


θT1

[
xk

1

]
+ ek, xk ∈ χ1

...

θTM

[
xk

1

]
+ ek, xk ∈ χM

, k = 1, 2 . . . N (2.65)

where N,M represent number of data points collected and number of sub-
models respectively, yk is the output, xk is the regressor which consists of
past input and output, ek is the Gaussian distributed noise with zero mean
and variance σ2, θi is the parameter vector of the ith sub-model. Zk =
xk, yk, k = 1, 2, ..., N is defined as the observed data set generated from a
PWARX system. I is introduced as a ’missing variable’ to denote the sub-
model identity of each data point. With the defined observed data set and
missing data set, the identification problem can be formulated under the frame-
work of the EM algorithm. More discussion with detailed formulation of hybrid
PWARX system can be found in Jin and Huang (2010)[17].

33



Bibliography

[1] P. K. Pearson, Control Systems, Identification, Encyclopedia of Physical
Science and Technology, 2004, pp 687-707.

[2] B. F. Feeny, Nonlinear System Identification, Encyclopedia of Vibration,
2004, pp 924-928.

[3] J.Shamma and M. Athans, Guaranteed Properties ff Gain Scheduled Con-
trol for Lienar Parameter Varying Plants, Automatica, 1991, Vol.27 pp
559-564.

[4] Z. Xu, J. Zhao and J. Qian, Nonlinear MPC using an Identified LPV
Model, Industrial & Engineering Chemistry Research, 2009, Vol. 49, pp
3043-3051.

[5] X. Jin and B. Huang, Multiple Model LPV Approach to Nonlinear Process
Identification with EM Algorithm, Journal of Process Control, 2010. Vol.
21, pp 182-193.

[6] S. Khatibisepehr and B. Huang, Dealing with Irregular Data in Soft Sen-
sors: Bayesian Method and Comparative Study, Industrial & Engineering
Chemistry Research, vol. 22, 2008, pp 8713-8723.

[7] A. P. Demspter, N. M. Larid and D. B. Rubin, Maximum Likelihood from
Incomplete Data via the EM algorithm, Journal of the Royal Statistical
Society, Series B, vol. 39, 1977, pp 1-38.

[8] T. B. Schon, A. Wills and B. Ninness, System Identification of Nonlinear
State-Space Models, Submitted to Automatica, 2009

[9] R. B. Gopaluni, A Particle Filter Approach to Identification of Nonlinear
Process under Missing Observations, The Canadian Journal of Chemical
Engineering, vol. 86, 2008, pp 1081-1092.

[10] N. Bergman, Recursive Bayesian estimation: Navigation and tracking
applications, Ph.D Dissertation, Linkping Univ., Linkping, Sweden, 1999.

[11] A. Doucet, On sequential Monte Carlo methods for Bayesian filtering,
Dept. Eng., Univ. Cambridge, UK, Technical Report, 1998.

34



[12] M. S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, A Tutorial on
Particle Filters for Onine Nonlinear/Non-Guassian Bayesian Tracking,
IEEE Transaction on Signal Processing, vol. 50, 2002, pp 174-188.

[13] J. S. Liu and R. Chen, Sequential Monte Carlo methods for dynamical
systems, Journal of the American Statistical Association, vol. 93, 1998,
pp 1032-1044.

[14] Y. Zhu and Z. Xu, A Method of LPV Model Identification for Control,
In Proceeding of the 17th IFAC World Congress, Seoul, Korea, 2008.

[15] D. M. Espie and S. Macchietto, The Optimal Design of Dynamic Ex-
periments, American Institute of Chemical Engineers, vol. 35, 1989, pp
223-229.

[16] S. P. Asprey and S. Macchhietto, Design Robust Optimal Dynamic Ex-
periments, Journal of Process Control, vol. 12, 2002, pp 545-556.

[17] X, Jin and B. Huang, Robust identification of piecewise/switching au-
toregressive exogenous process. American Institute of Chemical Engineers
Journal, 2010, vol 56, pp 1829-1844.

35



Chapter 3

Inferential Sensor Development

2 This chapter deals with the issues associated with the development of black
box models as well as model update strategies for soft sensor applications.
Key process variables that are hidden (difficult to measure) are commonly
encountered due to the limitations of measurement techniques. Even with the
appropriate instrumentation, some variables are only available through off-
line laboratory analysis, which could have a sampling interval of several hours.
Soft sensors are inferences that can provide continuous on-line estimates of
hidden variables; this inference is capable of combining real-time measurement
with offline lab analysis. Due to the prevalence of plant-model mismatch,
it is important to update the model using the latest observation data. In
this chapter, the parameters of black box models are estimated using particle
filters under the framework of the expectation-maximization (EM) algorithm.
A Bayesian methodology for model calibration strategy is formulated. The
proposed method for parameter estimation and model updating is illustrated
through a semi-fermenter simulation, and application to an oil sands process.

3.1 Introduction

Process industries are seeking to improve the performance of processing facil-
ities in order to increase the productivity as well as reducing environmental
footprint through better control. For both process monitoring and control,
it is imperative to gather real-time information of the key process variables.
Unfortunately, it is common to have key process variables that are hidden (dif-
ficult or impossible to measure online) such as the concentration of a chemical
component. Some expensive on-line instrumentation may be installed to get
fast readings for such variables; however, these hardware sensors could easily
fail or have significant deviation, leading to missing or inaccurate information.

2Part of this chapter has been published at American Control Conference as Deng, J. and
Huang, B.. Bayesian method for identification of constrained nonlinear processes with
missing output data. American Control Conference, San Francisco, 2011.
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In contrast to online measurements, offline analysis is conducted in labora-
tory, where the technicians collect product samples and perform a series of
experimental analysis and calculations. Off-line laboratory analysis is gener-
ally more accurate than the on-line instrumentation, but the sampling rate
is very slow (ranging from 30 minutes to 24 hours), making it unsuitable for
real-time applications.

The applications of soft sensors have been discussed in many publications
[1], [6], [2]. Soft sensors or inferential sensors are implemented to make real-
time predictions of a measurement that would have otherwise taken much time
to obtain. By taking into account of information from relatively fast-sampled
variables (e.g. temperature, flowrate, density), soft sensors provide real-time
estimates for those difficult-to-measure quality variables.

In the development of a successful soft sensor, a good process model is a
prerequisite. The process models can be roughly divided into three categories,
namely, the first principle model, the grey-box model and the data-driven
model (black-box model). Models that are built based on physical principles
such as mass and energy balance are known as first principle models [1]. On
the other hand, models that are developed from the historical data without
the process knowledge are called data-driven or black-box models. The grey
box model structure is based on both insight into the system and experimental
data, although in such a framework, peculiarities of what is going on inside
the system are not entirely known. In industrial process control practice, the
first principle models are usually difficult to obtain due to the complex nature
of chemical processes and inability to measure critical variables. Thus, data-
driven models and grey-box models have attracted considerable attention and
have been extensively applied in industry.

Despite the existence of various model structures, static models and dy-
namic models are the two types of data-driven models that have been widely
studied in literature. Commonly used static modeling techniques are based on
regression methods such as Ordinary Least Squares (OLS) regression. The dis-
advantage of OLS is that it may suffer from numerical problems when collinear-
ity among regression variables exists which is not uncommon in practice. This
issue can be addressed by using Principal Component Regression (PCR) and
Partial Least Squares (PLS) regression which project the original process vari-
ables into a low dimensional space of orthogonal latent variables. In doing this,
the variation in both input and output variables are simultaneously explained
and the their covariance is maximized.

In contrast with static models, dynamic models take into account the evolu-
tion of the process outputs over time. Commonly used dynamic models include
State Space models, Autoregressive models (e.g., ARX, ARMAX), Output-
Error (OE) models, Box-Jenkins (BJ) models. Aspects of system identification
have been discussed extensively in literatures [1]. Among various models, the
nonlinear state space model is a general class of models to represent nonlinear
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dynamic systems. Therefore it is chosen for soft sensor model development,
and parameter estimation of the state space model is studied in this chapter.
Recently, particle filters which belong to the family of Sequential Monte Carlo
(SMC) [4] methods, have been combined with the EM algorithm [9], [5] for
the purpose of parameter estimation. The parameter estimation method re-
ported in [9] approximated the log-likelihood function in the EM algorithm
with particle filters and smoothers. Following the point-wise state estimation
technique, the smoothed density functions of each state have to be calculated
at every iteration in the EM algorithm, which introduces a large computational
burden. Based on [9], particle filter approximation is employed in this chapter
for computing expectation functions. The use of a particle filter rather than
a smoother can significantly reduce the computation load.

The remainder of this chapter is organized as follows: Section 2 introduces
the parameter estimation for nonlinear state space models under the frame-
work of the Expectation-Maximization (EM) algorithm. Section 3 presents the
model calibration strategy using a Bayesian approach. A simulation example
is illustrated in section 4 to demonstrate the effectiveness of the proposed ap-
proach. Section 5 presents a soft sensor application in an oil sands process
using the proposed approach. Section 6 draws the conclusion based on the
results obtained in this chapter.

3.2 Parameter Estimation of the State Space

Model

3.2.1 Model structure

Consider the state space model given by

xt = f(xt−1, ut−1,Θ) + ωt (3.1)

yt = h(xt,Θ) + vt (3.2)

where the system parameters are Θ. xt, ut, yt, ωt and vt are state, measured
input, measured output, process noise and measurement noise, respectively;
ωt and vt are independent and identically distributed Gaussian noises with
covariance matrices Q, and R respectively. The input sequence {u1, . . . , ut} is
known. Here the parameters in the state space model, Θ, are of interest. LetX
denote the sequence of hidden states {x1, . . . xT} and Yo = {y1, . . . , yT} stand
for the corresponding observed outputs. In the following section, we show how
to formulate the parameter estimation problem under the framework of the
EM algorithm.
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3.2.2 Formulation of the parameter estimation based on
the EM algorithm

An introduction to the Expectation-Maximization algorithm has been pre-
sented in Chapter 2. Consider the state-space model described in Equation
(3.1-3.2). The observed output data Yobs are Yo = {y1, . . . , yT} while the
hidden states X = {x1, . . . , xT} can be viewed as the latent data Z. Let
p(x1:T , y1:T |Θ) denote the complete likelihood function of the hidden states
and observations. The Q function is defined as the expectation of the log-
likelihood function log[p(x1:T , y1:T |Θ)] which is an integral given by

Q(Θ|Θk) = EZ|Yobs,Θk{log[p(Yobs, Z|Θ)]}
= EX|Yo,Θk{log[p(Yo, X|Θ)]}

=

∫
X

log[p(Yo, X|Θ]p(X|Yo,Θ
k)dX

=

∫
X

log[p(x1:T , y1:T |Θ)]p(x1:T |y1:T ,Θk)dx1:T (3.3)

Following the approach of [9], the Q function can be derived as follows. In
Equation 3.3, the first term which is the joint density function of states and
outputs can be decomposed using the Markov property as

p(x1:T , y1:T |Θ) = p(x1:T |Θ)p(y1:T |x1:TΘ) (3.4)

where

p(x1:T |Θ) = p(xT |x1:T−1,Θ)p(x1:T−1|Θ)

= p(xT |x1:T−1,Θ)p(xT−1|x1:T−2,Θ) · · · p(x2|x1,Θ)p(x1|Θ)

= p(xT |xT−1,Θ)p(xT−1|xT−2,Θ) . . . p(x2|x1,Θ)p(x1|Θ)

= p(x1|Θ)
T∏
t=2

p(xt|xt−1,Θ) (3.5)

p(y1:T |x1:T ,Θ) = p(yT |y1:T−1, x1:T ,Θ) · p(y1:T−1|x1:T ,Θ)

= p(yT |y1:T−1, x1:T ,Θ) · p(yT−1|y1:T−2, x1:T ,Θ) . . . p(y2|y1, x1:T ,Θ)

= p(yT |xT ,Θ)p(yT−1|xT−1,Θ) . . . p(y1|x1,Θ)

=
T∏
t=1

p(yt|xt,Θ) (3.6)

Substituting Equation 3.5 and 3.6 into Equation 3.4, the joint density function
of the states and the outputs is rewritten as

p(x1:T , y1:T |Θ) = p(x1|Θ)
T∏
t=2

p(xt|xt−1,Θ) ·
T∏
t=1

p(yt|xt,Θ) (3.7)
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Furthermore, substituting Equation 3.7 into Equation 3.3, the Q function is
given by

Q(Θ|Θk) =

∫
log[p(x1:T , y1:T |Θ)] · p(x1:T |y1:T ,Θk)dx1:T

=

∫
log[p(x1|y1:T ,Θ)] · p(x1:T |y1:T ,Θk)dx1:T

+
T∑
t=2

∫
log[p(xt|xt−1,Θ)]p(x1:T |y1:T ,Θk)dx1:T

+
T∑
t=1

∫
log[p(yt|xt,Θ)]p(x1:T |y1:T ,Θk)dx1:T (3.8)

In order to evaluate the Q function in Equation 3.8, the values of density
function p(x1:T |y1:T ,Θk) are required. Since direct calculation are intractable,
this density function is to be numerically calculated using particle filters in
the next section.

3.2.3 Computation through particle filtering

The basic idea of particle filters is to represent the desired posterior density
function by a series of particles with associated weights, i.e. {xi

t, w
i
t}Ni=1. Then

the density function of the states given the current estimation of parameters
Θk can be discretely approximated as [12]

p(xt|y1:T ,Θk) ≈
N∑
i=1

ωi
tδ(xt − xi

t) (3.9)

where δ(·) is the Dirac delta function, tβ ≤ t; N is the number of particles; ωi
t is

the normalized weight associated with the ith particle such that
∑N

i=1 ω
i
t = 1.

Suppose that at time t − 1, a set of particles {xi
1:t−1}Ni=1 are available and

we want to obtain N particles which represent the hidden state for time t.
Since it is usually difficult to directly draw samples from the true posterior
density p(xt|y1:T ,Θk), the principle of importance sampling [10] is adopted.
The idea is to use a so called importance density q(·) from which one can easily
draw samples xi

t, i = 1, . . . , N . Then the posterior is obtained by resampling
important sampling. It has been shown that, as long as the support region of
the posterior density belongs to that of the importance density, the particle
approximation is unbiased [11]. The importance sampling is commonly chosen
as the probability of state transition, i.e.

q(xt|y1:T ,Θk) = p(xt|xt−1,Θ
k) (3.10)

With this choice, the unnormalized weight for each particle can be derived as
[12]

ω̃i
t ∝ p(yt|xi

t,Θ
k) (3.11)
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ωi
t =

ω̃i
t∑N

i=1 ω̃
i
t

(3.12)

To avoid the degeneracy problem [12], the importance sampling step is usually
followed by a resampling procedure. The idea is to discard the particles with
small weights and concentrate on those with large weights. After resampling,
each particle’s weight will be reset to ωi

t =
1
N
.

The problem brought by brute force resampling is that it reduces the di-
versity among particles. One solution is to resample the particles only when
it is necessary instead of performing it at each step. To be specific, Neff is
introduced to represent the effective particle number [13]

Neff =
1∑N

i=1(ω
i
t)

2
(3.13)

where ωi
t is the normalized weight obtained by Equation 3.12. It implies that,

as the variance of the weights grows very large, the effective sample size de-
creases to a small number which indicates a severe degeneracy problem. In
practice, one uses resampling to eliminate useless particles only when a severe
degeneracy problem occurs, say, Neff falls below the threshold Nthred.

Given the current estimation of parameters, the particle filter algorithm is
summarized as follows:

Step 1. Initialization. Draw initial N particles {xi
0}Ni=1 from the prior

density p(x0|Θk) and set each particle’s weight to 1
N
. Set t=1.

Step 2. Importance sampling. Generate predicted particles {xi
t}Ni=1 from

the importance density p(xt|xt−1,Θ
k).

Step 3. Assigning weights. Assign the weight to each particle using
Equation 3.11 and 3.12.

Step 4. Resampling. Compute the number of effective particles using
Equation 3.13. If Neff is less than the threshold Nthred, then perform resam-
pling and replace the predicted particles in Step 2 with resampled particles.
Reset the weights of resampled particles uniformly as ωi

t =
1
N
. Otherwise, go

to Step 5.
Step 5. Set t = t+ 1 and repeat Step 2 to Step 4 for t ≤ T .

Estimation of p(x1:T |y1:T ,Θk) is a problem of smoothing all states with all
available observations. Its computation with the iterative EM algorithm is
formidable for on-line application. With further marginalization of the states
following the approach of [9], the Q function obtained in Equation 3.8 can be
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rewritten as

Q(Θ|Θk) =

∫
log[p(x1|y1:T ,Θ)] · p(x1|y1:T ,Θk)dx1

+
T∑
t=2

∫
log[p(xt|xt−1,Θ)]p(xt−1:t|y1:T ,Θk)dxx−1:t

+
T∑
t=1

∫
log[p(yt|xt,Θ)]p(xt|y1:T ,Θk)dxt (3.14)

Calculation of p(xt|y1:T ,Θk)and p(xt−1, xt|y1:T ,Θk) is also a smoothing prob-
lem, of which the computation cost is high. A practical solution is to apply
recursive state filtering such that p(xt|y1:T ,Θk) is recursively approximated
by p(xt|yt1:tβ ,Θk) for t = 1 : T , and p(xt−1, xt|y1:T ,Θk) is recursively approxi-
mated by p(xt, xt+1|yt1:tβ ,Θk) for t = 1 : T −1, where tβ ≤ t. This solution can
significantly reduce the computation complexity and thus make the solution
possible in real-time applications.

In Equation 3.14, the density function p(xt|y1:T ,Θk) is approximated using
particle filters as

p(xt|y1:T ,Θk) ≈p(xt|yt1:tβ ,Θk)

=
N∑
i=1

ωi
tδ(xt − xi

t) (3.15)

As for the joint density function of xt and xt+1, it can be approximated as

p(xt, xt+1|y1:T ,Θk) ≈p(xt, xt+1|yt1:tβ , u1:t,Θ
k)

=p(xt+1|xt,Θ
k)p(xt|yt1:tβ ,Θk)

=
N∑
i=1

ωi
t|t+1δ(xt − xi

t)δ(xt+1 − xi
t+1) (3.16)

where

ωi
t|t+1 =

p(xi
t+1|xi

t,Θ
k)p(xi

t|yt1:tβ ,Θk)∑N
i=1 p(x

i
t+1|xi

t,Θ
k)p(xi

t|yt1:tβ ,Θk)
(3.17)

Substituting these approximated density functions, theQ function in Equa-
tion 3.14 can be finally obtained.

Q(Θ|Θk) ≈
N∑
i=1

ωi
1logp(x

i
1|Θ)

+
t=T∑
t=2

N∑
i=1

ωi
t−1|tlogp(xt|xi

t−1,Θ)

+
t=T∑
t=1

N∑
i=1

ωi
tlogp(yt|xi

t,Θ) (3.18)
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With the approximated Q function, the EM algorithm can hence be imple-
mented. In the expectation step, the Q function is evaluated according to
Equation 3.18 with the current estimated parameters Θk. In the next maxi-
mization step, the new parameters Θk+1, are obtained by maximizing the Q
function.

To maximize the Q function over parameters Θ, derivative operation is
performed with respect to each parameter. Therefore, optimal estimation of
system parameters at each iteration can be calculated by equating the deriva-
tives to zero, i.e. ∂Q

θj
= 0, where θj is the jth system parameter.

The EM algorithm is summarized as follows:
Step 1. Initialization. Start with the initial parameters Θ, and set t=0.
Step 2. Expectation. At time t, calculate the approximate Q function

using Equation 3.18, given the current estimation of the system parameters
Θk.

Step 3. Maximization. Maximize the approximated Q function and get
the new parameters Θk+1. Set k=k+1.

Step 4. Repeat Step 2 and Step 3 until the converge condition is satisfied,
i.e. the change of the estimated parameters between two iterations is less than
the tolerance.

3.3 Bayesian Calibration

3.3.1 Formulation for online calibration

Since the estimated model from the previous section always has model-plant
mismatch, the model needs to be calibrated on-line which synthesizes the
measurement information of both fast sampled online analyzer and slow rate
laboratory analysis. The calibrations equations are described below::

xt = ρt(f(xt−1, ut−1)) + bt + ωt (3.19)

ρt = ρt−1 + ωρ
t (3.20)

bt = bt−1 + ωb
t (3.21)

bot = bot−1 + ωo
t (3.22)

yot = xt + bot + vot (3.23)

yLt = xt + vLt (3.24)

where ρt is a scaling parameter that brings some flexibility to the model-plant
mismatch compensation. A bias term bt is introduced to correct the system-
atic error. It is observed that the online analyzer has some deviation from
the laboratory analysis, hence another bias term bot is adopted to capture the
difference. The calibration procedure is performed using recursive particle fil-
tering as well. xt, ρt, bt and bot are four states while the online analyzer reading
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Figure 3.1: The trajectory of the variance of lab analysis

yot and the laboratory analysis yLt are two sources of output measurement in-
formation.
The particle weight calculation when lab data is available is given below,

ωi
t = exp(−(yot − ypre)2

2Ro1

− (ylt − ypre)2

2Rl1

) (3.25)

When lab data is not available, the weight is calculated as,

ωi
t = exp(−(yot − ypre)2

2Ro2

− (ylt − ypre)2

2Rl2(t)
) (3.26)

where the noise variance is treated as a tuning parameter: Ro1 is the noise
variance for online analyzer when lab data is available; Ro2 is the noise variance
for online analyzer when lab data is not available; Rl1 is the noise variance for
lab data when it is available. When lab data is not available, the previous lab
value is used and Rl2(t) is the noise variance which is a sigmoidnet function
and increases with time.

Rl2(t) =
1× 10−3

1× 10−2 + e−0.1t
(3.27)

The trajectory of Rl2(t) is shown in Figure 3.1.
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3.4 Semi-continuous Fermentation Example

A semi-continuous fermentation of baker’s yeast is adopted here for illustration
purpose of the proposed model estimation and calibration. This example is
taken from [16]. Assuming that the biomass growth and substrate consump-
tion follow the Monod-type kinetics, the two inputs two outputs fermentation
system is described by the following equations:

dx1

dt
= (

θ1x2

θ2 + x2

− u1 − θ4)x1 (3.28)

dx2

dt
= − θ3x1x2

θ2 + x2

+ u1(u2 − x2) (3.29)

where the output x1 is the biomass concentration (g/l); output x2 is the sub-
strate concentration(g/l); input u1 is the dilution factor h−1; and the input
u2 is the substrate concentration in the feed (g/l). Both inputs have a sam-
pling rate of 1 minute. ∆t = 0.1 minute is chosen as the discretizing sam-
ple time. θ1, θ2, θ3 and θ4 are the system parameters with true values of
θ1 = 0.31, θ2 = 0.18, θ3 = 0.56, and θ4 = 0.05. The process is simulated
for 2400 minutes and the two inputs are shown in Figure 3.2.

A disturbance dk is added to the state x2 in Equation 4.32 such that

dk = 0.5 · cos( k

10 · π
) + 0.2 · nk (3.30)

where nk is a non-Guassian noise which is generated from a bimodal distribu-
tion such that with 70% of the time it is generated from a Guassian distribution
with a mean value of -0.2 and variance of 0.12, and with 30% of the time it is
generated from a Guassian distribution with a mean value of 0.2 and variance
of 0.12. Suppose we are interested in the substrate concentration x2 whose
value is observed by two types of measurements. The first has a fast sampling
rate of 1 minute, but is corrupted by a large measurement noise, hence is less
accurate. The second measurement is more accurate with smaller noise, how-
ever, it is only available every 4 hours. Assuming that two parameters θ1 and
θ3 is unknown. The parameter estimation algorithm proposed in section 2 is
applied to this data set with the less accurate measurement as the output to
obtain a nominal model. The initial guess for the two parameters are θ1 = 0.1,
θ3 = 0.1. 100 particles are used for the particle filtering approximation. The
estimation terminated after near 30 EM iterations and the parameter trajec-
tories are shown in Figure 3.3. The model prediction result with the estimated
parameters is shown in Figure 3.4.

It can be seen from Figure 3.3 and Figure 3.4 that both estimated pa-
rameters have converged to the neighborhood of the true values. However,
the model prediction with the estimated parameters has an obvious mismatch
compared to the true output.
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Figure 3.2: Process inputs. (a): u1, the dilution factor h−1; (b): u2, the
substrate concentration in the feed.
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jectory of θ3.

46



0 2000 4000 6000 8000 10000 12000 14000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (min)

B
itu

m
en

 c
on

te
nt

 

 
Online analyzer
Model prediction without calibration

Figure 3.4: Comparison of current measurements.

In order to compensate the difference between the predicted model and
the real process output, the proposed Bayesian calibration approach is applied
through the following equations:

xt = ρtx
pre
t + bt + ωt (3.31)

ρt = ρt−1 + ωρ
t (3.32)

bt = bt−1 + ωb
t (3.33)

bot = bot−1 + ωo
t (3.34)

yot = xt + bot + vot (3.35)

yLt = xt + vLt (3.36)

where xpre
t is the predicted value for the substrate concentration x2 from the

estimated model. ωt is the process noise which follows a Guassian distribution
ωt ∼ N(0, 0.152); vot and vLt are measurement noises for the fast sampled
measurement and slow sampled measurement which are chosen as N(0, 0.72)
and N(0, 0.012). The calibration result is shown in Figure 3.5 and Figure
3.6, from which we can see that the estimation with the Bayesian calibration
provides a superior result than the model prediction without calibration.

3.5 Industrial Application

3.5.1 Process description

The Primary Separation Vessel (PSV) is a settling gravity separation unit
which is of critical importance in oil sands extraction process. It helps to
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Figure 3.7: Schematic diagram of the Primary Separation Vessel
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facilitate bitumen flotation and solids settling. The blended oil sands slurry
is fed into the top of the PSV where it is separated into three phases under
gravity and mechanical facilitation. The froth phase at the top of the vessel
contains the majority of the bitumen, the middling phase contains those hard-
to-separate clay particles which are attached to the bitumen, the coarse sand
drops to the bottom of the vessel, and is withdrawn in a tailing stream.

The aim of the control strategy of the PSV is to maintain a material bal-
ance in the PSV vessel and to keep the underflow stream density at a stable
value. The bitumen content in the bottom phase of the PSV is a particularly
important variable as it reflects the performance of the separation process.
In practice, both hardware instrument (e.g., online analyzer) and laboratory
analysis for the underflow bitumen content are available. The online analyzer
provides fast sampled measurement, but not accurate enough. In contrast, the
off-line laboratory analysis provides more accurate measurement, but is only
available every several hours. Figure 3.8 shows the comparison between online
analyzer and lab data. It can be seen that in certain periods (red circled), the
online analyzer has an obvious bias compared with the lab data. Therefore,
obtaining an accurate and real-time measurement of the underflow bitumen
content is desired.
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3.5.2 Soft sensor development for PSV underflow bitu-
men content

Being aware that the separation process in the PSV is a continuous one and
the underflow stream bitumen content is correlated with the previous value,
it is more appropriate to adopt a dynamic model to describe the bitumen
content. The laboratory analysis is irregularly sampled every several hours
which is not suitable for the dynamic modeling. As an alternative, we are
able to collect a sufficient amount of fast rate measurement (online analyzer)
during a period when the performance of online analyzer was fairly reasonable.
A state space model was developed using the on-line analyzer data. Noticing
that the true process is nonlinear, a cosine term is introduced in order to
capture the nonlinear dynamics in the process and this function was found to
be suitable. Therefore a nonlinear state space model is formulated as follows:

xt = a · xt−1 +BT · ut−1 + c cos(xt−1) + ωt

yt = xt + vt (3.37)

where the system parameters are Θ = [a b1 b2 b3 b4 b5 c]T , and ut =
[u1t u2t u3t u4t u5t]

T are the five process inputs including underflow stream
density, middling stream density, PSV interface level, middling stream pump
flow rate and the underflow stream pump flow rate respectively. Figure 3.9
shows the process input data. For proprietary reason, all data has been nor-
malized. xt, yt, ωt and vt are state, measured output (online analyzer reading),
process noise and measurement noise, respectively; ωt and vt are independent
and identically distributed Gaussian noises with covariance matrices Q, and R
respectively. Here the parameters in the state space model, Θ, are of interest.

The proposed parameter estimation algorithm in section 2 is applied to
estimate the parameters Θ in the state space model. In the expectation step
of the EM algorithm, the Q function is calculated according to Equation 3.18,
where

log[p(xt|xi
t−1,Θ)] = log[

1√
2πQ

exp[−1

2

(xi
t − axi

t−1 −BTut−1 − A cos(xi
t−1))

2

Q
]

(3.38)

log[p(yt|xi
t,Θ)] = log[

1√
2πR

exp[−1

2

(yt − xi
t)

2

R
] (3.39)

By taking derivative over the Q function and equating it to zero, each indi-
vidual component of the parameters is hence calculated as

anew =

∑T
t=2

∑N
i=1 ω

i
t(x

i
tx

i
t−1 −BT

oldut−1x
i
t−1 − c cos(xi

t−1))∑T
t=2

∑N
i=1 ω

i
t(x

i
t−1)

2
(3.40)
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Figure 3.9: Input data for the PSV unit
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Figure 3.10: Model cross validation result

Table 3.1: MSE comparison of different measurements
March 2010 December 2009 November 2009

Online analyzer 0.0078 0.0133 0.0425
Soft sensor (EKF) 0.0041 0.029 0.0241

Soft sensor (proposed method) 0.0039 0.008 0.0186

bj,new =

∑T
t=2

∑N
i=1 ω

i
t(x

i
tut−1 − aoldut−1x

i
t−1 −

∑5
r=1,r ̸=j br,oldur,t−1 − c cos(xi

t−1))∑T
t=2

∑N
i=1 ω

i
tu

2
j,t−1

(3.41)

cnew =

∑T
t=2

∑N
i=1 ω

i
t(x

i
t − axi

t−1 −BT
oldut−1)∑T

t=2

∑N
i=1 ω

i
t(cos(x

i
t−1))

2
(3.42)

The proposed parameter estimation algorithm is then applied. 100 particles
are used for the particle filtering approximation. The parameter estimation
starts from the initial guess of a = 0.5, b1 = b2 = b3 = b4 = b5 = 0.1, c = 1.
The cross validation result is shown in Figure 3.10.

The algorithm was tested using three different data sets collected in March
2010, December 2009 and November 2009, respectively. To further demon-
strate the effectiveness of the proposed method, an comparative study which
uses extended kalman filter for online calibration has been conducted.

The performance comparison in terms of MSE and MAE is shown in Table
3.1 and Table 3.2.
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Figure 3.11: Trend comparison.
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Figure 3.12: 45 degree comparison.

Table 3.2: MAE comparison of different measurements
March 2010 December 2009 November 2009

Online analyzer 0.0469 0.0888 0.1663
Soft sensor (EKF) 0.0671 0.0688 0.1094

Soft sensor (proposed method) 0.0731 0.0651 0.0928
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Figure 3.13: Trend comparison.
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Figure 3.14: 45 degree comparison.
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Figure 3.15: Trend comparison.
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Figure 3.16: 45 degree comparison.
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Figure 3.17: Trend comparison. The blue dot is laboratory analysis; the green
line is online analyzer reading and the red line is soft sensor prediction; the
two yellow dash lines defines the 95% confidence interval.

3.5.3 Performance index

When put the inferential sensor online, the performance index is required as
an indication of how good the prediction of the soft sensor it is. Since the
calibration procedure is conducted using particle filtering, it is convenient to
adopt the standard deviation of particles σt as the performance index.

At each time stamp, all particles are assigned a weight according to their
discrepancy to the output measurement. And the estimation value is the
weighted summation of all particles such that

ypret =
N∑
i=1

ωi
tx

i
t (3.43)

Hence the performance index is then defined as follows

σt =

√√√√ N∑
i=1

ωi
t(x

i
t − ypret ) (3.44)

The soft sensor prediction with the 99% confidence interval are shown in
Figure (3.17), Figure(3.18) and Figure(3.19).

The performance index is calculated to assess the reliability of the soft
sensor. Figure 3.20 shows the distribution of the historical lab data which is
collected from January 1, 2009 to August 17, 2011. Based on the statistical
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Figure 3.18: Trend comparison. The blue dot is laboratory analysis; the green
line is online analyzer reading and the red line is soft sensor prediction; the
two yellow dash lines defines the 95% confidence interval.
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Figure 3.19: Trend comparison. The blue dot is laboratory analysis; the green
line is online analyzer reading and the red line is soft sensor prediction; the
two yellow dash lines defines the 95% confidence interval.
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Figure 3.20: Distribution of historical lab data. Red line indicates that 95%
of the historical lab data is less or equal than 1.1. For proprietary reason, the
data has been normalized.

analysis on the lab data distribution, a threshold of 0.2 can be calculated
according to the 95% confidence. Therefore, when the soft sensor reading is
within this 95% confidence region (less or equal to 1.1), it is considered as
reliable and the performance index is given as 1; when the soft sensor reading
falls out of the 95% confidence interval region, its performance is calculated
as follows:

1; when 0 < ysoft < 1.1

1− |ysoft−1.1|
Labmax−1.1

; when ysoft < 0 or ysoft > 1.1 (3.45)

where Labmax is the maximum value of the historical lab data.

3.5.4 Online implementation

The PSV underflow bitumen content soft sensor is implemented online for
monitoring. The implementation procedure is as follows:

Step 1. The process data are real time variables in Distributed Control
System (DCS).

Step 2. Selected variables are collected from DCS and sent to MATLAB
through OPC server.

Step 3. The soft sensor readings are calculated in MATLAB using the
developed algorithm.

Step 4. The soft sensor readings are sent back to DCS through OPC server.
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Figure 3.21: Soft sensor online monitoring result.

Step 5. The soft sensor performance is monitored in PI Historian

The online monitoring results is shown in Figure 3.21. It can be seen that
the soft sensor gives superior estimation than the online analyzer.

3.6 Conclusion

This chapter deals with identification of nonlinear state space models and
model updating issues for soft sensor development. A Bayesian based model
calibration scheme is formulated where particle filters are adopted for the
online calibration. The proposed approach synthesizes the information from
both online analyzer (fast sampled) and laboratory analysis (slow sampled),
and provides a improved estimation of the quality variable. The efficiency of
the proposed method is illustrated by a semi-fermenter simulation example
and has been applied to an oil sands process.
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Chapter 4

Soft Sensor Development for
Time Delayed Processes with
Bayesian Approach

This chapter deals with the time delay issues that are associated with soft
sensor development. The previous chapter presents a Bayesian approach for
soft sensor development which synthesizes multi-rate measurements. However,
another challenge to soft sensor applications in many oil sands and chemical
industries is that measurement of certain quality variables has a time delay.
In this chapter, an augmented state space is constructed to deal with the
delay problem which consists of the current state and the previous states.
The Bayesian approach is applied to calibrate the soft sensor. The proposed
method for states augmentation and Bayesian calibration is illustrated through
a numerical simulation and a semi-fermenter simulation example.

4.1 Introduction

In chapter 3, a Bayesian calibration method is developed to synthesize different
sources of measurement, both fast online instrument measurement and off-
line laboratory analysis. A number of other filtering methods have also been
developed to reduce the system noise in order to get a better estimation of the
states.

State estimation studied in the previous chapters requires the measurement
to be available at the time it is sampled . In other words, it is assumed that the
measurement is transmitted to the filter instantly without time delay. How-
ever, in reality it is quite possible to have time delay between the instant that
the measurement is taken by a sensor and the instant that the measurement
is available to the filter [2]. This problem is referred as Out Of Sequence Mea-
surement (OOSM) problem as discussed in the introduction chapter [3]. For
example, in the oil sands industry, bitumen concentration in the slurry stream
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is an important variable to monitor. The sample stream is collected every two
hours by the laboratory technician and the bitumen content is analyzed under
a series of experimental steps in the lab which would usually takes probably 30
minutes. Therefore the time that the analyzed result is available is 30 minutes
afater the instant that the stream sample is collected.

Several methods have been proposed to deal with OOSM problem. Bar-
Shalom [3] used backward prediction to obtain the past state by applying the
inverse model of the process model. The method for both one step delay and
multi steps delay has been presented in [3] and [4]. However this method is
limited to linear process model because it is difficult to get the inverse nonlinear
model. Challa et al. [5] used the augmented state Kalman Filter (ASKF) to
solve the time delay problem where the uncertainty of the delay is resolved by
Probabilistic Data Association Filter (PDAF). In both above scenarios, the
measurement is available at every sampling time except for the time delay
problem.In practice, however, some measurements are only available every
certain period in addition to time delay. Therefore an fusion approach that
incorporate all the available sensor information while in the same time it can
deal with the time delay issue is needed.

In this chapter, the state is augmented such that both current state and
previous states are included. The augmented state is estimated using particle
filter. To fuse both fast sampled and slow sampled measurements, the Bayesian
calibration approach that is proposed in Chapter 3 is applied.

The remainder of this chapter is organized as follows: Section 2 introduces
the model structure that contains the time delay problem. Section 3 presents
the model calibration strategy using the Bayesian approach. A numerical
simulation example and semi-continuous fermentation example are illustrated
in section 4 to demonstrate the effectiveness of the proposed approach. Section
5 draws the conclusion based on the results obtained in this chapter.

4.2 Problem Statement

Consider the following model:

yt = f(xt−1, ut−1,Θ) + ωt (4.1)

where the system parameters are Θ. xt, ut and ωt are state, measured input
and process noise respectively. In many chemical industries, there are two
sources of measurement for the outputs, for example, fast rate online instru-
ment and off-line laboratory analysis that is usually slow sampled. Figure4.1
illustrates the two sources of measurement. In addition to the low sampling
frequency, time delay also exists. Figure 4.2 shows the slow sampled lab data
both with and without time delay. The green dot represents the fast sam-
pled measurement which is available every sampling time; the blue dot is slow
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Figure 4.1: Slow sampled lab data without time delay.

sampled lab data. As it can be seen in Figure 4.2a, the lab data is available
every 3 sampling time; in Figure 4.2b the slow sampled data is delayed by 3
sampling time.

Let yot denote the fast sampled measurement with lower accuracy, while yLt
is the measurement with higher accuracy but slower sampling rate; ωt, v

o
t and

vLt are independent and identically distributed Gaussian noises with covariance
matrices Q, Ro and RL respectively. The input sequence {u1, . . . , ut} is known.

4.3 Bayesian Approach to Deal with Time De-

lay

4.3.1 Problem formulation

Consider the state space model below.

xt+1 = f(xt−1, ut−1,Θ) + ωt (4.2)

yt = h(xt) + vt (4.3)

To deal with the delayed lab data, an augmented state Zt which includes both
the previous and current states is constructed as follows.
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Figure 4.2: (a): Slow sampled lab data without time delay; (b): Slow sampled
lab data with 3 sampling time delay.

Zt =


z1t
z2t
...

zd+1
t

 =


xt−d

xt−d+1
...
xt

 (4.4)

and

Zt+1 =


z1t+1

z2t+1
...

zd+1
t+1

 =


xt−d+1

xt−d+2
...

xt+1

 (4.5)

=


f(xt−d, ut−d) + ωt−d

f(xt−d+1, ut−d+1) + ωt−d+1
...

f(xt, ut) + ωt

 (4.6)

=


f(z1t , ut−d) + ωt−d

f(z2t , ut−d+1) + ωt−d+1
...

f(zd+1
t , ut) + ωt

 (4.7)

= f(Zt, Ut) +Wt (4.8)
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yot =
[
0 0 · · · 1

]
Zt + vot (4.9)

yLt =
[
1 0 · · · 0

]
Zt + vLt (4.10)

where

Ut =


ut−d

ut−d+1

· · ·
ut

 (4.11)

Wt =


ωt−d

ωt−d+1

· · ·
ωt

 (4.12)

4.3.2 Formulation for online calibration

In reality, there is always model-plant mismatch. This model-plant mismatch
may arises due to several reasons, for example, due to a misuse of model
structure and insufficient training data [6]. In addition, the model built with
the training data could provide poor prediction when applied to other data
sets. Therefore, the model needs to be online calibrated which synthesizes
the measurement information of both fast sampled online analyzer and slow
rate laboratory analysis as discussed in the previous chapters. The calibration
equations are organized as follows:

Zt = ρt(f(Zt−1, Ut−1,Θ)) + bt + ωt (4.13)

ρt = ρt−1 + ωρ
t (4.14)

bt = bt−1 + ωb
t (4.15)

bot = bot−1 + ωo
t (4.16)

yot = Zt + bot + vot (4.17)

yLt = Zt + vLt (4.18)

where ρt is a scaling parameter that brings some flexibility to the model-plant
mismatch compensation. A bias term bt is introduced to correct the systematic
error. It is observed that the online analyzer has deviation from the laboratory
analysis, hence another bias term bot is adopted to capture the difference. The
calibration procedure is performed using recursive particle filtering. Zt, ρt,
bt and bot are states while the online analyzer reading yot and the laboratory
analysis yLt are two sources of output measurement information.
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4.3.3 Calibration through particle filtering

Particle filter has been discussed in detail in previous chapters and is not
repeated here. The algorithm is summarized below.

Given the current estimation of parameters, the particle filter algorithm is
summarized as follows:

Step 1. Initialization. Draw initial N particles {xi
0}Ni=1 from the prior

density p(x0|Θk) and set each particle’s weight to 1
N
. Set t=1.

Step 2. Importance sampling. Generate predicted particles {xi
t}Ni=1 from

the importance density p(xt|xt−1,Θ
k).

Step 3. Assigning weights. Assign the weight to each particle using
Equation 3.11 and 3.12.

Step 4. Resampling. Compute the number of effective particles using
Equation (3.13). If Neff is less than the threshold Nthred, then perform resam-
pling and replace the predicted particles in Step 2 with resampled particles.
Reset the weights of resampled particles uniformly as ωi

t =
1
N
. Otherwise, go

to Step 5.
Step 5. Set t = t+ 1 and repeat Step 2 to Step 4 for t ≤ T .

The particle weight calculation when lab data is available is given below,

ωi
t = exp(−(yot − ypre)2

2Ro1

− (ylt − ypre)2

2Rl1

) (4.19)

When lab data is not available, the weight is calculated as

ωi
t = exp(−(yot − ypre)2

2Ro2

− (ylt − ypre)2

2Rl2(t)
) (4.20)

where Ro1 is the noise variance for online analyzer when lab data is available;
Ro2 is the noise variance for online analyzer when lab data is not available; Rl1

is the noise variance for lab data when it is available. When lab data is not
available, the previous lab value is used and Rl2(t) is the noise variance which
is a sigmoidnet function and increases with time.

4.4 A Numerical Simulation Example

The proposed Bayesian calibration method for time-delayed measurement is
illustrated through a numerical simulation example. It is described by the
following equation:

xt+1 = axt + but + ωt (4.21)

yot = xt + vot (4.22)

yLt = xt + vLt (4.23)
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Figure 4.3: Fast process measurement and slow measurement with time delay.

where the system parameter a = 0.7 and b = 1.0. yot is the fast measurement
which is available every sampling time, however is not accurate; yLt is the
slow sampled measurement with higher accuracy while it can only be obtained
every 4 sampling times, and it has a time delay as illustrated by Figure4.3.

First the system parameters are estimated using the method in Chap-
ter 2 and Chapter 3 based on the collection of fast sampled measurements.
The model prediction results based on the estimated parameters are shown in
Figure4.4.

In order to achieve a fast estimation of the states (every sampling time)
with higher accuracy, the proposed Bayesian calibration method is applied
here. An augmented state Zt is formulated as

Zt =


z1t
z2t
z3t
z4t
z5t

 =


xt−4

xt−3

xt−2

xt−1

xt

 (4.24)

and
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Figure 4.4: Model prediction without Bayesian calibration

Zt+1 =


z1t+1

z2t+1

z3t+1

z4t+1

z5t+1

 =


xt−3

xt−2

xt−1

xt

xt+1

 (4.25)

=


axt−4 + ut−4 + ωt−4

axt−3 + ut−3 + ωt−3

axt−2 + ut−2 + ωt−2

axt−1 + ut−1 + ωt−1

axt + ut + ωt

 (4.26)

=


az1t + but−4 + ωt−4

az2t + but−3 + ωt−3

az3t + but−2 + ωt−2

az4t + but−1 + ωt−1

az5t + but + ωt

 (4.27)

= AZt +BUt +Wt (4.28)

yot =
[
0 0 0 0 1

]
Zt + vot (4.29)

yLt =
[
1 0 0 0 0

]
Zt + vLt (4.30)

69



0 20 40 60 80 100 120 140 160 180 200
−15

−10

−5

0

5

10

15

Time

 

 
Fast measurement
Prediction with calibration
True output
Prediction without considering time delay

Figure 4.5: Model prediction with Bayesian calibration.

The prediction results with Bayesian calibration are shown in Figure 4.5
and Figure 4.6. It can be seen that the model prediction after Bayesian cal-
ibration gives real time estimation of the states while provides better result
compared with the existing fast measurement. It also can be seen that the
Bayesian calibration method developed in last chapter does not give satisfac-
tory result when there exists a time delay in the measurement.

4.5 Semi-continuous Fermentation Example

A semi-continuous fermentation of baker’s yeast is adopted here for illustration
purpose. This example has also been used in [16] and last chapter. The two
inputs two outputs fermentation system is described by the following equa-
tions:

dx1

dt
= (

θ1x2

θ2 + x2

− u1 − θ4)x1 (4.31)

dx2

dt
= − θ3x1x2

θ2 + x2

+ u1(u2 − x2) (4.32)

where the output x1 is the biomass concentration (g/l); output x2 is the sub-
strate concentration(g/l); input u1 is the dilution factor h−1; and the input
u2 is the substrate concentration in the feed (g/l). Both inputs are with
a sampling rate of 1 minute. ∆t = 1 minute is chosen as the discretizing
sample time. θ1, θ2, θ3 and θ4 are the system parameters with true values of
θ1 = 0.31, θ2 = 0.18, θ3 = 0.56, and θ4 = 0.05. The process is simulated for
500 minutes and the two inputs are shown in Figure 4.7.

A disturbance dk is added to the state x2 in Equation 4.32 such that

dk = 0.5 · cos( k

10 · π
) + 0.2 · nk (4.33)
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Figure 4.6: Fast process measurement and slow measurement with time delay.

where nk is a non-Guassian noise which is generated from a bimodal distribu-
tion such that with 70% of the time it is generated from a Guassian distribution
with a mean value of -0.2 and variance of 0.12, and with 30% of the time it is
generated from a Guassian distribution with a mean value of 0.2 and variance
of 0.12. Suppose we are interested in the substrate concentration x2 whose
value is observed by two measurements. The first approach has a fast sam-
pling rate of 1 minute, but is corrupted by a large measurement noise, hence is
less accurate. The second measurement method is more accurate with smaller
noise, however, it is only available every 5 minute and is each lab data is 5
sampling time delayed. Assuming that two parameters θ1 and θ3 are unknown.
The parameter estimation algorithm proposed in Chapter 2 is applied to this
data set with the first less accurate measurement as the output. The initial
guess for the two parameters are θ1 = 0.1, θ3 = 0.1. 100 particles are used for
the particle filtering approximation. The estimation terminated after near 30
EM iterations. The model prediction result with the estimated parameters is
shown in Figure4.8.

It can be seen from Figure 4.8 that, the model prediction with the estimated
parameters has an obvious mismatch compared to the true output.

In order to compensate the difference between the predicted model and
the real process output, the proposed Bayesian calibration approach is applied
through Equation (3.31)-(3.36), where xpre

t is the predicted value for the sub-
strate concentration x2 from the estimated model; ωt is the process noise which
follows a Guassian distribution ωt ∼ N(0, 0.152); vot and vLt are measurement
noises for the fast sampled measurement and slow sampled measurement which
are chosen as N(0, 0.72) and N(0, 0.012). The calibration result is shown in
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Figure 4.7: Process inputs. (a): u1, the dilution factor h−1; (b): u2, the
substrate concentration in the feed.
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Figure 4.8: Comparison of current measurements.
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Figure 4.9: Comparison of different measurements.

Figure 4.9 and Figure 4.10, from which we can see that the estimation with
the Bayesian calibration provides a better result than the model prediction
without calibration.

4.6 Conclusion

The time delayed issue associated with the soft sensor development has been
addressed in this chapter. An augmented state which consists of the current
state and past states has been constructed to deal with time delay problem.
In order to estimate the augmented state, the Bayesian calibration approach is
applied which synthesizes both fast sampled measurement and slow sampled
measurement with time delay. The proposed method is demonstrated through
a numerical simulation example and a semi-fermentor simulation example.
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Chapter 5

Conclusions

5.1 Summary of this thesis

This thesis is concerned with the modeling and model calibration issues for
soft sensor development. Single-model based modeling techniques have shown
limitation in describing processes with multiple operating conditions. Un-
availability of certain critical process variables renders difficulties in process
monitoring and control. The limitation of conventional hardware sensors and
the necessity of measuring important process variables motivate us to explore
soft sensor development.

The background material about soft sensor was presented in Chapter 1.
Chapter 2 deals with the identification problem of nonlinear parameter vary-
ing systems. The local model structure is assumed to be known while the
model parameters vary among different operating periods. By employing an
exponential weighting function which provides the weight for each local model,
a global nonlinear model can be obtained which is a weighted interpolation
of each local nonlinear model. The estimation of each local model parame-
ter is performed under the framework of EM algorithm. In the Expectation
step of the EM algorithm, particle filter approximation is adopted to calculate
the Q function. Meanwhile, the missing output problem is considered and
is solved by particle filters approximation. Simulated numerical examples as
well as experiment performed on pilot-scale setup are used to demonstrate the
capabilities of the proposed identification approach.

In practice, model-plant mismatch always exists, especially for data-driven
models which are built based on historical data. Changes of operating con-
ditions could render large mismatch compared with the true value since the
available training data only describes a period of process historical behavior.
The objective of Chapter 3 is to develop a model updating mechanism by
combining different measurement sources. A Bayesian method based model
updating strategy is formulated which make uses of both fast-rate sampled
and slow-rate sampled measurements. With the given model, the Bayesian
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online calibration is performed using particle filter. To illustrate the proposed
method, an oil sands soft sensor is studies in Chapter 3. A data-driven model
based soft sensor is developed and implemented with the proposed model up-
dating strategy. The online monitoring results prove the superiority of this
soft sensor to the existing measurements.

Time delay issue is another challenge in real process. Chapter 4 moves the
discussion forward to the soft sensor development of time delayed processes.
In Two types of measurements are considered. One is fast sampled with low
accuracy; the other measurement is more accurate, however it is slow sampled
and couple with time delay. To deal with this problem, an augmented state
is constructed which consists of both current state and past states. Such
augmented state is estimated using particle filters. Both numerical simulation
and a semi-fermenter example are used to confirm the efficiency of the proposed
method.

5.2 Recommendations for future work

Throughout the whole thesis, we have been working on the modeling and model
calibration issues that are associated with soft sensor development. Several
techniques have been adopted such as Expectation-Maximization algorithm,
particle filtering, Bayesian online calibration. With the efficiency of those
methods being demonstrated in this thesis, there are several open issues and
directions which can further extend the application of those techniques.

In the first chapter, it is assumed that the trajectory of the scheduling
variable is known. The possibility exists that some data are collected without
knowing the identity (from which operating condition) and it would be more
practical to formulate a framework which also take part of the trajectory of
the scheduling variable as missing.

Further, in the forth chapter which deals with the time delay issue, only
small time delay (4 sampling time delay and 5 sampling time dealy) is dis-
cussed. It is worth extending the work to longer time delay which is com-
monly encountered in chemical industries so that the proposed method can be
applied to real processes.
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