
Uncertainty is the only certainty there is.

- John Allen Paulos



University of Alberta

Particle Filter for Bayesian State Estimation and Its
Application to Soft Sensor Development

by

Xinguang Shao

A thesis submitted to the Faculty of Graduate Studies and Research in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Process Control

Department of Chemical and Materials Engineering

c©Xinguang Shao
Spring 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce

single copies of this thesis and to lend or sell such copies for private, scholarly or

scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta will advise potential users

of the thesis of these terms.

The author reserves all other publication and other rights in association with the

copyright in the thesis and, except as herein before provided, neither the thesis nor

any substantial portion thereof may be printed or otherwise reproduced in any

material form whatsoever without the author’s prior written permission.



This thesis is dedicated to ...

Yingdan You



Abstract

For chemical engineering processes, state estimation plays a key role in various

applications such as process monitoring, fault detection, process optimization

and model based control. Thanks to their distinct advantages of inference

mechanism, Bayesian state estimators have been extensively studied and uti-

lized in many areas in the past several decades. However, Bayesian estimation

algorithms are often hindered by severe process nonlinearities, complicated

state constraints, systematic modeling errors, unmeasurable perturbations,

and irregular with possibly abnormal measurements. This dissertation pro-

poses novel methods for nonlinear Bayesian estimation in the presence of such

practical problems, with a focus on sequential Monte Carlo sampling based

particle filter (PF) approaches. Simulation studies and industrial applications

demonstrate the efficacy of the developed methods.

In practical applications, nonlinear and non-Gaussian processes subject to

state constraints are commonly encountered; however, most of the existing

Bayesian methods do not take constraints into account. To address this in-

adequacy, a novel particle filter algorithm based on acceptance/rejection and

optimization strategies is proposed. The proposed method retains the ability

of PF in nonlinear and non-Gaussian state estimation, while taking advantage

of optimization techniques in handling complicated constrained problems.

Dynamical systems subject to unknown but bounded perturbations ap-

pear in numerous applications. Considering that the performance of the con-

ventional particle filter can be significantly degraded if there is a systematic

modeling error or poor prior knowledge on the noise characteristics, this the-

sis proposes a robust PF approach, in which a deterministic nonlinear set

membership filter is used to define a feasible set for particle sampling that

guarantees to contain the true state of the system.



Furthermore, due to the imperfection of modeling and the nature of pro-

cess uncertainty, it is important to calibrate process models in an adaptive

way to achieve better state estimation performance. Motivated by a ques-

tion of how to use the multiple observations of quality variables to update the

model for better estimate, this thesis proposes a Bayesian information syn-

thesis approach based on particle filter for utilizing multirate and multiple

observations to calibrate data-driven model in a way that makes efficient use

of the measured data while allowing robustness in the presence of possibly

abnormal measurements.

In addition to the theoretical study, the particle filtering approach is imple-

mented in developing Bayesian soft sensors for the estimation of froth quality

in oil sands Extraction processes. The approach synthesizes all of the existing

information to produce more reliable and more accurate estimation of unmea-

surable quality variables. Application results show that particle filter requires

relatively few assumptions with ease of implementation, and it is an appealing

alternative for solving practical state estimation problems.
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Chapter 1

Introduction

1.1 Motivation

In today’s competitive process industries, the pressure to improve the perfor-

mance of processing facilities is intensive. Modern industrial enterprises have

invested significant resources for process automation to collect and distribute

data, with the expectation that it will enhance productivity and profitabil-

ity via better decision making. However, it is not uncommon that real-time

information on critical process variables is unavailable due to various causes

such as sensor reading errors, sensor failures, and sensor unavailability (For-

tuna, 2007). For a typical example, in a polymerization reactor, measurement

of moments of molecular weight distribution cannot be obtained frequently

because of high costs and long analysis times involved in measurement us-

ing gel permeation chromatography. In such cases, extracting useful hidden

variable information using measured variables, process models, and/or expert

knowledge is becoming more and more important to sustain plant safety, pro-

ductivity and profitability. This need is general for many process engineering

tasks including, process control, process monitoring, fault detection and di-

agnosis. Due to the importance of these tasks, many methods have been

developed under the name of state estimation (Lehmann and Casella, 1998;

Simon, 2006).

An ideal approach for state estimation should have the following features.

First, it should be capable of handling all kinds of data, models and prior

1



information. This includes missing, abnormal and multi-rate process data,

first-principle and data-driven models with possibly systematic modeling inac-

curacies, linear and nonlinear dynamics, physical constraints and prior knowl-

edge of the investigated process. Second, the approach should be able to ex-

tract maximum information with mathematical rigor. Furthermore, it should

permit efficient computation for on-line or off-line applications. Finally, this

ideal approach should provide information about level of uncertainty (or con-

fidence/probability) in the decision making.

In this thesis, we take completely statistical view and put an emphasis

on how to use Bayesian approaches to solve state estimation problems. As

opposed to the frequentist approach, all the variables in Bayesian approach

are treated as random, and the inference of interested variables is based on

their distributions conditional on observed data (Box and Tiao, 1973).

Recall that the well-known Bayes’ theorem states that the posterior distri-

bution of some signal B given some signal A is equal to the prior distribution

of B times the likelihood of A given B, divided by a normalizing constant:

p(B|A) =
p(A|B)p(B)

p(A)
(1.1)

The Bayesian method considers the contribution from both the observed

data in the form of the likelihood p(A|B) and the prior knowledge in the form

of the prior distribution p(B). As the data become more abundant, then for

any unknown variables which are observable from the measured data we expect

the posterior distribution p(B|A) to become progressively more concentrated

around a single value. In some sense, Bayes’ theorem reflects dynamics of

learning and accumulation of the knowledge. Prior distribution encapsulates

the state of our current knowledge, which can be updated after observing new

data, and then posterior distribution reflects the change. When we observe

another data then our current posterior distribution becomes prior for the

new estimate. Thus every time using our current knowledge we estimate the

state, observe data and store gained information in the form of new prior

2



knowledge. The sequential nature of Bayesian approach elegantly reflects the

learning dynamics, and which will be introduced in Chapter 2.

A primary difficulty in the application of Bayes’ theorem is the need to

perform extensive computation of integration. Despite significant efforts from

both scientific and engineering communities, solving Bayesian state estima-

tion problem effectively and efficiently has been quite challenging, especially

in the case of nonlinear and non-Gaussian problems, where analytical solution

is intractable; most of the developed methods rely on a variety of simplifying

assumptions. For example, extended Kalman filtering (EKF) relies on Gaus-

sian approximation and local linearization to find a computationally efficient

solution. Unscented Kalman filtering (UKF) avoids the linearization step,

but relies on Gaussian assumption approximated by a set of deterministic

points. Ensemble Kalman filter (EnKF) uses sampling technique for nonlin-

ear estimation, but it assumes that all probability distributions involved are

Gaussian. Moving horizon estimator (MHE) mostly relies on Gaussian ap-

proximation so that a least-squares expression can be formulated, and the

nature of multi-stage optimization incurs excessive computational burden for

on-line applications. These simplifying assumptions may work fine for un-

constrained linear dynamic systems without large uncertainties, but can be

easily violated in nonlinear dynamic systems, with constraints or large pro-

cess/observation/modeling uncertainties.

Among many available state estimation approaches, particle filter (PF)

based on a rigorous Bayesian formulation that uses sequential Monte Carlo

sampling has recently shown promises in providing accurate and efficient esti-

mation for nonlinear and non-Gaussian problems (Ristic et al., 2004). As op-

posed to conventional Bayesian estimators, PF does not assume Gaussian dis-

tributions. It can be implemented for arbitrary (multimodal or highly skewed)

posterior pdf, when faced with nonlinear models, non-Gaussian noises, or con-

strained problems.
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However, application of PF to practical chemical engineering processes is

still in infancy due to several outstanding issues. For example, process con-

straints commonly exist in engineering practices, e.g., non-negative concentra-

tion or mass balance equation, but conventional PF does not take constraints

into account. Another challenging problem, like other Bayesian estimators, is

that conventional PF requires availability of an accurate process model and

known noise characteristics, which are not realistic in practical applications.

Therefore, it is indeed necessary to develop a novel PF algorithm that is robust

against model uncertainties or unknown disturbances. Furthermore, in many

practical processes, a single sensor is usually unable to provide full knowl-

edge about the hidden state. It is necessary to achieve the fusion of several

observations provided by multiple sensors, and these observations are likely

to have multiple sampling rates, and each sensor’s functioning condition may

change, resulting in abnormal observations. This commonly happens because

of, e.g., external environmental changes or sensor damage. In such cases, it is

necessary to develop an estimation method that can synthesize multirate and

multiple observations with abnormal observation detection to avoid dramatic

estimation errors, and possibly improve estimation performance.

In summary, the motivation for this research arises from the following facts:

(i) nonlinear and non-Gaussian Bayesian estimation is a challenging prob-

lem (Prakash et al., 2011), while it is of paramount importance in many

practical applications;

(ii) particle filtering approach is an emerging technique to handle nonlinear

and non-Gaussian state estimation problems; however it is still in infancy

for practical applications;

(ii) constraints are commonly encountered in practical processes and this

kind of prior knowledge can be used by PF for better estimation perfor-

mance;
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(iii) unaccounted modeling inaccuracies or unknown process/measurement

errors can degrade PF performance drastically, and there is a lack of

effective, generalized robust PF estimation algorithm;

(iv) multiple observations with different sampling rate processes are abun-

dant in process industries, and it is important to develop a unified infor-

mation synthesis approach to achieve better estimation performance.

Motivated by the above factors, this thesis intends to investigate particle

filtering approach for nonlinear and non-Gaussian Bayesian state estimation

problems of chemical engineering processes. In addition to the development of

the particle filtering algorithms, industrial soft sensors are developed specif-

ically for Oil Sands Extraction processes, where lack of suitable hardware

instruments has been a critical challenge, and state estimation and soft sensor

techniques play important roles.

1.2 Contributions

This thesis presents both theoretical development and industrial application

oriented studies, in which the interplay between the theory and application

provides interesting and valuable insights and allows for a balanced and sys-

tematic view of the investigated topic. The main contributions are listed below

in the order of appearance.

1.2.1 Contributions via theoretical developments

The main theoretical contributions include:

(i) extensive study of recursive Bayesian state estimation problems, with a

detailed analysis of particle filtering algorithms;

(ii) comparative study of constrained Bayesian state estimation problems,

with proposal of novel constrained particle filter approaches;
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(iii) development of a robust particle filtering approaches in the presence of

unknown but bounded uncertainties;

(iv) detailed study of multi-rate data-driven process modeling with proposal

of a practical Bayesian model calibration strategy based on PF approach.

1.2.2 Contributions via industrial applications

The main practical contributions include:

(i) study of Oil Sands Extraction process for advanced process monitoring

and systematic development of soft sensor design schemes for various

extraction processes;

(ii) on-line application of PF based soft sensor for an Inclined Plate Settler

process;

(iii) on-line application of PF based soft sensor and inferential control for a

froth transportation process.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 gives a general for-

mulation of the recursive Bayesian estimation, and reviews existing commonly

used approaches and the state of the art sequential Monte Carlo sampling

based particle filtering approach. Comparative study of constrained Bayesian

estimation is presented in Chapter 3, in which novel constrained particle fil-

tering approaches are proposed to handle complicated state constraint. In

Chapter 4, a robust particle filter approach is presented for tackling state esti-

mation in the presence of unknown but bounded uncertainties. The proposed

approach guarantees that the true state stays within a predefined particle

sample set. Chapter 5 describes a Bayesian model calibration strategy us-

ing multiple-source observations. A practical robust estimation formulation is

derived for handling abnormal observations and implemented within particle

6



filtering framework. Chapter 6 presents an industrial application, where soft

sensor is developed for an oil sands froth transportation process and utilized

for inferential control of a key quality variable. Finally, the thesis concludes

in Chapter 7, with a discussion of the most important results and suggestions

for future research both theoretically and practically.
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Chapter 2

Review of Recursive Bayesian
State Estimation

1 State estimation deals with the problem of inferring knowledge about process

variables (or state) indirectly measurable from a possibly noisy observation of

a real world process, and the state is a physical quantity that affects the obser-

vation in a known manner represented by a certain process model. In recursive

estimation, the inferred knowledge about the state is updated continuously as

new measurements are collected. This recursive processing of observation is

suitable in problems where the state dynamics change with time, or when the

application demands most updated estimates based on the sequence of mea-

surements observed so far. With the Bayesian view on estimation, both the

state and the observation are stochastic entities. This fundamental paradigm

yields a unifying framework for estimation problems where the inference result

is a conditional density function of the states given the observational outcome.

This chapter is a review of recursive Bayesian estimation theory and it

serves as a theoretical platform for the sequel of the thesis.

2.1 Problem Statement

Consider a discrete time system given by

xk = fk(xk−1, uk−1) + ωk−1, (2.1)

1. Part of this chapter has been published in “X. Shao, B. Huang, J.M. Lee, Practical issues
in particle filters for state estimation of complex chemical processes. IFAC SysId, 2009.”
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yk = hk(xk) + νk, (2.2)

where xk, uk, yk, ωk and νk are state, input, output, process noise and mea-

surement noise, respectively; fk(·), hk(·) are nonlinear functions; both νk and

ωk are white noise of possibly non-Gaussian; initial state x0 may also follow a

non-Gaussian distribution p(x0); the variables xk, yk, ωk and νk are random,

while the input term uk is usually deterministic. For the simplicity, input

term is dropped in the remainder of this chapter as it does not affect the

derivations. Note that the system can then be alternatively presented in a

probabilistic form as

xk ∼ p(xk|xk−1), (2.3)

yk ∼ p(yk|xk), (2.4)

2.2 Recursive Bayesian Estimation

The objective of Bayesian estimation is to reconstruct the conditional a poste-

riori probability density function (pdf) p(Xk|Yk), where Xk = {x0, · · · , xk} is

the vector of states up to time k, and Yk = {y1, · · · , yk} is the vector of noisy

measurements up to time k.

For many problems, an estimate of the state is required at each time point.

Hence a recursive estimation method to construct the posterior pdf, p(xk|Yk), is

needed. Using a recursive method, received data can be processed sequentially

rather than as a batch, eliminating the need to store large amounts of data to

be reprocessed at a later time. The solution is obtained by recursively solving

the following equations based on the Bayes’ rule, also known as recursive

prediction and update procedures (Gordon et al., 1993):

p(xk|Yk−1) =

∫

p(xk|xk−1)p(xk−1|Yk−1)dxk−1, (2.5)

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

∫

p(yk|xk)p(xk|Yk−1)dxk

=
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
, (2.6)
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Figure 2.1: Illustration of recursive Bayesian state estimation.

where p(xk|Yk−1) is called prior distribution of xk before the measurement is

taken into account, p(yk|xk) likelihood distribution of yk given a certain xk,

and p(yk|Yk−1) normalizing constant.

The recursive algorithm of Bayesian estimation can be visualized as in

Figure 2.1. Suppose that the posterior pdf at time k − 1, p(xk−1|Yk−1), is

available. The prediction stage uses the probabilistic form of the state equation

to obtain the prior pdf of the state at time k using the Chapman-Kolmogorov

equation (Ristic et al., 2004) as shown in Equation (2.5). The update step is

carried out at time k when the measurement yk becomes available. The prior

pdf is updated via Bayes’ rule, as show in Equation (2.6).

It should be noted that two assumptions are used during the derivations

of Equations (2.5) and (2.6):

(i) the states follow a first-order Markov process:

p(xk|Xk−1, Yk−1) = p(xk|xk−1), where Xk−1 = {x0, · · · , xk−1};

(ii) the observations are conditionally independent given the state:

p(yk|Xk, Yk−1) = p(yk|xk).

Since p(xk|Yk) embodies all the statistical information contained in the

observations about xk, the posterior pdf p(xk|Yk) is the complete solution of

state estimation problem. After the posterior is available, the optimal point

estimate, x̂k, corresponding to the loss function, L(xk, x̂k), may be obtained

by optimizing the objective function
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Figure 2.2: Illustration of point state estimation.

min
x̂k

E[L(xk, x̂k)] = min
x̂k

∫

L(xk, x̂k)p(xk|Yk)dxk (2.7)

Bayesian estimation can use any loss function without changing its ba-

sic formulation and can readily provide error bounds. Various kinds of loss

function exist, providing popular choice of optimal estimates, such as mode

estimation (i.e., maximum of a posteriori, MAP), mean estimation (i.e., mini-

mum variance, MV) or median estimation. Figure 2.2 demonstrates that these

estimates are generally different except for Gaussian distributions.

It is important to note that, in general, there is no closed-form solution for

Equations (2.5) and (2.6), as:

(i) direct integration is computationally expensive and may not be practical

for high-dimensional systems;

(ii) the implementation of these equations requires storage of the entire pdf,

possibly non-Gaussian, which in many cases is equivalent to an infinite

dimensional vector.

Hence, for such intractable cases, approximations have to be made in order

to proceed. Most estimation approaches address the challenge by making

simplifying assumptions about the nature of the model and/or distributions at

the cost of accuracy and computational efficiency. However, recent theoretical

advance coupled with fast computation provides the foundation of building a

feasible Bayesian approach even for large-scale systems. This computationally
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efficient algorithm is based on sequential Monte Carlo sampling, also known

as particle filtering, and will be discussed in Section 2.4.

2.3 Bayesian Interpretation of Existing Meth-

ods

This section provides a Bayesian view of existing methods by focusing on the

approach for solving the Equations (2.5) and (2.6) in Section 2.2. Each method

is interpreted as a variation of Bayesian estimation depending on approxima-

tions for making the solution more convenient. One common assumption un-

derlying the existing methods is the Gaussian distributions for various pdfs,

since closed-form solutions may be obtained where only two parameters, mean

and variance, are required to describe the entire distribution. Although the

assumption is often acceptable in linear unconstrained systems, it can be easily

violated in nonlinear and/or constrained dynamic systems.

2.3.1 Kalman filtering based methods

Kalman-filter type of estimators are widely used for state estimation prob-

lems. These methods assume that all the system variables follow Gaussian

distributions whose statistical information can be fully described by mean and

covariance, and the estimate is given by

x̂k = x̂−
k + Kk(yk − ŷk), (2.8)

where x̂−
k is the prior estimate based on the information of p(xk|Yk−1), and Kk

is the Kalman gain at time k. When fk(·) and hk(·) in Equations (2.1) and

(2.2) are both linear functions, Gaussianity is kept all the time, and Kalman

filter gives the optimal solution.

Extended Kalman filter

For nonlinear systems, Gaussianity is no longer guaranteed, and thus approx-

imate solutions are needed. The most popular approximation method based
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on model linearization is Extended Kalman Filter (EKF), in which the mean

and covariance of the posterior distribution approximated as Gaussian are

calculated as:

x̂−
k = fk(x̂k−1),

Fk =
∂fk
∂x

|x̂k−1
,

P−
k = FkPk−1F

T
k + Qk−1,

ŷk =hk(x̂−
k ),

Hk =
∂hk

∂x
|x̂−

k
,

Sk = HkPk−1H
T
k + Rk,

Kk = P−
k HT

k S
−1
k ,

x̂k = x̂−
k + Kk(yk − ŷk),

Pk = (I −KkHk)P
−
k ,

(2.9)

where Qk−1 and Rk are the covariance matrices of the system noise, ωk−1, and

measurement noise, νk, respectively.

The main disadvantages of EKF include: (i) approximated linear model

can be inaccurate for highly nonlinear systems, in which estimate may fail

to converge to the true state; (ii) update of covariance needs calculation of

Jacobian matrices, which can be cumbersome in practice.

Unscented Kalman filter

Instead of approximating nonlinear models, Unscented Kalman Filter (UKF)

approximates the posterior distribution by Gaussian distribution directly. It

uses a set of deterministically chosen “sigma points” to represent mean and

covariance. An estimation procedure for a fully augmented UKF is shown as
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follows,

χk−1 =
[

x̂a
k−1 x̂a

k−1 +
√

(na + κ)P a
xk−1

x̂a
k−1 −

√

(na + κ)P a
xk−1

]

,

χx,−
k,i = fk(χx

k−1,i) + χω
k−1,i,

x̂−
k =

2na
∑

i=0

W x
i χ

x,−
k,i ,

P−
k =

2na
∑

i=0

W c
i (χx,−

k,i − x̂−
k )(χx,−

k,i − x̂−
k )T ,

γk,i = hk(χx,−
k,i , χ

ν
k,i),

ŷk =

2na
∑

i=0

W x
i γk,i,

Pykyk =

2na
∑

i=0

W c
i (γi

k − ŷk)(γi
k − ŷk)

T ,

Pxkyk =
2na
∑

i=0

W c
i (χx,−

k,i − x̂−
k )(γk,i − ŷk)

T ,

Kk = PxkykP
−1
ykyk

,

x̂k = x̂−
k + Kk(yk − ŷk),

Pk = P−
k + KkPykykK

T
k ,

(2.10)

where χk−1 =
[

χxT

k−1 χωT

k−1 χνT

k−1

]T
is the vector of “sigma points” of the

augmented state, xa
k−1 =

[

xT
k−1 ωT

k−1 νT
k−1

]T
, with mean and covariance as

x̂a
k−1 =

[

x̂T
k−1 0 0

]T
,

P a
xk−1

=





Pk−1 0 0
0 Qk−1 0
0 0 Rk−1



 .

na = nx + nω + nν is the dimension of the augmented state; κ is a tunning

parameter; W x
i and W c

i are weights for state and covariance.

Note that fully augmented UKF is not always necessary for all the situa-

tions, and reduction of computational complexity is possible for specific prob-

lems. Readers are referred to Kol̊as et al. (2009) for discussions on selections

of UKF algorithms.
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2.3.2 Moving horizon estimator

An alternative method for Bayesian approximation is to maximize a condi-

tional a posteriori pdf for a sequence of the state trajectory,

{x̂k−h, · · · , x̂k} := arg max
xk−h,··· ,xk

p(xk−h, · · · , xk|Yk), (2.11)

where h ∈ {0, k} is known as a time horizon parameter.

Using Bayes’ rule and Markov assumption, one can have

p(xk−h, · · · , xk|Yk) ∝

k
∏

j=k−h

p(yj|xj)

k−1
∏

j=k−h

p(xj+1|xj)p(xk−h|Yk−h−1), (2.12)

where p(xk−h|Yk−h−1) is the a priori information.

By assuming Gaussian distributions, a quadratic optimization problem can

be formulated for solving Equation (2.12):

min
xe
k−h

,ω̂k−h,··· ,ω̂k−1

xe
k−h

TP−1
k−hx

e
k−h +

k−1
∑

j=k−h

ω̂T
j Q

−1ω̂j +

k
∑

k−h

ν̂T
j R

−1ν̂j

s.t. x̂k−h = x̂−
k−h + xe

k−h,

x̂j+1 = fj(x̂j) + ω̂j , j = k − h, · · · , k − 1,

yj = hj(x̂j) + ν̂j , j = k − h, · · · , k,

x̂j ∈ X, ω̂j ∈ W, ν̂j ∈ V.

(2.13)

Equation (2.13) is known as Moving Horizon Estimator (MHE), which can be

viewed as a form of iterative EKF (Bell and Cathey, 1993) for unconstrained

system with a horizon size h = 1 (Rao, 2002). The advantage of MHE is that

constraints for state or noise can be naturally incorporated into the problem

formulation. However, the major problem for MHE is the computational load

(see Robertson et al. (1996); Rao (2002); Rao and Rawlings (2002); Rawlings

and Bakshi (2006); Zavala et al. (2008), and reference therein).

2.4 Particle Filter

Although the integrals in Equations (2.5) and (2.6) are intractable for nonlin-

ear and non-Gaussian estimation problems, sampling methods can be used to

numerically evaluate them.
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Particle filter (PF) is a suboptimal Bayesian estimation algorithm that falls

into the general class of Sequential Monte Carlo (SMC) sampling techniques.

Interesting work in SMC integration methods was carried out by various in-

dividuals in the 1960s and 1970s (Ho and Lee, 1964; Yoshimura and Soeda,

1972; Akashi and Kumamoto, 1977). However, due to their severe computa-

tional complexity and the limited capability of computers, SMC algorithms

have been neglected until recent years, especially after the introduction of the

fundamental resampling step by Gordon et al. (1993). SMC algorithms have

the great advantage of not being limited by nonlinearity and non-Gaussianity

in the state model.

Unlike most other Bayesian estimators, particle filter does not rely on lin-

earization technique or Gaussian assumption. It approximates a probability

density by a set of samples or particles, xi
k, and their associated weights,

wi
k ≥ 0, in a discrete summation form:

p̂(xk|Yk) =

N
∑

i=1

wi
kδ(xk − xi

k), (2.14)

where δ(·) is the Dirac delta function, and N is the number of particles.

The ideal case for Monte Carlo sampling is to generate particles directly

from the true posterior pdf p(Xk|Yk), which is unknown. Thus an easy-to-

implement distribution, the so called importance density denoted by q(Xk|Yk),

is defined before sampling, and the unnormalized importance weight for the

sample drawn from q(Xk|Yk) is describes as

w̃i
k ∝

p(X i
k|Yk)

q(X i
k|Yk)

. (2.15)

Given the samples and associated normalized weights {X i
k−1, w

i
k−1} approx-

imating the posterior density p(Xk−1|Yk−1) at time k−1, choose the importance

density so that it can be factorized as

q(Xk|Yk) , q(xk|Xk−1, Yk)q(Xk−1|Yk−1). (2.16)
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Using Bayes’ rule one can express the posterior density at time k as:

p(Xk|Yk) =
p(yk|Xk, Yk−1)p(Xk|Yk−1)

p(yk|Yk−1)

=
p(yk|Xk, Yk−1)p(xk|Xk−1, Yk−1)p(Xk−1|Yk−1)

p(yk|Yk−1)

=
p(yk|xk)p(xk|xk−1)

p(yk|Yk−1)
p(Xk−1|Yk−1)

∝ p(yk|xk)p(xk|xk−1)p(Xk−1|Yk−1).

(2.17)

By substituting Equations (2.16) and (2.17) into (2.15), it can be shown

that the weights associated with the samples at time k can be derived as

w̃i
k ∝ w̃i

k−1

p(yk|xi
k)p(xi

k|xi
k−1)

q(xi
k|X i

k−1, Yk)
. (2.18)

The above equation provides a mechanism to sequentially update the im-

portance weights based on a set of particles, therefore, by propagating the

associated particles one can perform the recursive Bayesian estimation as each

measurement is received sequentially. This method, called sequential impor-

tance sampling (SIS), forms the basis of most particle filtering methods. The

SIS algorithm is presented in Algorithm 2.1. As the number of samples N

becomes very large, the approximation, Equation (2.14), approaches the true

posterior density and the SIS algorithm approaches the optimal Bayesian es-

timator.

Algorithm 2.1: The SIS algorithm

step a. initialization: generate initial particles {xi
0}Ni=1 from a priori distri-

bution p(x0), and set k = 1;

step b. importance sampling: generate prior particles, {xi,−
k }Ni=1, from im-

portance sampling distribution q(xk|X i
k−1, Yk);

step c. weighting: evaluate weights of each particle according to Eq. (2.18)

once new measurement is available and normalize the weights as wi
k =

w̃i
k/

∑N
j=1 w̃

j
k;

step d. output: estimate the state by calculating x̂k =
∑N

i=1w
i
k · xi,−

k , set

k = k + 1 and go back to step b.
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Note that for particle filter output step, other than the weighted sum-

mation, one can also choose mode estimate (i.e., the particle with the largest

weight) and robust mean estimate (i.e., weighted summation of particle subset

around the mode).

Ideally the importance density function should be the posterior distribution

itself. In a such case, the mean and variance of the importance weights will be

1 and 0, respectively. However, for most importance functions, the variance

of importance weights will increase over time. The variance increase has a

harmful effect on the accuracy and leads to a common problem with the SIS

particle filter known as degeneracy problem. In practical terms this means

that after certain number of recursive steps, all but one particle will have

negligible weights, and a large computational effort will be devoted to updating

particles whose contribution to the approximation of p(xk|Yk) is almost zero.

The degeneracy is difficult to avoid in the SIS framework and hence it was

a major stumbling block in the development of sequential MC methods. A

suitable measure of degeneracy of an algorithm is the effective sample size and

can be estimated as follows:

Neff =
1

∑N
i=1w

i2
k

(2.19)

It is straightforward to verify that 1 ≤ Neff ≤ N with the following two

extreme cases:

(i) if the weights are uniform (i.e., wi
k = 1/N for i = 1, · · · , N) then Neff = N ;

(ii) if there exists a j ∈ {1, · · · , N} such that wj
k = 1 and wi

k = 0 for all i 6= j,

then Neff = 1.

Hence, small Neff indicates a server degeneracy and vice versa.

To overcome the degeneracy problem, next subsection presents a resam-

pling strategy to propagate the particles in regions with high probability.
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2.4.1 Resampling

Whenever Neff falls below a threshold, Nthr, resampling is required. The

resampling procedure consists of regenerating particles according to the esti-

mated pdf: eliminates samples with low importance weights and multiplies

samples with high importance weights.

Resampling involves a mapping of random measure of prior particles into

a random measure of posterior particles with uniform weights. The new set

of random samples {xj
k,

1
N
} is generated by resampling (with replacement) N

times from an approximate discrete representation of p(xk|Yk) given by

p(xk|Yk) ≈
N
∑

i=1

wi
kδ(xk − xi,−

k ), (2.20)

so that P (xj
k = xi,−

k ) = wi
k. The resulting sample is an independent identically

distributed (i.i.d.) sample from the discrete density given in Equation (2.20),

hence the new weights are uniform, i.e., wj
k = 1

N
, and the approximation of

p(xk|Yk) becomes

p(xk|Yk) ≈
N
∑

j=1

1

N
δ(xk − xj

k), (2.21)

Figure 2.3 shows a schematic representation of multinomial resampling

strategy (Douc et al., 2005), in which the left side of the figure represents the

cumulative density function of the samples and right side shows the random

variable ul ∼ U [0, 1], which is mapped into the new sampling index j. Due

to the high value of wi
k, the corresponding particle xi,−

k has a good chance of

being selected as the new sample xj
k if we draw ul uniformly.

For other resampling strategies, readers are referred to Boloc et al. (2004);

Douc et al. (2005) and references therein.

Now that we have defined the main steps of a generic particle filter (GPF),

and estimation steps are summarized as follows:

Algorithm 2.2: The GPF algorithm

step a. initialization: generate initial particles {xi
0}Ni=1 from a priori distri-

bution p(x0), and set k = 1;
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Figure 2.3: Illustration of multinomial resampling strategy.

step b. importance sampling: generate prior particles, {xi,−
k }Ni=1, from im-

portance sampling distribution q(xk|X i
k−1, Yk);

step c. weighting: evaluate weights of each particle once new measurement

is available and normalize the weights as wi
k = w̃i

k/
∑N

j=1 w̃
j
k;

step d. resampling: if Neff ≤ Nthr, then generate posterior particles, {xi
k}Ni=1,

based on weighting information and resampling strategy, and set wi
k =

1/N ;

step e. output: estimate the state by calculating x̂k =
∑N

i=1w
i
k · xi

k, set k =

k + 1 and go back to step b.

Although the resampling step reduces the effects of degeneracy, it intro-

duces other practical problems. If the particles that have high weights wi
k

are statistically selected many times it leads to a loss of diversity among the

particles as the resultant samples will contain many repeated points. This

problem, known as particle impoverishment, is severe when process noise in

the state dynamics is very small. It leads to the situation where all particles

will collapse to a single point within a few iterations. Also, since the diversity

of the paths of the particles is reduced, any smoothed estimates based on the

particles’ path degenerate. Intentionally adding disturbance to the prior, or

utilize Markov chain Monte Carlo (MCMC) move step, or regularization step,

may reduce the impoverishment problem.
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2.4.2 Choice of importance density

The choice of importance density q(xk|X i
k−1, Yk) is one of the most critical

issues in the design of particle filter (Prakash et al., 2011; Shenoy et al., 2011).

The samples are drawn from this distribution and it is used to evaluate the

importance weights. The support of this proposal distribution should include

the support of true posterior distribution. This distribution must also include

the most recent measurement. The optimal importance density function that

minimizes the variances of importance weights, conditioned upon xi
k−1 and yk

is given by Doucet et al. (2000)

q(xk|X i
k−1, Yk)opt = p(xk|xi

k−1, yk)

=
p(yk|xk, x

i
k−1)p(xk|xi

k−1)

p(yk|xi
k−1)

(2.22)

Substitution of Equation (2.22) into Equation (2.18) yields

w̃i
k ∝ w̃i

k−1p(yk|xi
k−1), (2.23)

which states that importance density at time k can be computed before the par-

ticles are propagated to time k. In order to use the optimal importance func-

tion one has to be able to sample from p(xk|xi
k−1, yk) and evaluate p(yk|xi

k−1) =
∫

p(yk|xk)p(xk|xi
k−1)dxk up to a normalizing constant. In general, determining

either of these two may not be a simple task.

However, there are some special cases where the use of the optimal impor-

tance density is possible. The first case is when xk is a member of a finite set

where the integral of
∫

p(yk|xk)p(xk|xi
k−1)dxk becomes a sum and sampling

from p(xk|xi
k−1, yk) is possible. The second case is a class of models of which

p(xk|xi
k−1, yk) is Gaussian.

The most popular suboptimal choice is using the transitional prior:

q(xk|X i
k−1, Yk) = p(xk|xi

k−1). (2.24)

If an additive zero-mean Gaussian process noise model is used the transi-

tional prior is simply:

p(xk|xi
k−1) = N (xk; fk−1(x

i
k−1), Qk−1). (2.25)
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This choice of importance density dose not satisfy the requirement that it

must incorporate the latest measurement. However, it is easy to implement.

One way of improving this importance density is to use a local estimator to

update the particles using the latest measurement and use

q(xk|X i
k−1, Yk) = N (xk; x̂

i
k, P̂

i
k) (2.26)

where x̂i
k and P̂ i

k are the estimates of the mean and covariance computed by

a local estimator. This method for approximation of the importance density

propagates the particles towards the likelihood function and consequently per-

forms better than general PF. The additional computation cost of using such

an importance density is often more than offset by reduction in the number of

samples required to achieve a certain level of performance.

2.5 Case Studies

In this section, a two-state adiabatic Continuous Stirred Tank Reactor (CSTR)

is studied first to test the effectiveness of the particle filter. Then we apply PF

to the Tennessee Eastman (TE) process, which is a well known benchmark ex-

ample for process monitoring and control. The results show that PF algorithm

has potential to be applied in practical chemical engineering processes.

2.5.1 Two-state CSTR

Consider an adiabatic CSTR described by the following equations:

dC

dt
=

q

V
(C0 − C) − kCe−EA/T

dT

dt
=

q

V
(T0 − T ) − ∆H

ρCp
kCe−EA/T − UA

ρCpV
(T − Tc)

(2.27)

where C is the concentration of product, T the temperature, q the flow rate,

V the volume of the reactor, C0 and T0 inflow concentration and temperature,

kCAe
−EA/T the reaction rate, ∆H the reaction heat, ρ the density, Cp the spe-

cific heat, U and A the effective heat-transfer coefficient and area, respectively,
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Figure 2.4: Illustration of non-Gaussian property for CSTR case.

and Tc the temperature of the coolant. The detailed parameter specifications

can be found in Chen et al. (2004).

Only the temperature is routinely measured at one-second sampling inter-

val, concentration is estimated based on the noisy temperature measurements,

an poor initial guess is used, and the case is comparatively studied by EKF,

UKF, MHE, and PF.

Figure 2.4 shows the dynamic evolution of the posterior distribution given a

Gaussian initial guess. The non-Gaussian shapes of these distributions indicate

that state estimation by Gaussian or other fixed-shape distribution can be

inaccurate. Figures 2.5 and 2.6 illustrate the estimation results under different

methods, i.e. EKF, UKF, MHE (h = 2), and generic PF (N = 100). From

figures we can see that all the methods work fairly well as the simulation

progresses. Particle filter is one of the best among these methods as it is more

suitable for non-Gaussian estimation problems. An interesting point here is

that EKF works very well and in fact even better than UKF. We believe that

this is due to the fact that the linearization approximates the process very well

and Gaussian noises are used.

24



0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

C
a

time step

 

 

0 50 100 150 200 250 300 350 400 450
300

350

400

450

T

time step

 

 

True

EKF

UKF

MHE

PF

Figure 2.5: State estimation under different approaches for CSTR case.
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Figure 2.7: The Tennessee Eastman process flowsheet (Downs and Vogel
(1993)).

2.5.2 Tennessee Eastman benchmark process

To illustrate the applicability of PF approach to practical chemical processes,

a complicated, highly nonlinear and open-loop unstable system, the Tennessee

Eastman process (see Figure 2.7), is considered. This process has been widely

studied as a challenge problem in process control community.

The process consists of five main units: an exothermic two-phase CSTR,

a vapor-liquid separator, a product condenser, a stripper and a recycle com-

pressor. There are totally eight components present in the process, including

two products, G and H , four reactants, A, C, D, E, one inert component, B,

and one byproduct, F . The reactions are:

Ag + Cg + Dg → Gl,
Ag + Cg + Eg → Hl

Ag + Eg → Fl

3Dg → 2Fl

where the subscripts g and l denote gas or liquid phase, respectively. More

details about the process can be found in Downs and Vogel (1993).

Since the plant is open-loop unstable, many papers have discussed stabiliz-

ing controllers for this process. In order to apply advanced control strategies,

accurate estimation for interesting but unavailable or infrequently sampled
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Figure 2.8: Estimation results for TE process (regular measurements).

variables are necessary.

The original TE plant has 41 measurements and 12 manipulated variables.

In this chapter, we use a simplified model developed by Ricker and Lee (1995a)

as the model for the estimator design. The simplified model contains 26 states,

10 manipulated variables, 16 outputs and 15 adjustable parameters, which are

used to compensate the unmeasured disturbance and model error.

In our simulation, the TE process is stabilized by PI controllers described

in Ricker and Lee (1995b). Figures 2.8 and 2.9 show sample results based

on PF (N = 500) estimation after 10 hours of process operation. The first

two subplots in Figure 2.8 show the reactor and separator levels, which are

the measurements used to update the estimator every 6 mins; the second two

subplots in Figure 2.8 show the component A and C in reactor feed (stream

6), which are also measured but not used for the estimator updating. The first

two subplots in Figure 2.9 show the measurements of G and H for the products

(stream 11), which are only available at every 15 mins and play important

roles for quality control. The second two subplots in Figure 2.9 show the molar
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holdup of product G in the reactor and separator, which are unmeasured states

but important to be monitored. From these figures, we can see that the PF

estimator can track the process dynamic responses. The CPU time needed

for the simulation is generally in the range of 3 to 5 seconds; therefore, we

conclude that PF approach is able to provide real-time estimation for the TE

process.

2.6 Conclusions

This chapter introduced the problem of recursive Bayesian state estimation,

and reviewed some existing approaches for non-linear Bayesian approxima-

tion. A novel particle filtering approach is introduced for non-linear and non-

Gaussian cases. The approach is based on a rigorous Bayesian formulation that

uses sequential Monte Carlo (SMC) sampling to propagate all information,

while minimizing assumptions about the system and probability distribution

functions. The resulting PF approach dose not rely on common assumptions of
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Gaussian or fixed-shape distributions, which are readily violated in nonlinear

dynamic systems. Illustrative examples show that PF outperforms many com-

monly used estimation approaches, including EKF, UKF, MHE, and it has a

good potential for real applications in complex chemical engineering processes.

In the next few chapters of this thesis, PF based Bayesian state estimation

will be further discussed and industrial applications will be introduced.
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Chapter 3

Constrained Bayesian State
Estimation

1 Chapter 2 gives a review of recursive Bayesian estimation theory and tech-

niques, including an introduction of particle filter for non-linear and non-

Gaussian estimation. This chapter investigates constrained Bayesian state

estimation problems by using particle filter (PF) approaches. Constrained

systems with nonlinear model and non-Gaussian uncertainty are commonly

encountered in practice. However, most of the existing Bayesian methods do

not take constraints into account and require some simplifications. In this

chapter, a novel constrained PF algorithm based on acceptance/rejection and

optimization strategies is proposed. The proposed method retains the ability

of PF in nonlinear and non-Gaussian state estimation, while take advantage

of optimization techniques in constraints handling. The performance of the

proposed method is compared with other accepted Bayesian estimators. Ex-

tensive simulation results from three examples show the efficacy of the pro-

posed method in constraints handling and its robustness against poor prior

information.

1. A version of this chapter has been published as “X. Shao, B. Huang, J.M. Lee, Con-
strained Bayesian State Estimation - a Comparative Study and a New Particle Filter Based
Approach, Journal of Process Control, 20(2), pp.143-157, 2010.”
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3.1 Introduction

Though nonlinear and non-Gaussian processes subject to state constraints are

commonly encountered in practical applications, most of the existing Bayesian

methods do not take constraints into account and require assumptions of lin-

earity or Gaussianity. Therefore, development of Bayesian estimators that can

handle nonlinear and non-Gaussian problems with constraints would be useful

and has recently become an active research area (Rao, 2002; Vachhani et al.,

2004; Haseltine and Rawlings, 2005; Vachhani et al., 2006; Rawlings and Bak-

shi, 2006; Kandepu et al., 2008; Kol̊as, 2008; Teixeira et al., 2009; Prakash

et al., 2010).

Preliminary contributions of constrained PF can be found in Lang et al.

(2007), in which an acceptance/rejection method is used for dealing with in-

equality constraint. However, the proposed approach is difficult to handle com-

plicated constraints, such as nonlinear constraints, equality-inequality mixed

constraints. Furthermore, the nature of the acceptance/rejection approach is

simply removing all the particles outside the constraint region. In some cases

(e.g., with a very poor prior estimate), the method could fail due to insufficient

number of valid particles. Rajamani and Rawlings (2007) gives some prelimi-

nary discussions on the combination of PF and MHE; the method is based on

optimization technique, which is more sophisticated to handle different types

of constraints, but their optimization scheme is applied to the sample mean

only, which may not take the full advantage of particle filter, especially when

the posterior distribution is non-Gaussian. For instance, in a multimodal case,

it is more appropriate to track and constrain individual particles instead of

the sample mean only, since the mean could be located between the modes in

a feasible region, but as a very poor estimate.

In this chapter, a constrained PF algorithm based on hybrid use of accep-

tance/rejection and optimization strategies is proposed. The proposed method

combines the ability of PF to handle nonlinear and non-Gaussian problems
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and the advantages of optimization techniques in constraints handling. Fur-

thermore, simulation results show that the proposed method enhances the

robustness of PF algorithm against poor prior information.

The remainder of this chapter is organized as follows: Section 2 introduces

the constrained Bayesian state estimation problem. In Section 3, two con-

straint handling strategies are discussed within the generic PF framework, and

a novel constrained PF algorithm is proposed. Three examples are illustrated

in Section 4. Section 5 gives the conclusions.

3.2 Constrained Bayesian Estimation

In practical applications, constraints stem from the physical laws or model

restrictions, e.g. non-negative mole fractions, limited liquid levels, mass bal-

ance, bounded parameters/disturbances, etc., and they are usually in the form

of algebraic equality and inequality relationships, or simply upper and lower

bounds. Incorporation of such constraints into estimation will be useful for

improving estimation performance.

Take a multimodal posterior pdf (Figure 3.1) as an example; for the max-

imum a posteriori (MAP) state estimation where state xk is concentration,

x̂k := arg max
xk

p(xk|Yk). (3.1)

Mathematically, two optimal solutions can be obtained: one is negative (mode

1) and the other is positive (mode 2). From the knowledge on the constraint

(i.e., x ≥ 0), it is easy to find the correct estimate (mode 2).

Constraints of stochastic variables affect estimation by reshaping their pdfs

in Bayesian framework. For instance, constraints on process noise restrict the

transition distribution, p(xk|xk−1); constraints on measurement noise have an

influence on the likelihood distribution, p(yk|xk); and constraints on states

alter the posterior distribution, p(xk|y1:k), as well as the transition and likeli-

hood distributions (Ungarala et al., 2008). Therefore, use of these constraints

confines the distributions, leading to improvement of estimation accuracy.
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Figure 3.1: An example for a multimodal pdf.

A common way to handle constraints is “clipping” (Haseltine and Rawl-

ings, 2005), where the estimated state is set equal to some predefined bounds

if outside the constraint region. A more advanced way to solve constrained es-

timation problem is to use optimization techniques. Rao and Rawlings (2002)

cast the constrained state estimation problem as a series of optimal control

problems, and proposed to solve constrained estimation problem by using

optimization techniques with a moving horizon fashion. However the MHE

generally assumes Gaussian distribution and does not provide full distribu-

tion function of the estimated state. Vachhani et al. (2006) and Kol̊as (2008)

adopted the optimization techniques into UKF framework to deal with con-

straints; however, the nature of the deterministic choice of “sigma points” in

UKF restricts its applications for non-Gaussian problems.

3.3 Constrained Particle Filter

As shown in Chapter 2, the generic PF does not consider constraints. In this

section, two methods are introduced to handle constraints in the PF frame-

work, and then a new constrained PF algorithm is proposed. The work dis-

cussed here can be applied to variants of PF, such as Auxiliary Particle Filter

(APF)(Pitt and Shephard, 1999), Unscented Particle Filter (UPF)(van der

Merwe et al., 2000), and Kernel Particle Filter (KPF) (Cheng and Ansari,

2003).
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3.3.1 Acceptance/Rejection

The nature of sample based representation of PF facilitates incorporating con-

straints into the estimation procedure. Lang et al. (2007) and Kyriakides et al.

(2005) discuss how to accept/reject the particles in the PF algorithm based on

constraint knowledge. As a minor modification from their work, a constrained

likelihood function is defined as:

Lc(x
i
k, y

i
k, ω

i
k, ν

i
k) =

{

1, if {xi
k, yik, ωi

k, ν
i
k} ∈ Ck,

0, if {xi
k, yik, ωi

k, ν
i
k} /∈ Ck,

i = 1, · · · , N, (3.2)

where Ck represents a constraint region at time k. Then the weight calculation

step, Equation (2.19), is modified as

w̃i
k = wi

k−1

p(yk|xi
k) · Lc(x

i
k, y

i
k, ω

i
k) · p(xi

k|xi
k−1)

q(xi
k|X i

k−1, Yk)
. (3.3)

This modification enables the algorithm to discard all the particles violating

constraints. Figure 3.2 depicts an example for constraints on state. Take the

equality constraint case, i.e. g(x) = 0, as an example, only the particles on the

constraint surface will be accepted and reproduced, and all the rest particles

will be rejected.

The advantage of acceptance/rejection scheme is twofold. First, it guaran-

tees the particles to stay in constraint region and nearly no extra computation

cost is needed. Second, the method retains the Monte Carlo sampling fea-

ture of PF which makes it suitable for non-Gaussian problems. However, the

disadvantage is that it reduces the number of particles and may yield poor

estimation. With poor prior information or complicated constraint conditions

(e.g., nonlinear constraints), it is possible that all the particles lie outside the

constraint region, which fails the PF algorithm.

3.3.2 Optimization formulation

A more systematic way to deal with constraints without discarding any parti-

cles is to employ optimization technique. In this section, optimization methods

used to handle constraints are discussed in PF framework.
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Interpretation of Bayesian estimation as an optimization problem

The estimate in Equation (3.1) can be further written as

x̂k := arg max
xk

p(xk|Yk)

∝ arg max
xk

p(yk|xk)p(xk|Yk−1)

= arg max
xk

(pνk(yk − hk(xk))pxe
k
(xk − x−

k )).

(3.4)

Note that the measurement noise νk follows distribution pvk . Let xk = x−
k +xe

k,

where x−
k is the optimal estimate of xk according to p(xk|Yk−1), and xe

k is the

estimation error which follows distribution pxe
k
. Note that exponential and

double exponential (Laplacian) distributions are usually used to prescribe pdfs

of ω, ν and x (Kotz et al. (2001), p.278; Robertsonb and Lee (2002); Ungarala

et al. (2008)).

The above equation can be rewritten as the following constrained optimi-

zation problem by taking negative logarithm:

min
xk

− log (pxe
k
(xk − x−

k )) − log (pνk(yk − hk(xk)))

s.t. xk = x−
k + xe

k,

yk = hk(xk) + νk,

xk ∈ Xk,

(3.5)

where Xk denotes a general state constraint region.

If both pxe
k

and pνk are further assumed as Gaussian distributions, Equation
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(3.5) becomes a constrained nonlinear least square problem:

min
xe
k

xe
k
TP−1

k xe
k + νk

TR−1
k νk

s.t. xk = x−
k + xe

k,

yk = hk(xk) + νk,

xk ∈ Xk,

(3.6)

where P−1
k and R−1

k may be treated as the weighting matrices, which are quan-

titative measures of our belief in the prior estimate and the observation model,

respectively. Note that for linear models without constraints, solution of Equa-

tion (3.6) is equivalent to the well known Kalman filter estimate (Jazwinski,

1970, p. 205-208).

State constraints imposed on particles

According to the steps of the general PF algorithm (Algorithm 2.2), state con-

straints in PF can be imposed onto prior particles (particles before resampling

procedure), xi,−
k , posterior particles (particles after resampling procedure), xi

k,

or estimated mean value, x̂k. The constrained optimization problem presented

in Equation (3.5) can be adapted as one of the followings:

min
x̃i,−
k

− log(pxe
k
(x̃i,−

k − xi,−
k )), (3.7)

min
x̃i,−
k

− log(pxe
k
(x̃i,−

k − xi,−
k )) − log(pν̂k(yk − hk(x̃i,−

k ))), (3.8)

min
x̃i
k

− log(pxe
k
(x̃i

k − xi
k)) − log(pν̂k(yk − hk(x̃i

k))), (3.9)

min
x̃k

− log(pxe
k
(x̃k − x̂k)) − log(pν̂k(yk − hk(x̃k))), (3.10)

where the diacritic mark “∼” placed above x
(·)
k indicates a projected parti-

cle/mean. Figure 3.3 shows an illustration of particle projection, in which the

rectangle represents the state(or output) space where particles (or correspond-

ing outputs) located; the ellipse in state space denotes the state constraint

region. Each particle corresponds to one possible state trajectory. If a particle

violates the constraint, such a particle will be brought within the constraint

region to a most likely location based on Equations (3.7) to (3.10).
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Figure 3.3: Illustration of projection (◦ : valid particle, • :
violated particle, ⋆ : true state/measurement).

Generally, pxe
k

and pν̂k can be any distributions. However, for a tractable

solution when dealing with constraints, truncated Gaussian, double half Gaus-

sian or Gaussian mixture pdfs are often used to prescribe pdfs of noise and

state particles during the implementation (Robertsonb and Lee, 2002; Rao,

2002; Kotecha and Djuric, 2003a,b). Hence, a quadratic form of objective

function can be formed.

The sampling nature of PF has an advantage that covariance of estimated

state error can be computed directly from samplers. For the prior particles,

covariance can be estimated as:

x̄−
k =

N
∑

i=1

wi
kx

i,−
k ,

P−
k =

∑N
i=1w

i
k(x

i,−
k − x̄−

k )(xi,−
k − x̄−

k )T

1 −∑N
i=1w

i
k
2 .

(3.11)

For posterior particles, all the weights are set uniform, then the sample

covariance can be computed as

x̄k =
1

N

N
∑

i=1

xi
k,

Pk =
1

N − 1

N
∑

i=1

(xi
k − x̄k)(xi

k − x̄k)T .

(3.12)

Table 3.1 lists a summary of imposing constraints onto state particles for

the generic PF algorithm.
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Table 3.1: Constrained state particles for the generic PF
constrained particles objective function

prior particles: xi,−
k Equations (3.7), (3.8)

posterior particles: xi
k Equation (3.9)

estimated mean: x̂k Equation (3.10)

Constraints of other variables could also be imposed onto corresponding

particles, such as estimated output, ŷik. The choice of which objective function

to use, namely which step in Algorithm 1 to implement optimization, depends

on the specific system and available computational resources.

Discussions

In the previous section, several variants of constrained PF algorithms have

been presented based on optimization formulations. Illustrations of the dif-

ferences of these formulations are shown in Figure 3.4. In the figures, the

rectangle represents the space where particles are generated; the ellipse de-

notes the state constraint region.

As the figure shows, some of the prior particles are outside the constraint

region. By using Equation (3.7), as shown in Figure 3.4(a), violated particles

are projected onto the boundary, while particles that are already within the

constraints remain unchanged. This equation is equivalent to “clipping”, which

requires low computational load but probably yields poor performance.

Figure 3.4(b) shows that measurement information is used when imposing

constraints onto prior particles. A trade-off between output error and state

deviation is made to project the particles into a feasible region before resam-

pling procedure. As in Figure 3.4(c), constraints are imposed onto particles

after resampling procedure. Both Equations (3.8) and (3.9) reshape posterior

distribution by projecting a set of particles, which could provide more accurate

estimates when the state distribution is non-Gaussian. However, it requires

much higher computational resource.

Equation (3.10) imposes constraints onto the estimated mean, as shown in
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(a) illustration of Equation (3.7)

(b) illustration of Equation (3.8)

(c) illustration of Equation (3.9)

(d) illustration of Equation (3.10)

Figure 3.4: Illustration example of differences among Equations (3.7),
(3.8), (3.9) and (3.10) (◦ : valid particle, • : violated particle, ⋄ :
estimated mean, ⋆ : true state).
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Figure 3.4(d), without considering the constraints on each particle. Compared

to Equations (3.8) and (3.9), it is computationally less demanding, but it has

limitations due to the consideration of mean value only. For instance, the

mean could be located between the modes without violating any constraint,

but with a very low posterior probability. Note that a fixed-length moving

horizon can be added straightforward, leading to a combination of PF and

MHE (Rajamani and Rawlings, 2007).

3.3.3 Constrained PF algorithm

The main concern for the optimization based PFs is the online computation re-

quirement. In order to reduce the computational cost and make the algorithm

robust in the presence of poor prior information, a constrained PF algorithm

based on hybrid use of acceptance/rejection and optimization strategies is pro-

posed. The proposed scheme executes optimization only when the estimation

performance based on the particles inside constraint region fails a performance

test; otherwise, acceptance/rejection method (denoted as constrained PF1) is

used.

In order to decide if the performance of the acceptance/rejection-based PF

is satisfactory, a chi-square test is used. The rationale is that if the particles

inside constraint region provide a good state estimate, the innovation term,

ek = yk − ŷk, will have mean zero and covariance of Σ. In other words, the

squared residual is checked if it follows a central chi-square distribution with p

degree of freedom when the measurement error follows Gaussian distribution

ek
TΣ−1ek ∼ χ2(p), (3.13)

where ek ∼ N (0,Σ), and p = dim(y) is the dimension of output.

Given past history data on estimation performance, a sliding time window

l can be adopted in Equation (3.13):

k
∑

j=k−l+1

ej
TΣ−1ej ∼ χ2(l × p). (3.14)
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To reduce the computational cost, the optimization procedure is executed

only when Equation (3.13) (or Equation (3.14)) fails the statistical testing

with a given significance level, e.g. α = 5%.

Note that, if the measurement error is assumed as non-Gaussian, the Chi-

square test can be simply treated as a quadratic (2nd moment) test of the

residual. In that case, a problem-specific threshold would be heuristically

chosen instead of using Chi-square table.

The idea of the proposed constrained PF algorithm is summarized in the

following, in which Equation (3.8) is chosen as an objective function for the

optimization procedure (the algorithm is denoted as constrained PF2 in the

following section). Similar algorithms based on Equations (3.9) and (3.10)

(denoted as constrained PF3 and constrained PF4 respectively) are provided

in the Appendix A.

Algorithm 3.1: A novel constrained PF algorithm based on Equation (3.8)

step a. initialization: generate initial particles {xi
0}Ni=1 from a priori distri-

bution p(x0), and set k = 1;

step b. importance sampling: generate prior particles, {xi,−
k }Ni=1, from im-

portance sampling distribution q(xk|X i
k−1, Yk);

step c. weighting: calculate constrained likelihood and importance weights

according to Equations (3.2) and (3.3), then normalize the weights as

wi
k = w̃i

k/
∑N

j=1 w̃
j
k;

step d. Chi-square test: calculate the weighted sample mean of the valid

particles, x̄−
k =

∑N1

i=1w
i
kx

i,−
k , where N1 is the particle number inside the

constraint region; and compute the output residual, ek = yk − h(x̄−
k );

test the Chi-square criteria with a preset covariance Σ;

step e. optimization: project the violated particles into constraint region

by solving Equation (3.8) if performance test in step d fails; recalculate

importance weights and normalization;
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step f. resampling: if Neff ≤ Nthr, then generate posterior particles, {x̃i
k}Ni=1,

based on resampling strategy, and set wi
k = 1/N ;

step g. output: estimate the state by calculating x̂k = 1/N · ∑N
i=1 x̃

i
k, set

k = k + 1 and go back to step b.

3.4 Case Studies

In order to investigate the efficacy of the proposed method, several examples

with constraints on state are studied in this section. All the simulations were

run on a 2.2 GHz CPU with 1 GB RAM PC using MATLAB 2008a. The

mean square error (MSE) and CPU time presented below are based on 100

simulations.

3.4.1 Two-state batch reaction

Process description

Consider a gas-phase reaction well studied by Vachhani et al. (2006), Rawlings

and Bakshi (2006), Ungarala et al. (2007), Kandepu et al. (2008) and Kol̊as

(2008):

2A
k→ B, k = 0.16,

with a stoichiometric matrix

v =
[

−2, 1
]

,

and a reaction rate

r = kP 2
a .

The state and measurement vectors are defined as

x =
[

Pa Pb

]T
, y =

[

1, 1
]

x,

where Pj denotes the nonnegative partial pressure of species j. It is assumed

that the ideal gas law holds and that the reaction occurs in a well-mixed
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Figure 3.5: EKF estimates for example 1.

isothermal batch reactor. Then, from first principles, the process model can

be written as

ẋ = f(x) = vT r. (3.15)

The system is discretized with a sampling interval of ∆t = 0.1s, and simulated

for 100 time steps from the initial condition x0 =
[

3, 1
]T

, and corrupted

by Gaussian noise given by ω ∼ N{
[

0, 0
]T

, 10−6I2}, and ν ∼ N{0, 10−2}.

Estimation starts from a poor initial guess x̄0 =
[

0.1, 4.5
]T

with a large

covariance matrix P0 = 62I2.

This problem has been popularly studied in the literature because without

considering constraints the state estimator can experience a multimodal pdf,

which may lead to unphysical estimates.

Simulation results

The proposed constrained PF algorithms are tested on the reactor problem.

For fair comparisons, Qω̂ = Qω, Rν̂ = Rν , and the same constraints and noise

sequences are used for all the simulations in this example.

Figures 3.5(a) and 3.6(a) show that due to the poor initial guess and the

multimodal nature, neither unconstrained EKF nor UKF converges to true

states within the given simulation time despite good estimates of the output.

Figure 3.5(b) shows the estimate of the constrained EKF using clipping

method; it does restrict the state to the constraint region, but the estimation
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Figure 3.6: UKF estimates for example 1.
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Figure 3.7: MHE estimates for example 1.
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result is still poor. This is because the constraint knowledge was not properly

used in updating the covariance matrix.

A quadratic programming (QP) based UKF, proposed by Kol̊as et al.

(2009), is used to incorporate state constraints by constraining “sigma points”.

Figure 3.6(b) shows the estimation performance is improved compared to the

unconstrained case. However, a large increase of computation time is observed

in solving the optimization problem

Compared to EKF/UKF based approaches, MHE provides improved esti-

mates in terms of accuracy, see Figures 3.7(a) and 3.7(b), but computation

time increases with the horizon size.

Figure 3.8(a) shows the estimation results of unconstrained generic PF

with particle size N = {200, 500}. Compared to its counterparts of uncon-

strained EKF and unconstrained UKF, the Monte Carlo sampling based PF

yields much more accurate estimate in this example; however, it still gives es-

timates violating physical constraints during initial time points. Compared to

MHE, PF shows the advantage in computation time due to its single-horizon

formulation.

Results of constrained PFs are shown in Figures 3.8(b) to 3.8(e), in which

constrained PF1 denotes the constrained PF based on acceptance/rejection

scheme (Lang et al., 2007); constrained PF2 denotes the constrained PF us-

ing hybrid scheme with optimization on prior particles (i.e. Equation (3.8));

constrained PF3 denotes the constrained PF using hybrid scheme with optimi-

zation on posterior particles (i.e. Equation (3.9)); and constrained PF4 denotes

the constrained PF using hybrid scheme with optimization on estimated mean

(i.e. Equation (3.10)). The figures show that all of these constrained methods

provide physically valid estimates.

Table 3.2 shows the detailed performance comparisons. It can be seen

that optimization-based methods generally yield better estimation, but with

much higher computational cost. The table also shows that hybrid use of
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Figure 3.8: PF estimates for example 1.
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Table 3.2: Comparison of estimation performances for example 3.4.1
Estimators Schemes MSE Pa MSE Pb CPU time (s)

EKF N/A 6.8743 6.4232 1.547×10−4

Constrained EKF clipping 0.8431 1.3061 1.547×10−4

UKF (α = 1, β = 2, κ = 1) N/A 4.6786 4.3234 3.282×10−4

Constrained UKF optimization 0.1532 0.1843 0.1213

MHE
h=2 optimization 0.1089 0.1186 0.1379
h=6 optimization 0.0836 0.0949 0.8446

GPF
N=200 N/A 0.3907 0.4614 0.0192
N=500 N/A 0.3614 0.3853 0.0493

Constrained PF1
N=200 accept/reject 0.0578 0.1496 0.0204
N=500 accept/reject 0.0183 0.0242 0.0538

Constrained PF2 (N=50) hybrid 0.0463 0.0565 0.0398
Constrained PF3 (N=50) hybrid 0.0038 0.0055 0.0448

Constrained PF4
N=50, h=2 hybrid 0.0147 0.0192 0.0297
N=50, h=6 hybrid 0.0043 0.0011 0.0929

constraint handling strategies provide the best estimates. In this example, the

optimization was only necessary in the first few time steps to compensate the

poor initial guess; for most time, acceptance/rejection procedure was used.

It should be also noted that: (i) choice of a particular method should de-

pend on the available computational resource and the accuracy requirement;

(ii) both unconstrained GPF and constrained PF1 are sensitive to the poor

prior information; therefore, a larger particle size should be chosen. Methods

based on the hybrid scheme are more robust; thus a smaller particle size can

be used to reduce computational cost; (iii) optimization in constrained PF2

and constrained PF3 is not necessary to be applied to the whole particle set;

for instance, optimization in constrained PF2 can be only applied to the prior

particles violating constraints; optimization in constrained PF3 can be only

applied to the parent particles (i.e. the subset particles selected for resam-

pling); (iv) constrained PF4 is actually a combination of constrained PF1 and

MHE; thus its estimates will be no poorer than MHE of the same horizon size.
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3.4.2 Three-state batch reaction

Process description

Consider a batch reactor system adapted from Ungarala et al. (2008)

A
k1
⇋
k2

B
k3→ C,

where k =
[

k1 k2 k3
]

=
[

0.06 0.03 0.001
]

. The total number of moles

remains constant in the reactor. A set of ODEs is used to describe the process

dynamics,

dx

dt
=





−k1, k2 0
k1 −k2 − k3 0
0 k3 0



 x, (3.16)

where x =
[

xA xB xC

]T
is the vector of model fractions, which must obey

the constraints as:

0 6 xi 6 1,

∑

xi = 1.
(3.17)

The system is discretized with a sampling interval of ∆t = 1, and simulated

for 50 time steps from the initial condition x0 =
[

1 0 0
]T

. A discretized

process function can be obtained as

xk =





1 − k1, k2 0
k1 1 − k2 − k3 0
0 k3 1



 xk−1 + ωk−1, (3.18)

where ω is zero-mean Gaussian noise with Qω = diag(
[

0.012 0.012 0.00012
]

).

Noisy measurements of mole fractions are only available for species A and B:

yk =

[

1 0 0
0 1 0

]

xk + νk, (3.19)

where ν ∼ N (0, 0.022I2). The objective is to filter the measurements and

estimate the unmeasured state xC . Estimation starts from a poor initial guess

x̄0 =
[

0.8 0.1 0.1
]T

with a covariance matrix P0 = diag(
[

12 12 0.012
]

).

Simulation results

Although it is a linear problem, this system is interesting to study because

without considering the equality constraint, the system is not observable since
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Figure 3.9: Simulation results for example 2.

the measurement matrix does not have full column rank. One may estimate

xA and xB by using Kalman filter with a two-dimension model and then com-

pute xC from the equality constraint condition. However, the result obtained

in Figure 3.9(a) shows that the KF estimate of xC can easily violate the non-

negativity constraint.

Constrained PF based on acceptance/rejection scheme fails due to the

poor prior information and the stringent constraint region. The optimization

techniques allow for incorporating both equality and inequality constraints in

Equation (3.17) into the estimation formulation. Constrained PF3 with par-

ticle size N = 100 is chosen as an estimator for this example. Figure 3.9(b)

shows that the estimate accuracy has been significantly improved. The com-

putation time is also reasonable, average CPU time is 0.04 seconds for each

time step in this example.

3.4.3 Three-state continuous stirred-tank reaction

Process description

Consider a three-state CSTR gas-phase reaction taken from Haseltine and

Rawlings (2005); Teixeira et al. (2008); Kol̊as et al. (2009)

A
k1
⇋
k2

B + C,

2B
k3
⇋
k4

C,
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k =
[

k1 k2 k3 k4
]

=
[

0.5 0.05 0.2 0.01
]

,

with a stoichiometric matrix

v =

[

−1 1 1
0 −2 1

]

,

and a reactional rate

r =

[

k1CA − k2CBCC

k3C
2
B − k4Cc

]

.

The states and measurements are defined as to be

x =
[

CA CB CC

]T
,

y =
[

RT RT RT
]

x,

where Cj denotes the nonnegative concentration of species j, R is the ideal

gas constant, T is the reactor temperature, and RT = 32.84. It is assumed

that the ideal gas law holds. From first principles, the process model for a

well-mixed, isothermal CSTR reactor is

ẋ = f(x) =
Qf

VR
Cf −

Q0

VR
x + vT r, (3.20)

where Qf = Q0 = 1, VR = 100 and Cf =
[

0.5 0.05 0
]

.

The system is discretized with a sampling interval of ∆t = 0.25, and

simulated for 120 time steps from the initial condition x0 =
[

0.5 0.05 0
]

,

and corrupted by Gaussian noise given by ω ∼ N (
[

0 0 0
]T

, 10−6I3) and

ν ∼ N (0, 0.252). Estimation starts from a poor initial guess x̄0 =
[

0 0 3.5
]T

with a covariance matrix P0 = 42I3.

Simulation results

With Qω̂ = Qω, Rν̂ = Rν , and the same constraints and noise sequences, dif-

ferent nonlinear estimators are compared. Figure 3.10 shows EKF estimates,

where neither unconstrained nor constrained EKF provides satisfactory re-

sults. Figure 3.11 shows the UKF estimates, where constrained UKF gives

good results but with a huge increase of computation time; see Table 3.3 for
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Figure 3.10: EKF estimates for example 3.
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Figure 3.11: UKF estimates for example 3.
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Figure 3.13: Optimization based constrained PF estimates for example 3.

55



Table 3.3: Comparison of estimation performances for example 3.4.3
Estimators Schemes MSE CA MSE CB MSE CC CPU time (s)

EKF N/A 0.0176 0.0150 0.0568 2.27×10−4

Constrained EKF clipping 0.0024 0.0023 0.0568 2.27×10−4

UKF (α = 0.001, β = 2, κ = 0) N/A 0.0184 0.1322 0.1881 0.0012
Constrained UKF optimization 0.0017 2.17×10−4 0.0025 0.5330

MHE
h = 2 optimization 0.0037 9.80×10−4 0.0039 0.3436
h = 6 optimization 0.0021 1.68×10−4 0.0029 2.3896

GPF (N = 500) N/A fail
Constrained PF1 (N = 500) accept/reject fail
Constrained PF2 (N = 100) hybrid 0.0014 3.32×10−4 0.0017 0.0379
Constrained PF3 (N = 100) hybrid 0.0014 2.23×10−4 0.0017 0.0330
Constrained
PF4

N = 100, h = 2 hybrid 0.0023 2.71×10−4 0.0026 0.0188
N = 100, h = 6 hybrid 1.82×10−4 1.31×10−4 7.6×10−4 0.1241

detailed comparisons. MHE with a horizon size of h = 2 also provides good

estimates, see Figure 3.12. By increasing the horizon size, MHE estimates

can become better, with a further increase of computational cost (see Table

3.3). Constrained PF1 with N = 500 fails in this example, due to the poor

initial guess. Figure 3.13 shows the estimation results of the proposed con-

strained PF methods, which provides the best results for this example in terms

of computation time and estimation accuracy.

From a large number of simulation runs, it was observed that constrained

PF based on acceptance/rejection scheme requires the least amount of com-

putation time, but it easily failed with poor prior information or stringent

constraints. Under the same conditions, optimization-based constrained PFs

yielded better estimation and showed more robustness; however, they require

much higher computation time, which may not be suitable for on-line ap-

plications. Hybrid use of the acceptance/rejection and optimization schemes

can combine the complementary advantages, and work more efficient in most

situations.

3.5 Conclusion

Proper use of constraint knowledge is critical for the successful implementa-

tion of Bayesian estimators, since it can confine distribution domains of re-

lated variables, and make the estimation more accurate. In this chapter, two
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different constraints handling strategies are discussed under the generic PF

framework. Several new constrained PF algorithms are implemented based

on hybrid use of acceptance/rejection and optimization schemes. Simulation

results show that the proposed methods work efficiently for the investigated

examples as they combine the advantages of Monte Carlo sampling nature of

PF and the benefits of optimization techniques in handling constraints and

poor prior information.

It is recommended that different methods should be considered depending

on the available computational resource and the accuracy requirements. When

one has good initialization knowledge with simple constraints, constraint PF1

(Lang et al., 2007) should be chosen; when one needs to handle complicated

constraints with very limited computational resource, constraint PF4 with

single horizon window should be considered; if computational cost is not the

concern and the state distribution is believed as non-Gaussian, then constraint

PF2 and PF3 may be selected.

The main contributions of this chapter are: (i) different and more effi-

cient ways of incorporating state constraints in PF framework have been dis-

cussed and implemented; (ii) variant constrained Bayesian estimators are com-

paratively studied through several simulation examples. The proposed con-

strained PFs provide some interesting flexibility for constrained nonlinear/non-

Gaussian Bayesian state estimation problems.
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Chapter 4

Robust Particle Filter for
Unknown But Bounded
Uncertainties

Despite the large number of papers published on the particle filter in recent

years, one issue that has not been addressed to any significant degree is the

robustness. For example, the standard approach to particle filter does not

address the issue of robustness against modeling errors, or unknown process

and measurement noises. This chapter presents a deterministic approach that

has emerged in the area of robust filtering, and incorporates it into particle

filtering framework. In particular, the deterministic approach is used to define

a feasible set for particle sampling that contains the true state of the system,

and makes PF robust against unknown but bounded uncertainties. Simulation

results show that the proposed algorithm is superior to the standard particle

filter and its variants such as the extended Kalman particle filter.

4.1 Introduction

In conventional particle filtering methods, a set of particles are drawn from

the importance density (state transition density is mostly used in the generic

particle filtering), which is the distribution of predicted state. If the predicted

particles do not include the true state or the observations do not contain

valuable information, filter distractions will occur and the estimated states
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will gradually deviate from the true states, resulting in estimation divergence.

To improve the robustness of the PF estimation, several techniques have

been proposed in the literature. For example, in de Freitas et al. (2000),

the EKF Gaussian approximation is used as the proposal distribution for PF;

van der Merwe et al. (2000) follows the similar idea, using the Unscented

Kalman filter (UKF) as the proposal distribution; Rajamani and Rawlings

(2007) propose to combine moving horizon estimation (MHE) with PF to im-

prove the robustness of the algorithm. All of the mentioned strategies require

the uncertainties expressed in terms of stochastic models. However, due to

incomplete information of the noise statistics and the presence of systematic

errors resulted from aggregation and obscurity of the process dynamics, a

stochastic error based approach is questionable as many of these uncertain-

ties are inherently non-stochastic. For example, in the case with considerable

model-plant mismatch, the residual of the estimated model may have a com-

ponent caused by deterministic structural errors, and purely random error

assumptions can lead to unsatisfactory results.

This chapter studies an appealing alternative based on a deterministic ap-

proach by assuming that all of the uncertain quantities (including modeling

errors, measurement noise, initial condition, process as well as future input

perturbations, etc.) are unknown but bounded to a known set. In this case,

all information about the system state is summarized by a set of possible

states consistent with both observations and bound constraints on the un-

certain quantities, and the true state is guaranteed to be in the resulted set.

Under such a deterministic framework, the main interest consists of describing

and constructing the feasibility set for particle sampling. The exact shape of

such a set is, in general, very complicated and hard to obtain. Therefore, it

is usually approximated by some simple geometry shapes, such as box, ball,

ellipsoid, orthotope and zonotopes (Alamo et al., 2008). Among them the el-

lipsoidal estimation seems to be more popular because of its analogy to the
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covariance in the stochastic methods (Schweppe, 1968) .

Much work has been done on the development of set membership ap-

proaches for linear system, extensions to nonlinear systems have also been

made, but are limited in several ways. This chapter proposes a novel robust

algorithm where particle filtering techniques and nonlinear set-membership

approach are incorporated together in one framework; therefore, the advan-

tages of each method are characterized in the new algorithm. To the best

of our knowledge, there are few literatures reporting the synthesis of Monte

Carlo sampling approach and nonlinear set membership theory. Simulation

results show the proposed method guarantees a minimized outer bound on the

particle set despite the model uncertainties as well as linearization errors.

The remainder of this chapter is organized as follows: Section 2 introduces

preliminaries of the ellipsoidal techniques for set membership approach. In

Section 3, ellipsoidal bound analysis is derived for nonlinear systems. Section 4

presents the novel robust PF based on the nonlinear set membership approach.

Two examples are illustrated in Section 5. Section 6 gives the conclusions.

4.2 Preliminaries of Ellipsoidal Techniques

Denote a non-degenerate ellipsoid as:

E(c, P ) = {x ∈ R
n : (x− c)TP−1(x− c) ≤ 1} (4.1)

where c is the center of the the ellipsoid, x is any point within the ellipsoid,

and P is a positive-definite matrix that characterizes its shape and size.

(i) Summation of Two Ellipsoids

Assume that two ellipsoids are defined as E1(c1, P1) and E2(c2, P2), the sum-

mation of E1 and E2 is defined as

Ψs = E1 ⊕ E2

= {x : x = x1 + x2, x1 ∈ E1, x2 ∈ E2}
(4.2)

63



sE

State 1

State 2

1E

2E

Figure 4.1: Geometry illustration of ellipsoid summation.

In most cases, Ψs is not an ellipsoid; its outer bounding ellipsoid is denoted as

Es ∋ Ψs

Es = {x : (x− cs)
TP−1

s (x− cs) ≤ 1}

cs = c1 + c2

Ps =
P1

1 − α
+

P2

α

(4.3)

where α ∈ (0, 1) is the scalar parameter depending on the optimality criterion

chosen for the resultant ellipsoid Es (Chernousko, 1980; Becis-Aubry et al.,

2008).

Figure 4.1 shows the geometry description of the vector sum of two ellip-

soids. To obtain a compact Es, a computationally efficient criterion can be

chosen to minimize the size of the ellipsoid. Commonly used optimality crite-

rion includes the minimization of the volume (Det(Ps)) and the minimization

of the sum of squared semiaxes (i.e., the trace of the positive-definite matrix

Tr(Ps)). Take the minimal trace criterion for instance, the target is to find

the minimum of

f(α) = Tr(Ps) = Tr((1 − α)−1P1 + α−1P2) (4.4)

The above function can be differentiated using the following formula:

d

dα
f(α) = (1 − α)−2Tr(P1) − α−2Tr(P2) (4.5)
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Figure 4.2: Geometry illustration of ellipsoid intersection.

Hence the optimal scalar parameter can be computed from d
dα
f(α) = 0:

α∗ =

√

Tr(P2)
√

Tr(P1) +
√

Tr(P2)
(4.6)

(ii) Intersection of Two Ellipsoids

Assume that two ellipsoids are defined as E1(c1, P1) and E2(c2, P2), the inter-

section of E1 and E2 is defined as

Ψi = E1 ∩ E2

= {x : x ∈ E1 and x ∈ E2}
(4.7)

In most cases, Ψi is not an ellipsoid; its outer bounding ellipsoid is denoted as

Ei ∋ Ψi

Ei = {x : (x− ci)
TP−1

i (x− ci) ≤ 1}

ci = c1 + P1(P1 +
1 − ρ

ρ
P2)

−1(c2 − c1)

Pi = β(ρ)(I − P1(P1 +
1 − ρ

ρ
P2)

−1)
P1

1 − ρ

β(ρ) = 1 − (c2 − c1)
T (

P1

1 − ρ
+

P2

ρ
)−1(c2 − c1)

(4.8)

where β(ρ) > 0 for all ρ ∈ (0, 1) when the ellipsoids have a non-empty inter-

section. Choice of ρ depends on the minimization criterion for the resultant

ellipsoid Ei (Schweppe, 1968; Becis-Aubry et al., 2008).
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Figure 4.2 shows the illustration of ellipsoid intersection. Due to the com-

plexity of the optimization, in this thesis the criterion for minimizing the upper

bound of β(ρ) is selected to provide a sub-optimal solution as:

ρ∗ = argmin
ρ⊂(0,1)

sup β(ρ) (4.9)

The upper bound of β(ρ) is

β̄ = 1 − ||c2 − c1||2
p1,max

1−ρ
+ p2,max

ρ

(4.10)

where p1,max = λmax(P1) and p2,max = λmax(P2) are maximum singular values

of the matrices P1 and P2, respectively. The minimal upper bound can be

computed as

β̄min = 1 − ||c2 − c1||2
(
√
p1,max +

√
p2,max)2

(4.11)

when

ρ∗ =

√
p2,max√

p1,max +
√
p2,max

∈ (0, 1). (4.12)

The linear transform of E(c, P ) is defined as follows:

A(E(c, P )) = E(Ac,ATPA). (4.13)

4.3 Ellipsoidal Bound for Nonlinear Systems

Consider a nonlinear discrete system given by

xk = f(xk−1) + δk−1 + ωk−1,

yk = h(xk) + νk,
(4.14)

where xk ∈ Rnx is the system state; yk ∈ Rny is the measurement output;

f(·), h(·) are general nonlinear functions; δk represents an explicit systematic

modeling error; ωk and νk are the process and measurement noise, respectively.

It is assumed that the modeling error, process and measurement noises, as

well as the initial state guess are unknown but bounded to ellipsoids:

δk−1 ∈ E(0,∆k−1) ⇔ δTk−1∆
−1
k−1δk−1 ≤ 1

ωk−1 ∈ E(0, Qk−1) ⇔ ωT
k−1Q

−1
k−1ωk−1 ≤ 1

νk ∈ E(0, Rk) ⇔ νT
k R

−1
k νk ≤ 1

x0 ∈ E(x̂0, P0) ⇔ xT
0 P

−1
0 x0 ≤ 1

(4.15)

66



At time step k, the goal is to characterize a set of states represented by a

minimized ellipsoid that are consistent with the available measurements and

a priori bound constraints; the true state is guaranteed to be contained in a

resultant compact ellipsoid,

xk ∈ E(x̂k, Pk) (4.16)

Note that no assumptions on the structure of the noise or state have been

made except the bounds; hence, many types of uncertainties are included

within this framework including Gaussian and non-Gaussian uncertainties.

Assuming that f(·) and h(·) are continuously differentiable, and for all es-

timated values x̂k−1 or x̂−
k , Eq.(4.14) can be linearized using Taylor expansion,

xk =f(xk−1)|xk−1=x̂k−1
+

f (nr)(xk−1)

nr!
|xk−1=x̂k−1

(xk−1 − x̂k−1)
nr

+ Rnr

f (xk−1 − x̂k−1) + δk−1 + ωk−1

yk =h(xk)|xk=x̂−

k
+

h(nr)(xk)

nr!
|xk=x̂−

k
(xk − x̂−

k )nr + Rnr

h (xk − x̂−
k ) + νk

(4.17)

where f (nr)(·) and h(nr)(·) are nr-th derivatives, and Rnr

f (·) and Rnr

h (·) are

higher order remainder terms, which are equivalent to linearization errors.

Using interval analysis (Moore, 1966; Zemke, 1999), the Lagrange remain-

der term can be expressed as

Rnr

f (xk−1 − x̂k−1) =
f (nr+1)(X̄k−1)

(nr + 1)!
(xk−1 − x̂k−1)

nr+1 (4.18)

where X̄k−1 is the state interval bound in which (xk−1 − x̂k−1) is defined:

X̄ i
k−1 =

[

x̂i
k−1 −

√

P i,i
k−1, x̂

i
k−1 +

√

P i,i
k−1

]

, i = 1, · · · , nx (4.19)

For a one-state (i.e., nx = 1) linearization case with first order approxi-

mation (i.e., nr = 1), the state function in Equation (4.17) can be rewritten

as

xk =f(xk−1)|xk−1=x̂k−1
+

∂f(xk−1)

∂x
|xk−1=x̂k−1

(xk−1 − x̂k−1)

+
1

2

∂2f(X̄k−1)

∂x2
(xk−1 − x̂k−1)

2 + δk−1 + ωk−1

(4.20)
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Figure 4.3: Illustration of ellipsoidal bound of linearization error.

For more general multi-state cases, according to Scholte and Campbell

(2003) and Zhou et al. (2008), the linearization error is bounded to an ellipsoid

E(0, Q̄k−1), with

XRk−1
=

1

2
diag(X̄T

k−1)







Hes1
...

Hesn






X̄k−1

[Q̄k−1]
i,i = 2(X i

Rk−1
)2, [Q̄k−1]

i,j = 0 (i 6= j)

(4.21)

where Hesi represents the Hessian matrix of the nonlinear function f(·).

Figure 4.3 shows the illustration of ellipsoidal bound for the linearization

error using interval mathematics for a two-state case.

Using the idea of ellipsoidal summation, the state function in Equation

(4.17) can be simplified to

xk = f(xk−1)|xk−1=x̂k−1
+

f (nr)(xk−1)

nr!
|xk−1=x̂k−1

(xk−1 − x̂k−1)
nr + ω̂k−1 (4.22)

where ω̂k−1 incorporates modeling inaccuracies, linearization errors and pro-

cess noise; its outer bound is defined as

ω̂k−1 ∈ E(0, Q̂k−1) ⊃ E(0, Qk−1) ⊕ E(0, Q̄k−1) ⊕ E(0,∆k−1) (4.23)

Q̂k−1 = (1 − α2)
−1(

Qk−1

1 − α1
+

Q̄k−1

α1
) + α−1

2 ∆k−1 (4.24)

where α1 and α2 are scalar parameters to be chosen according to Equation

(4.6).
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The linearization of the measurement function is dealt with in the same

way, and the incorporated approximation error and measurement noise are

bounded to an ellipsoid, i.e., ν̂k ∈ E(0, R̂k).

The above analysis forms the basis for the development of the robust fil-

tering algorithm to be introduced in the next section.

4.4 Guaranteed Robust Particle Filter

Ellipsoid based set-membership approach produces an entire set of states as

the estimation result, in which the unknown true state is guaranteed to be

contained. Normally, the center of the ellipsoid is selected as the point state

estimate; however, this selection is not always appropriate. In this section,

a novel particle filter (PF) based on the extended set-membership filtering

(ESMF) approach is proposed. The combination of ESMF and PF allows the

new algorithm to be able to incorporate the latest observations into a prior

update routine. Furthermore, the ESMF generates proposal distributions that

guarantee the inclusion of the true state, and as result, robust state estimation

performance is achieved.

4.4.1 Extended Set Membership Filtering

Like the Bayesian stochastic estimator, set membership approach consists of

prediction (time update) and correction (observation update) steps. The al-

gorithm in this section establishes a recursive procedure for computing the

sequence of ellipsoid Ek(x̂k, Pk).

Prediction:

Assume an ellipsoidal estimate E(x̂k−1, Pk−1) is known at time k − 1. The

prediction step at time k is carried out by linearly transforming the ellipsoid

at time k − 1 to E(f(x̂k−1), Fk−1Pk−1F
T
k−1). This is followed by a vector sum

of the resulting ellipsoid and the virtual process noise ω̂k−1 to yield an outer
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bounding ellipsoid E(x̂−
k , P

−
k ):

E(x̂−
k , P

−
k ) ⊇ E(f(x̂k−1), Fk−1Pk−1F

T
k−1) ⊕ E(0, Q̂k−1) (4.25)

x̂−
k = f(x̂k−1) (4.26)

P−
k =

Fk−1Pk−1F
T
k−1

(1 − αk)
+

Q̂k−1

αk

(4.27)

where the optimal αk minimizing the bounding ellipsoid can be calculated as

Equation (4.6).

Update:

Observation update step is to compute an ellipsoid containing the intersection

of predicted ellipsoid E(x̂−
k , P

−
k ) and the observation set Sk defined by

Sk = {x ∈ Rn : (yk − h(x))R̂−1
k (yk − h(x)) ≤ 1} (4.28)

The ellipsoid E(x̂k, Pk) ⊃ E(x̂−
k , P

−
k ) ∩ Sk is the result of the observation

based correction. It is essential that E(x̂−
k , P

−
k ) and Sk have a non-empty

intersection, i.e. that the predicted feasible set is consistent with yk and the

observation noise bounds. If not, bound tuning is needed.

x̂k = x̂−
k + Kk(yk − h(x̂−

k )) (4.29)

Kk =
1

1 − ρk
P−
k HT

k (
HkP

−
k HT

k

1 − ρk
+

R̂k

ρk
)−1 (4.30)

Pk = σ2
k(I −KkHk)

P−
k

1 − ρk
(4.31)

σ2
k = 1 − (yk − h(x̂−

k ))T (
HkP

−
k HT

k

1 − ρk
+

R̂k

ρk
)−1(yk − h(x̂−

k )) (4.32)

where the value of ρk is solved by minimizing σ2
k as a sub-optimal solution

expressed in Equation (4.12).

The linearization model is defined to be the following Jacobians

Fk−1 =
∂f(xk−1)

∂x
|xk−1=x̂k−1

, Hk =
∂h(xk)

∂x
|xk=x̂−

k

(4.33)

Note that the linearization and virtual noise bounds are recursively calculated

at each time step.
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4.4.2 ESMF based PF algorithm

The idea of the combination of PF with ESMF is to use the nonlinear set-

membership ellipsoid boundary as the constraint of the feasible particles. Since

the set-membership approach ensures that the unknown true state lies in the

resulted ellipsoid, a simple strategy is to delete all the particles lying outside

the ellipsoid as they are not valid estimate. In this case, the weight updating

equation for PF can be expressed as

w̃i
k =

{

0, if (xi
k − ck)

TP−1
k (xi

k − ck) > 1,

w̃i
k−1 · 1

||yk−yi
k
||
, otherwise,

i = 1, · · · , N, (4.34)

However, as mentioned in Chapter 3, in some cases that all particles would

lie outside the ellipsoid, and the algorithm would be failed to resample par-

ticles. Therefore, it is reasonable to sample new particles from the resulted

ellipsoid once the particle violates the boundary conditions predefined by the

ESMF estimate.

Estimation steps of the ESMF based PF algorithm are summarized as

follows:

Algorithm 4.1: The ESMPF algorithm

step a. initialization: generate initial particles {xi
0}Ni=1 from a priori distri-

bution p(x0), and set k = 1;

step b. ESMF estimation: calculate state interval based on prior bounded

ellipsoid E(ck−1, Pk−1); calculate the Jacobian and Hessian matrices, and

find the Lagrange remainder using the interval analysis; calculate ellip-

soidal summation and intersection, and obtain the optimized bounding

ellipsoid E(ck, Pk);

step c. importance sampling: generate predicted particles, {xi,−
k }Ni=1, from

importance sampling distribution p(xk|xi
k−1);

step d. bound checking: check whether the predicted particle falls in the

ellipsoid E(ck, Pk); discard and regenerate particles, from the resultant
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ellipsoid, that do not pass the boundary check;

step e. weighting: evaluate weights of each particle once new measurement

is available and normalize the weights as wi
k = w̃i

k/
∑N

j=1 w̃
j
k;

step f. resampling: if Neff ≤ Nthr, then generate posterior particles, {xi
k}Ni=1,

based on weighting information and resampling strategy, and set wi
k =

1/N ;

step g. output: estimate the state by calculating x̂k =
∑N

i=1w
i
k · xi

k, set

k = k + 1 and go back to step b.

4.5 Simulation Studies

In this section, two simulation examples are used to demonstrate the effective-

ness of the proposed algorithm. All the Monte Calor simulations were run on

a 2.4 GHz CPU with 3 GB RAM PC using MATLAB 2009a.

4.5.1 Nonlinear numeric example

We first use a nonlinear numeric example to illustrate the robustness of the

algorithm. Consider a system described by the expression below

x1(k + 1) = −0.7x2(k) + 0.1x2
2(k) + 0.1x1(k)x2(k) + 0.2x2(k)ex1(k) + δ(k) + ω1(k)

x2(k + 1) = x1(k) + x2(k) − 0.1x2
1(k) + 0.2x1(k)x2(k) + δ(k) + ω2(k)

y(k) = x1(k) + x2(k) + ν(k)

(4.35)

where |ω1(k)| ≤ 0.1 and |ω2(k)| ≤ 0.1, |ν(k)| ≤ 0.2, modeling error |δ(k)| ≤

0.2, and the initial state is bounded by 3I, where I is the identity matrix. The

state to be estimated is x1(k).

Figure 4.4 shows estimation results by using generic particle filter (PF),

extended Kalman particle filter (EPF) and the proposed ESMPF approach,

with the same parameter settings: N = 50, δ = 0.2, x0 = [2, 0]T . After 50

Monte Carlo runs, it has been observed that ESMPF provides better estimate
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Figure 4.4: Estimation results of x1 using PF, EPF and ESMPF.
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Figure 4.5: Error comparisons for estimate of x1 using PF, EPF and ESMPF.

results. Figure 4.5 shows the mean square error (MSE) comparison under

the choice of different δ values, from the result it can be seen that ESMPF

is more robust than the other two approaches against unknown but bounded

uncertainties. An interesting observation in this example is that EPF gives

worse performance than PF, and we believe one of the main reasons is the

unaccounted linearization error.
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4.5.2 Continuous fermentation process

In the second case, a nonlinear continuous fermenter is considered for further

performance comparison. A simplified unstructured fermentation model is

taken from Henson and Seborg (1992),

dX

dt
= −DX + µ(P, S)X

dS

dt
= D(Sf − S) − 1

YX/S

µ(P, S)X

P

dt
= −DP + (ηµ(P, S) + γ)X

(4.36)

where X , S and P represent biomass concentration, substrate concentration

and product concentration, respectively, D the dilution rate, and Sf the feed

substrate concentration, YX/S the cell-mass yield, η and γ yield parameters

for the product, and µ(P, S) the specific growth rate exhibiting both substrate

and product inhibition as:

µ =
µm(1 − P

Pm
)S

Km + S + S2

Ki

(4.37)

where µm is the maximum specific growth rate, Pm the product saturation con-

stant, Km the substrate saturation constant, and Ki the substrate inhibition

constant.

Table 4.1 shows the nominal model parameters and operating conditions

used in this section. In order to make the estimation problem better condi-

tioned, the states, [X,S, P ]T , were normalized by dividing them with their

nominal values. The measurement is the noisy observation of product concen-

tration. Process and measurement noises are |ω(1)| ≤ 1e−3, |ω(2)| ≤ 1e−2,

|ω(3)| ≤ 1e−3 and |ν| ≤ 1. In this study, we assume that the dilution rate and

the feed substrate concentration are subject to changes with known bounds

|∆D| ≤ 0.06 and |∆Sf | ≤ 3. For simulation purpose, an unmodeled distur-

bance is introduced at the 40th hours with D = 0.10h−1 and Sf = 22g/l.

The conventional PF, EPF and ESMPF are implemented with N = 100.

The estimation results are shown in Figure 4.6. As seen in the plots, ESMPF
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Table 4.1: Nominal fermenter parameters and operating conditions
Variable Nominal value

YX/S 0.4 g/g
η 2.2 g/g
γ 0.2 h−1

µm 0.48 h−1

Pm 50 g/l
Km 1.2 g/l
Ki 22 g/l
D 0.15 h−1

Sf 20 g/l
X 7.038 g l
S 2.404 g/l
P 24.87 g/l

recovers robustly from the unmodeled disturbance due to the consideration of

the uncertainty bound for the modeling inaccuracy, while both conventional

PF and EPF provides deviated state estimation.

4.6 Conclusion

A well known limitation in the application of Bayesian estimator to real-world

problems is the assumption of known a priori statistics for the uncertain-

ties. Robustness to unknown noises in estimation is important. This chapter

has presented a robust approach for state estimation, applicable where the

description of uncertainty due to modeling error, measuring noise, etc., is un-

known but bounded. Interesting geometrical insights into the prediction and

updating mechanisms are discussed. A robust solution has been obtained for

nonlinear uncertain systems based on Monte Carlo sampling and extended set

membership approaches.
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Figure 4.6: Estimation results for continuous fermentation process. (a) esti-
mation results of biomass concentration X; (b) estimation results of substrate
concentration; (c) estimation results of the product concentration P.
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Chapter 5

Particle Filter for Multirate
Data Synthesis and Model
Calibration

1 A crucial part in the design of Bayesian estimator is the acquisition of the

process model. Due to the complexity of developing accurate first-principle

models, data-driven models are becoming more and more common in modern

process industries. This chapter presents a brief overview of the most popular

techniques and some experiences we have in data-driven modeling relevant to

soft sensor development. We show how the flexibility of the Bayesian approach

can be exploited to account for multiple-source observations with different

degrees of belief, and utilized for data-driven model calibration. A practical

Bayesian fusion formulation with time-varying variances is proposed to deal

with possibly abnormal observations. Particle filter is used for simultaneously

handling systematic and non-systematic errors (i.e., bias and noise), in the

presence of process constraints. The proposed method is illustrated through a

simulation example and a data-driven soft sensor application in an oil sands

froth treatment process.

1. A version of this chapter has been published as “X. Shao, B. Huang, J.M. Lee, F. Xu,
A. Espejo, Bayesian Method for Multirate Data Synthesis and Model Calibration, AIChE
Journal, 57(6), pp. 1515-1525, 2011.”
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5.1 Introduction

For process safety and reliability reasons, simultaneous use of multiple mea-

surement methods for critical variables is a common practice in industry. A

typical scenario in chemical processes is that both on-line instruments and off-

line laboratory analyses are used to monitor the key product quality variable.

Generally, on-line instruments have fast sampling rates (such as 1 minute for

control purpose) but with low accuracy; furthermore, these hardware sensors

could easily fail, leading to information loss. In contrast, the off-line lab-

oratory analysis involves trained personnel manually collecting samples and

performing a series of experiment steps for calculations; therefore the result is

relatively accurate but the sampling rate is slow (ranging from 30 minutes to

24 hours) with irregular time delays. Overall, each method alone has its own

deficiency, and may not be appropriate for real-time monitoring and control

purposes.

In order to obtain more accurate and reliable real-time process informa-

tion, soft sensors (a.k.a. virtual sensor) have been investigated in many process

industries to synthesize relevant variables (Rao et al., 1993; Qin et al., 1997;

de Assis and Filho, 2000; Chen et al., 2004; Yan et al., 2004; Fortuna et al.,

2005; Khatibisepehr and Huang, 2008; Kadleca et al., 2009). The idea of soft

sensors is to use a process model that provides online estimates of difficult-

to-measure quality variables (e.g., melt index, pH value, concentration) from

readily available process variables (e.g., temperature, pressure, flowrate). To

achieve a successful soft sensor application, the process model is the key. Gen-

erally, there are two well known approaches to building a process model: first-

principle approaches (Grantham and Ungar, 1990; Friedman et al., 2002) and

data-driven approaches (MacGregor, 2004; Kano and Nakagawa, 2008; Kadleca

et al., 2009). A first-principle model is based on good understanding of the

underlying fundamental principles such as mass and energy balances. A data-

driven model is based on limited process knowledge, and mainly relies on the
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historical data describing input (i.e., process variable) and output (i.e., quality

variable) characteristics. Increased complexity of the process dynamics often

prevents one from building accurate first-principle models. On the other hand,

data-driven approaches have been extensively employed for modeling of com-

plex systems since the process related signals are rather easy to obtain from

instruments and experiments (Kadleca et al., 2009).

The main challenge of the data-driven modeling arises from the lack of data

for good representations of process dynamics. Since the available training data

only describes a period of process historical behavior, the investigated process

could have changed over time; therefore large validation errors may still exist

between the model estimate and actual observation even though the model

initially may be sufficient. A natural question then arises: how to use the latest

observations of quality variables to update the model for better estimate.

Motivated by the above question, this chapter focuses on the development

of a data-driven model update approach for soft sensor applications based on

multiple-source quality variable observations. The proposed approach is built

on a Bayesian framework (Huang, 2008), which facilitates the inclusion of ad-

ditional information in the form of prior knowledge and the synthesis of fast

sampled but less accurate observations with more accurate but slow sampled

observations to derive more accurate posterior distribution for the unknown

state and parameters. To enhance the robustness, a practical Bayesian fusion

formulation with time-varying variances is proposed and observation validity

is taken into account. The Bayesian model calibration strategy is finally im-

plemented by using the particle filleting approach (Doucet and Godsill, 1998),

and applied to an industrial soft sensor design.

The remainder of this chapter is organized as follows: Section 2 gives a

literature review on data-driven modeling using different sampling rate of in-

put/output data for soft sensor developments. Section 3 introduces model cal-

ibration strategies with Bayesian information synthesis. Section 4 introduces a
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robust Bayesian fusion formulation for handling abnormal observations. Sec-

tion 5 implements the Bayesian model calibration strategy as a sequential

Monte Carlo sampling based constrained particle filter. Section 6 presents a

simulation example to show the characteristics and benefits of the proposed

approach. An oil sands froth treatment process is introduced and data-driven

soft sensor application results are illustrated in Section 7. Section 8 gives the

conclusions.

5.2 Data-driven models

Both scientific and engineering communities have acquired extensive experi-

ence in developing and using data-driven modeling techniques. Despite a vari-

ety of model structures, two types of data-driven models are widely seen in the

literature. One is dynamic model, and the other is static model. This section

presents a brief overview of the most popular techniques and some experiences

of the author in data-driven modeling using multirate process data.

5.2.1 Dynamic modeling based on fast-rate input/output
data

When on-line instruments are available for both input and output variables, a

set of valid input and output data can be collected from the historical database.

In this case, a fast-rate dynamic model can be generally identified for the inves-

tigated process (Wang et al., 2004). The book by Ljung (1999) is considered

as a milestone in the field of dynamic identification theory. The identification

methods described therein are commonly used for linear dynamic modeling,

including autoregressive models (e.g., ARX, ARMAX), Output-Error (OE)

models, Box-Jenkins (BJ) models, state space models, etc. Estimation tech-

niques include prediction-error minimization schemes and various subspace

methods. When linear models are not sufficient to capture system dynamics,

one can resort to nonlinear models, such as non-linear ARX (NLARX) (Chen

and Tsay, 1993) and Hammerstein-Wiener models (Bai, 1998).
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5.2.2 Static modeling based on slow-rate input/output
data

In practice, instrumentation readings for output variables (i.e., difficult-to-

measure quality variables) are usually unreliable and inaccurate. If the amount

of valid fast-rate output data is insufficient, an alternative way is to use the

slow-rate lab data as the output, and resample the fast-rate input data accord-

ing to the known lab data time stamps; techniques such as moving average

could be used to reduce input uncertainties. In this case, process dynamics

may be lost during the data collection stage, due to the large sampling in-

tervals. However, more operating conditions are likely to be contained in the

originally collected data sets as they come in a more abundant quantity.

For static data-driven modeling, linear regression methods (e.g., ordinary

least squares, OLS, Åke Björck (1996)) are commonly used. However, OLS

may suffer from numerical problems when a data set is collinear, which is not

uncommon in chemical processes. Principal component regression (PCR) and

partial least squares (PLS) address the collinearity by projecting the original

process variables onto a low dimensional space of orthogonal latent variables.

PCR and PLS techniques are well reviewed in Nelson et al. (1996); Dayal

and MacGregor (1997); Kresta et al. (1994) and references therein. For the

nonlinear case, nonlinear regression methods, such as artificial neural network

(Bishop, 1995), support vector machine (Yan et al., 2004), and fuzzy logic

(Nagai and Arruda, 2005) could be used.

5.2.3 Dynamic modeling based on fast-rate input and

slow-rate output data

Ignoring process dynamics in a static model is one of the causes of model

inaccuracy (Zhu et al., 2009). To improve this, dynamic modeling using fast-

rate input and slow-rate output has received considerable attention in both

academic and industrial communities.

A special case widely investigated is known as dual-rate system identifi-
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cation, where the output sampling time is slower than the input sampling

time. Early contributions can be found in Lu and Fisher Lu and Fisher (1988,

1989), in which a polynomial transformation technique and a least squares

algorithm are presented to produce fast-rate output based on the measure-

ments of fast-rate input and slow-rate output. The main disadvantage of their

algorithm is that additional parameters are introduced. Li et al. (2001) and

Wang et al. (2004) use a so-called lifting technique to extract the original fast

single-rate system by identifying a higher dimension lifted model. However,

this technique becomes impractical when the output sampling rate is very

slow and irregular. Ding and Chen (2004) propose to use an auxiliary finite

impulse response (FIR) model to predict the noise-free fast-rate output, and

then identify a single-rate dynamic model based on the fast-rate input and the

estimated output. Raghavan et al. (2006) use an Expectation-Maximum (EM)

based approach to interpolate fast-rate output, and then apply a single-rate

dynamic identification method; both regular and irregular sampled slow-rate

output data can be treated in this approach. However, implementation of the

EM algorithm can be expensive for practical applications and the solution may

converge to a local optimum. Zhu et al. (2009) propose to use an OE method

to identify a dynamic model directly from the fast-rate input and slow-rate

output by minimizing the summation of the squared error between the model

output and the measurement at the slow rate; the method has the potential to

deal with irregular output, and the authors demonstrated their work through

an industrial case study. However, it requires a good initial model to avoid

the local optimum. Mo et al. (2009) propose to use a FIR model as an initial

model, and then apply a fast single-rate OE model for the dynamic identifica-

tion. Lu et al. (2004) developed a multirate dynamic inferential model based

on multiway PLS approach, and demonstrated its efficacy through the Ten-

nessee Eastman process. Tun et al. (2008) developed a method called Data

Selection and Regression (DSAR) for identifying irregularly sampled systems
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and applied it to soft sensor development on a two-reactor train system.

5.3 Bayesian calibration of data-driven mod-

els

Despite the various modeling approaches, a general form of a data-driven

model can be described as

yk+1 = f̂(φk, θ) + ǫk, (5.1)

where φk =
[

yk, · · · , yk−ny
, uk, · · · , uk−nu

]T
is a regressor vector consisting of

output and input. ny and nu are the model order parameters, which can be

determined by minimizing Akaike information criterion (Akaike, 1974); f̂(·) is

a selected model structure describing a linear or nonlinear relationship between

the input and output variables; θ is the model parameter estimated from the

training data; and ǫk is the output residual. Note that for a static model, the

regressor only contains one input term.

In many practical application, the mismatch between model prediction and

actual observation could be significant in a data-driven model, and the error

mainly arises in two stages. One is in the modeling stage, such as misuse of

model structure, or insufficiency of training data; the other is in the application

stage, such as the drift of operating conditions, or the degradation of equipment

efficiency. In order to obtain a better estimate of the true quality information,

it is important to synthesize all the available observations, and then use them

to update the existing model with the consideration of uncertainty.

Strategies for model updating roughly fall into two categories: model re-

finement and model calibration (Xiong et al., 2009). Model refinement involves

the change of model structure, for example, using a nonlinear model to replace

a linear model, which is desirable for fundamentally improving the predictive

capability; however, the practical feasibility of refinement is often restricted

by available knowledge and computing resource. In contrast, model calibra-
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tion utilizes mathematical means to match model predictions with reliable

observations, which is a cheaper way for practical applications.

5.3.1 Model calibration

Various model calibration strategies exist, and a conventional way is to con-

sider the model parameters adaptation in the model form of

ŷk+1 = f̂(φk, θk), (5.2)

where θk represents time-varying model parameters.

However, in many situations, calibrating model parameters is still unable

to compensate model-plant mismatch, for example, due to the use of incorrect

model structure. Then the following bias correction form could be used (Singh,

1997; Mu et al., 2006),

ŷk+1 = f̂(φk, θk) + γk, (5.3)

where γk is the discrepancy term to capture the systematic error (i.e., bias).

In addition to using an additive bias, a multiplicative correction could also

be considered as

ŷk+1 = ρkf̂(φk, θk) + γk, (5.4)

where the scaling parameter ρk brings more flexibility to the model-plant mis-

match compensation.

The choice of a model calibration form is problem-specific and requires

insight into the error sources, while more interesting question remains: how

to synthesize the multiple-source quality variable observations in an optimal

manner to reduce the uncertainty and achieve more accurate estimation.

5.3.2 Bayesian information synthesis

There are a few data fusion (or information synthesis) approaches to resolve

the above question (Kewley, 1992; Braun, 2000; Koks and Challa, 2003), of
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which the Bayesian inference based approach is the most unified one. Fig-

ure 5.1 shows three most popular strategies for Bayesian information synthe-

sis. Figure 5.1(a) shows the state vector fusion method, also known as the

distributed approach, where a group of Bayesian filters are used to obtain

individual observation based estimates, and then fused together (e.g., linear

combination) to obtain an improved joint estimate. It is a favorable choice

for processes with numerous observation sources, because of computation cost

as well as the parallel implementation and fault-tolerance issues (Saha and

Chang, 1998). However, this approach requires consistent Bayesian filters,

and inappropriate combination of individual estimate can deteriorate the final

result (Gan and Harris, 2001). Figure 5.1(b) shows the measurement fusion

approach, also known as the centralized approach, in which all the observa-

tions are directly fused to obtain synthesized process information, and then a

single Bayesian filter is used to obtain the final estimate. Figure 5.1(c) shows

a hybrid use of the distributed and centralized approaches, resulting in a more

complicated sequential fusion scheme. It yields the same result as centralized

one when the number of observation sources equals to two. In this chap-

ter, the centralized approach is selected since it is the best way to synthesize

observations in the sense that no information will be lost during the fusion

procedure (Koks and Challa, 2003) and the number of observation sources for

the problem investigated in this chapter is not large.
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Figure 5.1: Bayesian filter based data fusion strategies: (a) distributed ap-
proach; (b) centralized approach; (c) hybrid (sequential) approach.
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The investigated problem can be put into a state-space form as follows:
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ωx
k ,

θk+1 = θk + ωθ
k,

ρk+1 = ρk + ωρ
k,

γk+1 = γk + ωγ
k ,

ynTn
k
k = HxTn

k
k + νn

Tn
k
k

=
[

1 0 · · · 0
]

xTn
k
k + νn

Tn
k
k, n = 1, · · · , No,

(5.5)

where xk =
[

yk, · · · , yk−ny
, uk−1, · · · , uk−nu

]T
; ωx

k , ωθ
k, ω

ρ
k and ωγ

k are random

variables representing process and model uncertainties; νn
Tn
k
k is a random vari-

able for capturing the non-systematic error (i.e., observation noise) associated

with sensor n; it is assumed that the observation noise is subject to a Gaussian

distribution, νn
Tn
k
k ∼ N (0, σ2

n), when the sensor (or observation source) works

under normal conditions; T n
k k indicates a time-varying sampling rate for the

nth observation source.

With the calibration parameter vector denoted as Θk =
[

θk, ρk, γk
]T

,

Equation (5.5) can also be represented by a probabilistic graph as shown in

Figure 5.2, where all the unknown nodes are considered as random variables.

(Note that the arc between xk−1 and xk is left out if f̂(·) is a static model.)

The objective of Bayesian information synthesis is to construct the a pos-

teriori distribution, p(xk,Θk|Dk), of the state (or unknown true quality vari-

able), xk, and the calibration parameter, Θk, simultaneously, based on avail-

able multiple-source noisy observations, Dk = {Y1, · · · ,Yk}, where Yk =

{y1k, · · · , yNo

k }.
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Figure 5.2: Graphical representation of Equation (5.5); grey nodes represent
known variables.
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Figure 5.3: Prediction step for Bayesian inference.

As per conventional Bayesian estimation, the required posterior distribu-

tion can be obtained by recursively following two steps: prediction and update.

Prediction: At time k − 1, all the evidence up to time k − 1 has been

taken into account, and the posterior distribution p(xk−1,Θk−1|Dk−1) has been

estimated. Then the prior distribution at time k can be obtained as:

p(xk,Θk|Dk−1) =

∫

p(xk,Θk|xk−1,Θk−1)p(xk−1,Θk−1|Dk−1)dxk−1dΘk−1.

(5.6)

Here the probabilistic models p(xk|xk−1,Θk−1) and p(Θk|Θk−1) are defined by

the system equations and the associated statistics of ωx
k , ωθ

k, ωρ
k and ωγ

k . A

graphical interpretation is shown in Figure 5.3.

Update: At time k, the latest observation Yk = {y1k, · · · , yNo

k } is available

(see Figure 5.4), then the posterior distribution can be obtained via Bayes’
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Figure 5.4: Update validation step for Bayesian inference.

rule,

p(xk,Θk|Dk) =
p(Yk|xk,Θk)p(xk,Θk|Dk−1)

p(Yk|Dk−1)

=
p(y1k|xk,Θk)p(y2k|xk,Θk) · · ·p(yNo

k |xk,Θk)p(xk,Θk|Dk−1)

p(y1k, y
2
k, · · · , yNo

k |Dk−1)

∝ p(xk,Θk|Dk−1)

No
∏

n=1

p(ynk |xk,Θk),

(5.7)

where observations from different sources are considered as independent given

the state information, and the normalizing denominator is given by

p(Yk|Dk−1) =

∫

p(Yk|xk,Θk)p(xk,Θk|Dk−1)dxkdΘk. (5.8)

Once the posterior distribution is obtained, it can be used for point state

inference, such as mode, mean or median estimate. Note that Bayesian ap-

proach can handle the varying size of Yk (i.e., missing data) naturally caused

by the multirate sampling mechanism.

5.4 Bayesian information synthesis with ab-

normal observation data

In reality, no sensor (or observation source) can provide precise measurements

continuously. Due to sensor malfunction, transmission error, or human data

entry error, one may obtain “unexpected” values for a measured variable. Such
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abnormal data can be propagated through the fusion procedure and cause a

divergent estimate. To achieve a robust estimate in the presence of abnor-

mal data, this section describes a variance adaptation scheme for Bayesian

information fusion.

It is well known that the observation noise variance is important for infor-

mation fusion, since it directly determines the relative weight assigned to the

observation source (Punska, 1999). However, in the real world, the variance

of the true observation noise is rarely known; it is generally pre-estimated and

kept unchanged during the application. This will yield the same weight to an

observation source regardless of its measurement quality. To circumvent this,

we assume the noise is subject to a Gaussian distribution with a time-varying

variance, namely,

p(ynk |xk,Θk) ∼ N (Hxk, σ
2
n(k)), (5.9)

where σ2
n(k) can increase significantly when the observation is becoming ab-

normal, therefore reducing its influence on the information fusion.

Thus, the problem is how to define the normality or abnormality. Hua

and Wu (2006) suggests that the distance between the nth sensor’s observation

with respect to the rest of the sensors can be used to quantify the abnormality.

Their method requires at least three observation sources and assumes that the

majority of the sources provide correct and consistent measurements.

In this work, motivated by the approach widely used by practicing engineers

in the actual operations, a variance adaptation scheme is developed. For an

individual sensor, we partition its measurements into three categories: valid,

possibly valid, and invalid. (See Figure 5.5 for an illustration.)

A validity state, λn
k , is introduced to indicate the observation validity (i.e.

normality) of the nth sensor at time k. λn
k = 1 indicates that the observation

data is valid (i.e. normal), and λn
k = 0 indicates that the observation data is

invalid (i.e. abnormal). Then the time-varying noise variance σ2
n(k) is defined
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as

σ2
n(k) =











σ2
n, if ynk ∈ [αn

1 , α
n
2 ], i.e., valid,

1
p(λn

k
=1)

σ2
n, if ynk ∈ [βn

1 , α
n
1 ) or ynk ∈ (αn

2 , β
n
2 ], i.e., possibly valid,

∞, if ynk ∈ (−∞, βn
1 ) or ynk ∈ (βn

2 ,+∞), i.e., invalid,

(5.10)

where σ2
n is the pre-determined variance for sensor n under normal working

conditions; αn
1 and αn

2 are the lower and upper bounds of the nth observation to

be believed as valid ; βn
1 and βn

2 are the tolerable bounds of the nth observation

to be believed as possibly valid ; and all the sensor readings smaller than βn
1

or larger than βn
2 are considered as invalid.

In Equation (5.10), the probability function p(λn
k = 1|ynk ) ∈ [0, 1] is a user

specified function, which can have different formulations. One option is

p(λn
k = 1|ynk ) =

{

(βn
1 −αn

1 )
2−(yn

k
−αn

1 )
2

(βn
1 −αn

1 )
2 , if ynk ∈ (βn

1 , α
n
1 ),

(βn
2 −αn

2 )
2−(yn

k
−αn

2 )
2

(βn
2 −αn

2 )
2 , if ynk ∈ (αn

2 , β
n
2 ).

(5.11)

The rationale for Figure 5.5 and Equation (5.11) is based on common

industrial practice: (i) specification range for a quality variable does not change

substantially during a continuous operation, although input variables can have

different operating points; (ii) when a measurement is unusually large or small,

the measurement is regarded as abnormal and discarded.

Substituting Equations (5.9) and (5.10) into Equation (5.7), one can obtain
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the posterior distribution as

p(xk,Θk|Dk) ∝ p(xk,Θk|Dk−1)e
−{

(Hxk−y1
k
)2

2σ2
1

·p(λ1
k
=1)+···+

(Hxk−y
No
k

)2

2σ2
No

·p(λNo
k

=1)}
.

(5.12)

In Equation (5.12), the contribution of an individual sensor to the estimate

is decreased (i.e., increasing the variance), if its measurement has low proba-

bility to be valid. The influence of a particular sensor will be negligible, as the

variance goes to infinity, meaning that its measurement is invalid.

To implement the Bayesian model calibration strategy, sequential Monte

Carlo sampling based particle filter is utilized as analytical solutions for Equa-

tion (5.12) are unavailable in general except for special cases such as uncon-

strained linear systems with Gaussian noise.

By choosing the system equation as the importance sampling function, one

can derive that the unnormalized importance weight, w̃
(i)
k , as

w̃
(i)
k ∝ w

(i)
k−1p(Yk|x(i)

k ,Θ
(i)
k )

∝ w
(i)
k−1e

−
∑No

n=1 {
(Hxk−yn

k
)2

2σ2
n

·p(λn
k
=1)}

.
(5.13)

5.5 An Illustrative Example

In this section, an illustrative example is presented to show the characteristics

and benefits of our proposed method. Consider a nonlinear system given by

xk = 0.9 · xk−1 − 0.5 · xk−2 · (1 + x2
k−1) + uk−1 + 0.5 · uk−2 + dk−1 (5.14)

where u(·) is the input with a sampling time of 1 minute; d(·) is the unknown

process disturbance (or modeling mismatch term); x(·) denotes the process

quality variable (or model output) which has two approaches to measure its

values. The first approach has fast sampling rate (1 minute), but with low

accuracy (controlled by the measurement noise, see Equation (5.17)), while

the second one has slow sampling rate (4 hours), but with high accuracy.

The process is simulated for 2400 minutes with its input defined as follows

uk =
0.1

1 − 0.978q−1
· ek (5.15)
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Figure 5.6: Evolution of the simulated output for the numeric example.

where ek is white noise generated from a normal distribution N (0, 0.12).

The unmodeled disturbance term d is designed as

dk = 0.5 · cos (
k

10π
) + 0.2 · nk (5.16)

where nk is non-Gaussian noise generated from a bimodal distribution such

that with 70% of the time it is generated from a Gaussian distribution with

a mean value of -0.2 and variance of 0.12, and with 30% of the time it is

generated from a Gaussian distribution with a mean value of 0.2 and variance

of 0.12.

5.5.1 Algorithm characteristics

Non-Gaussianity: Figure 5.6 shows the evolution of the true unknown output

xk for the above simulation example, in which we can see that the distribution

for the output is non-Gaussian due to process nonlinearity as well as the un-

modeled disturbance. Traditional Gaussian filters are not suitable to estimate

the posterior distribution of xk, and Monte Carlo sampling based approach is

therefore selected.

Multirate observation fusion: Figure 5.7 shows a scatter plot of 30 days

95



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

true output

no
is

y 
m

ea
su

re
m

nt
s

 

 
true output

slow sampled measurement

fast sampled measurement

Figure 5.7: Comparison of two different measuring approaches.

measurements from two different observation sources, in which the slow sam-

pled source is designed with higher accuracy (i.e., smaller uncertainty), while

the fast sampled source is designed with lower accuracy (i.e., larger uncer-

tainty). Traditional filtering approaches usually use only one of the two ob-

servation sources for posterior estimation, namely either p(xk|Y 1
k ) or p(xk|Y 2

k ),

due to the implementation difficulties of multirate data. Monte Carlo sam-

pling based approach allows one to use both observation sources for posterior

estimation, namely p(xk|Y 1
k , Y

2
k ). Figure 5.8 shows that fused observation (at

time step k) can yield less uncertainty information (i.e., smaller variance), and

therefore is more likely to produce a better posterior estimate.

Robust to abnormal readings: Due to the measurement uncertainties, ab-

normal readings are inevitable in practice, especially for those sensors with

large uncertainties. Figure 5.9 shows the benefit of using time-varying vari-

ance to control the influence of a particular measurement (e.g., a possible

abnormal reading y1k = −1.8). Figure 5.9(a) shows the fused observation is

unable to support the true distribution well when using a prefixed constant

variance for each observation source; while Figure 5.9(b) shows an improved
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fusion result by adjusting each variance according to Equation (5.10) with

parameter set as α1
1 = α2

1 = −1, α1
2 = α2

2 = 1, β1
1 = β2

1 = −2, β1
2 = β2

2 = 2.

Constraint handling: Another benefit of using Monte Carlo sampling ap-

proach is that it can easily incorporate lower and upper bound constraints of

uncertain variables, which is helpful to confine the distribution shape of the

related variables and improve the estimation performance. Further informa-

tion of Bayesian constrained estimation can be found in Shao et al. (2010) and

reference therein.

5.5.2 Model calibration

Given the data-driven model as Equation (5.14) excluding the unmodeled term

d, Figure 5.10 shows the model prediction (without calibration), the fast rate

measurements, the slow rate measurements and the true output. From the

figure it is observed that there is a large mismatch between the true output

and the model prediction. Note that this kind of comparison is only possible

in simulation.

In order to compensate the model-plant mismatch as much as possible,

the proposed Bayesian model calibration strategy is applied to the following
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Figure 5.9: Observation fusion with one possible abnormal reading (y1k =
−1.8). (a). poor fusion result with prefixed constant measurement noise vari-
ances (σ2

1 = 0.52, σ2
2 = 0.22); (b). improved fusion result with time-varying

variances calculated based on Equation (5.10) (σ2
1(k) = 0.832, σ2

2(k) = 0.22).
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reconstructed system:

xa
k+1 =





0 0 0
1 0 0
0 0 0



 xa
k +





ρkf̂(xa
k, uk) + γk

0
uk



 +





1
0
0



ωxa

k ,

ρk+1 = ρk + ωρ
k,

γk+1 = γk + ωγ
k ,

y1k =
[

1 0 0
]

xa
k + ν1

k ,

y2Tk =
[

1 0 0
]

xa
Tk + ν2

Tk,

(5.17)

where xa
k =

[

xk, xk−1, uk−1

]T
is the augmented state variable; y1k is the

fast sampled measurement with large uncertainty ν1
k ∼ N (−0.1, 12); y2Tk is

the slow sampled measurement with small uncertainty ν2
Tk ∼ N (0.1, 0.22) and

T = 240 in this example. ωx
k ∼ N (0, 0.52), ωρ

k ∼ N (0, 0.12), ωγ
k ∼ N (0, 0.12);

parameters for sensor validation range are chosen as α1
1 = α2

1 = −1, α1
2 = α2

2 =

1, β1
1 = β2

1 = −2, β1
2 = β2

2 = 2; lower and upper bound constraints for output

are set as [−2, 2]; 100 particles are used for Monte Carlo sampling.

Figure 5.11 shows the estimate results using different model calibration ap-

proaches. From the comparison, we can see that particle filter based Bayesian

calibration approach gives better estimate than the multirate EKF based ap-

proach Gudi et al. (1995). In fact, it is also much easier to implement the

proposed algorithm, since it is applicable to nonlinear functions without the

need of linearization.

5.6 Industrial Application

In this section, the proposed method is applied to a data-driven soft sensor

development in an oil sands bitumen froth treatment process.

5.6.1 Background

Oil sands are mixtures of quartz, clay, water, bitumen and accessory minerals.

Athabasca oil sands in Northern Alberta, Canada, is one of the largest oil

sands reserve in the world, and currently produces over one million barrels
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Figure 5.11: Estimate results with different model calibration approaches; (a).
EKF based approach; (b). PF based approach.
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of oil per day. In the process of producing oil from oil sands, the main task

is to separate bitumen from other components. The separation is performed

through a chain of industrial clarifying units, among which the Inclined Plates

Settler (IPS) units are one of the main components of the secondary separation

process.

The principle that underlines the functioning of an IPS unit is the space

efficient gravity separation, which relies on the density difference between the

different components. In order to enhance the density difference, the feed of

the IPS unit is diluted with some process aids, e.g., Naphtha and Demulsifier.

The gravity movement in an IPS unit leads to the hydrocarbon-rich phase

(light phase) float up and be collected by the outlet boxes to be discharged as

overflow product. The denser water and solid-rich phase (heavy phase) settles

down the plate and is collected in the hopper to be discharged as underflow

tailings. Figure 5.12 gives a schematic representation of an IPS unit.

The water percentage (a.k.a. water content) in the overflow product is

a particularly important variable as it reflects the bitumen froth quality and

process performance. In practice, both laboratory analysis (e.g., using Karl

Fischer titration Scholz (1984)) and hardware instrument (e.g., water-cut me-

ter) are available in the overflow stream. Although the laboratory analysis

provides more accurate measurements, the sampling rate, which is 2 hours in

this case, is too slow to serve for monitoring and control purposes. Water-cut

meter readings are fast sampled, but not accurate enough. Due to the con-

siderable variability in sands, water, clay and bitumen content, the water-cut

meter occasionally needs to be removed for maintenance, which leads to the

unavailability of online water content information. This poses challenge to

control the Naphtha and Demulsifier additions. Therefore, there is an eco-

nomic necessity to develop a soft sensor to obtain more accurate and reliable

real-time water content information.
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Figure 5.12: Schematic diagram for an Inclined Plates Settler (IPS) unit.

5.6.2 Model estimation

Despite the unreliability and inaccuracy of the water-cut meter readings at

most time, we are able to collect a sufficient amount (about one month) of

valid fast-rate output data (i.e., water-cut meter readings). Naphtha flowrate,

Demulsifier flowrate, inflow flowrate, underflow flowrate, and overflow flowrate

are selected as the fast-rate input variables. The idea is that the water-cut

meter reading alone as the output variable may not provide a good model

but the identified model will be calibrated on-line by the lab data as will be

discussed next.

Figure 5.13 shows the collected raw input and output data. For proprietary

reason, the actual operating ranges have been modified. After data prepro-

cessing, a second-order NLARX model was identified to represent the process

dynamics.

Figure 5.14 shows the structure of the NLARX model, which describes

nonlinear dynamics using a parallel combination of nonlinear and linear blocks.

A Sigmoid network is used for the nonlinear part, and the estimated model is
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Figure 5.13: Input and output data for NLARX modeling of the investigated
IPS unit.

described as

ŷk+1 =f̂(φk, θ)

=(φk − r) · P · L + (1 + exp (−(φk − r) ·Q · b− c))−1 · a + d,
(5.18)

where φk = [yk, yk−1, uk, uk−1] is the regressor; y(·) is the true unknown quality

information; r the mean of the regressor; Q the nonlinear subspace; P the

linear subspace; L the linear coefficient; b the dilation; c the translation; a the

output coefficient and d the output offset.

Training and validation results are both shown in Figure 5.15. From the

figure we can see that the identified NLARX model is able to capture the

process dynamics and provide fairly reasonable estimate. A testing result

on a set of fresh data is shown in Figure 5.16. From the figure, we can see

that there are a certain amount of mismatches between the lab data and the

NLARX estimates as expected.
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Figure 5.15: Model simulation and validation results for the investigated IPS
unit; (a). training; (b). validation.
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5.6.3 Bayesian calibration

In order to palliate the mismatch as much as possible, we use the proposed

Bayesian calibration approach by constructing the problem as

xk+1 =





0 0 0
1 0 0
0 0 0



 xk +





ρkf̂(xk, uk, θk) + γk
0
uk



 +





1
0
0



ωx
k ,

θk+1 = θk + ωθ
k,

ρk+1 = ρk + ωρ
k,

γk+1 = γk + ωγ
k ,

y1k =
[

1 0 0
]

xk + ν1
k ,

y2T 2
k
k =

[

1 0 0
]

xT 2
k
k + ν2

T 2
k
k,

(5.19)

where xk =
[

yk, yk−1, uk−1

]T
; θk =

[

rk, Lk, ak, dk
]T

is a subset vector

of NLARX model parameters; y1k is the water-cut meter reading and y2
T 2
k
k

is

the laboratory analysis.

During the estimation, non-negativity (based on actual operating range)
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constraint is imposed on state variable xk; 5% perturbations are added to

depict the process and model uncertainties; observation noises are chosen as

ν1
k ∼ N (0, 12) and ν2

T 2
k
k
∼ N (0, 0.052); parameters (based on virtual oper-

ating range) for sensor validation are set as α1
1 = α2

1 = −3, α1
2 = α2

2 = 1,

β1
1 = β2

1 = −4, β1
2 = 4, β2

2 = 6; 100 particles are used for sequential Monte

Carlo filtering.

Figure 5.17 shows the soft sensor result after model calibration. From the

figure, we can see that the overall estimation performance has been improved

significantly. Since the modified posterior distribution has taken abnormal ob-

servations into account, the estimates are not affected by the sudden abnormal

changes in water-cut meter readings.

Table 5.1 presents the comparisons of soft sensor estimates and water-cut

meter readings with the lab data as the reference in terms of accuracy (i.e.,

mean absolute error, MAE), variability (i.e., standard deviation, STD) and

overall performance (i.e., rooted mean square error, RMSE). We can clearly

see that the soft sensor with model calibration provides the best prediction

of the water content. This soft sensor has now been put on-line. Compared

to traditional measuring techniques (i.e., hardware sensor and lab analyzer),

the developed soft sensor requires much less maintenance effort, thanks to the

inclusion of model calibration strategy. Given the obtained benefits, more

Bayesian soft sensors are planed for additional processes.

5.7 Conclusion

This chapter presents a practical approach for data-driven model calibration

using multiple-source observations. The approach is built within a Bayesian

framework to synthesize fast sampled but low accurate observations with high

accurate but slow sampled observations to obtain more accurate process in-

formation. To enhance the robustness in the presence of abnormal data, a

robust Bayesian fusion formulation with time-varying observation noise vari-
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Table 5.1: Performance comparison for water-content estimate
MAE STD RMSE

Soft sensor with calibration 0.5704 0.8543 0.8581
Soft sensor without calibration 1.0180 0.7977 1.1598

Water-cut meter 2.1083 0.8594 2.2753
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Figure 5.17: NLARX estimate with model calibration for new data set col-
lected in July 2009.

ance is proposed. A sequential Monte Carlo sampling based particle filter

is then applied to carry out the Bayesian model calibration strategy. Com-

pared to other approaches, the nature of sample based representation of PF

facilitates the handling of constrained non-linear and non-Gaussian estimation

problems. The proposed approach is used for a data-driven soft sensor develop-

ment, which has been successfully demonstrated for water-content monitoring

in an oil sands plant.
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Chapter 6

Industrial Contribution:
Estimation of Bitumen Froth
Quality Using Bayesian
Information Synthesis

1 This chapter presents the design of soft sensors for estimation of bitumen

froth quality in an oil sands froth transportation process. One of the most

important quality indexes for bitumen froth is the water content. Due to the

variation in oil sands composition and the nature of multi-phase process con-

ditions, existing hardware sensors are not reliable enough to provide on-line

accurate water content measurement. Laboratory analysis result is obtained

off-line with large sampling interval and irregular time delay. Therefore, it is

not sufficient for real-time monitoring and control. To overcome these limita-

tions, Bayesian information synthesis approach is proposed to fuse all the ex-

isting information to produce more reliable and more accurate real-time froth

quality information. This technique has been applied in Syncrude Canada

Extraction operations; both monitoring and control performance illustrate the

promising perspectives of the proposed approach.

1. A version of this chapter has been accepted for publication as “X. Shao, F. Xu, B. Huang,
A. Espejo, Estimation of Bitumen Froth Quality Using Bayesian Information Synthesis: An
Application to Froth Transportation Process, The Canadian Journal of Chemical Engineer-
ing, in press, 2012.”
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6.1 Introduction

Crude oil is used for a diverse range of products, including fuels, plastics, sol-

vents, waxes, lubricants, and dyes, among others, and is, therefore, a vital

resource for many industries. As the worldwide demand for petroleum contin-

ues to grow, previously nonviable sources of oil are increasingly pursued. One

such source is the Athabasca oil sands in northern Alberta in Canada. With

170 billion barrels of bitumen available using current technology, it represents

the second largest known oil reserve in the world, and currently produces over

1.4 million barrels of oil per day (Government of Alberta, 2009). Syncrude

Canada Ltd., one of the world’s largest oil sands companies, has production

capacity of 350,000 barrels per day of light, high-quality synthetic crude oil.

Oil sands are mixtures of quartz, clay, water, bitumen and accessory min-

erals. The bitumen is extracted from the oil sands raw material prior to being

upgraded to synthetic oil. Syncrude operation mainly consists of surface min-

ing, extraction, upgrading and utility facilities (Dougan and McDowell, 1997).

Much of the technology used in the mining, upgrading and utility operations

is common to many similar industries. However, extraction operation is quite

unique, not all the physical and chemical mechanisms are fully understood

(Kresta, 1997). Among many extraction processing steps, bitumen froth trans-

portation is one of the most important units. Syncrude strives for innovative

ways of froth transportation to maximize bitumen recovery rate and reduce

unit cost. A recent innovation is the introduction of the so called natural froth

lubricity (NFL) technology to ship froth by pipeline from Aurora site to its

Mildred Lake processing facilities 35 kilometers away (Joseph et al., 1999).

Considering the large amount of bitumen froth being transported, there

is a strong incentive to optimize, or even incrementally improve operational

performance for the transportation process. At current production levels, an

improvement in bitumen froth quality of 1% can result in million dollars of eco-

nomic benefit while utilizing the same equipment and ore throughput. More-
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over, improving froth quality (e.g., reducing water percentage) can further re-

duce unit cost and increase equipment life in downstream facilities. However,

due to the lack of process monitoring capability, the dynamics of the NFL pro-

cess are not known, and the operational performance is not optimized. One of

the major challenges encountered is the lack of suitable hardware instruments

specifically developed for oil sands processes as the market for such sensors is

small and the requirements are fairly unique. Syncrude has been addressing

this challenge by utilizing available technology intended for other applications

where possible; adapting available technology where feasible; and developing

novel technology where necessary (Espejo, 2011; Domlan et al., 2011).

In this chapter, a Bayesian method is utilized to synthesize all the related

information from existing measurements, including secondary variables (e.g.,

density, flowrate, etc.) and primary variables (e.g., water content) from multi-

ple observation sources (e.g., hardware sensor, laboratory analysis), to provide

more reliable and more accurate real-time froth quality information. After

verifying the monitoring performance, an inferential controller is proposed for

maintaining the water content value within a desired range as per operation

requirements.

The organization of this chapter is as follows: Section 2 provides a brief

background description of the investigated process. The design of the soft

sensor using Bayesian information synthesis approach is reported in Section

3. Soft sensor based water content monitoring and control results are demon-

strated in Section 4. Section 5 gives conclusion.

6.2 Process Description

In the process of producing oil from oil sands, the main task is to separate

bitumen present in the oil sands from the other components that are roughly

solids and water. The separation is performed through a chain of industrial

units, mainly consisting of primary separation vessel (PSV), floatation, froth
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treatment unit, and solvent recovery unit. The quality of produced bitumen is

determined by its purity and quantified typically by its bitumen content and

water content.

6.2.1 Aurora Bitumen Froth Transportation

Syncrude separates bitumen froth from oil sands in both Mildred Lake (Base

Plant) and Aurora sites. The bitumen froth from Aurora site is transported via

a 35km froth pipeline to Base Plant for further processing. This transportation

line is one of the most essential processes to Syncrude as more than 60% of

bitumen froth is transported through this pipeline.

As part of the Aurora low energy extraction processes, instead of adding a

diluent, such as naphtha, Syncrude developed a new technology, called Natural

Froth Lubricity (NFL), for Aurora froth transportation, using the naturally

formed sheath of water that forms a sleeve in the pipeline, allowing the rela-

tively less viscous bitumen froth to be transported more easily.

Figure 6.1 shows a simplified flow chart for the Aurora froth pipeline. The

system consists of two separate trains (known as Train 1 and Train 2), and

is fed from three froth tanks (D-1/2/3) by two primary pumps (G-1/2), one

for each train, and discharged by two sets of booster pumps; the pumps are

stopped and started to maintain the levels L1, L2 and L3 in the froth tanks,

as well as maintaining the minimum critical flows for F 1
3 and F 2

3 in the froth

pipeline; two pipelines combine prior to being shipped to Base Plant. Note

that the rest nomenclatures in the figure will be introduced in the next section.

To maintain the froth temperature, hot water is added into froth pipeline

prior to the primary pump. The efficiency of the NFL process is dependent on

many factors, including the temperature of the froth, the quality of feed stream

and the amount of hot water added. There is a strict requirement on the froth

quality with respect to water content, namely, the in-line water content is not
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Figure 6.1: Simplified schematic of Aurora bitumen froth transportation
pipeline.

allowed to be lower than its low-low specification to avoid restrictions of froth

transportation, and should not be any higher than its high specification when

it reaches the froth treatment plant. Otherwise, it has to be redirected to the

primary separation vessels in Base Plant, which could cause additional bitumen

loss and consequently result in reduction of bitumen recovery rate. In contrast,

if the water content is too low (e.g., less than its low-low specification), it can

cause pipeline plug, which leads to week-long outage and more serious financial

loss.

Therefore, optimal control of froth water content through hot process wa-

ter addition is extremely important for the NFL process operation, as it can

increase pipeline uptime, improve froth quality, and reduce operating cost.

To achieve this objective, the first and foremost issue is to obtain real-time,

reliable, accurate and consistent water content information.
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Figure 6.2: Hardware readings for water content measurements.

6.2.2 Existing Water Content Measurements

There are two water content hardware sensors installed on froth pipeline, one

for each train. They were commissioned to monitor water content of the

froth discharged by primary pumps, and configured to implement feedback

control for the hot process water additions. However, the variation of the

oil sands composition and the nature of multi-phase processing conditions

create harsh environment for in-line instruments. Historical observation shows

that these two meters have reliability issues, which could cause serious upsets

if they are used for automatic hot process water control. Figure 6.2 shows

historic readings from two meters, it can be seen that both meters are not

reliable; in fact, sometimes the readings even drop to negative. Note that, for

proprietary reason, the actual operating ranges have been modified/removed

in the chapter.

Due to the importance of the water content information, lab data is avail-

able hourly from the Aurora unit lab. Froth samples are collected manually

and put in a centrifuge machine to separate the bitumen, solid and water,

and then the water content is calculated by visually reading the amount of
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different components in a test tube. This procedure is carried out off-line,

and usually takes one hour to complete. Furthermore, human error can be

introduced during the lab analysis procedures. A preliminary test shows that

different technicians can easily produce 5% error in reading the same sample.

Nevertheless, unit lab result is still considered as the most trustful information

to operators, and the hourly averaged lab data is being used in operations as

the indication to manually adjust the setpoint for hot process water addition.

6.3 Soft Sensor Development

To achieve better monitoring performance, soft sensor technique (Chen et al.,

2004; Khatibisepehr and Huang, 2008; Kadleca et al., 2009; Shao et al., 2011) is

investigated. The froth transportation process appears to be an ideal candidate

for the application of soft sensor technique for some of the following reasons:

(i) The process is very dynamic; multi-phase mixtures of bitumen, coarse

solids, fine solids, water and air that can exhibit time-dependent behav-

iors, wherein pipeline friction losses increase drastically with time;

(ii) Froth compositions are complex as the oil sand deposits are naturally

highly variable in bitumen and clay content. Due to the large volumes

processed and the primary extraction techniques used, most of the oil

sand variability is passed through to the bitumen froth. While the bi-

tumen liberation mechanism can be very complex, the froth pipeline

operation itself is quite simple with few controllable parameters;

(iii) The outcomes of the NFL process are highly sensitive to the character-

istics of the feedstock stream (e.g., density, water content, etc.) and the

addition of hot dilution water;

(iv) The major difficulty faced when attempting to better understand the dy-

namics of the process has been the lack of sensors capable of monitoring

performance.
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Figure 6.3: Hot process water addition in Aurora froth pipeline.

6.3.1 Variable Selection

Since the lab data is considered as the most trustful information source, it

is selected as the output variable for soft sensor modeling. To choose closely

related secondary variables as input variables, mass balance principle is used

for process analysis. Take train 1 as an example, the investigated process can

be simplified as shown in Figure 6.3.

From Figure 6.3, it can be seen that froth from storage tank has flowrate

F1, density ρ1 and water content W1; it is diluted by hot process water with

flowrate F2, density ρ2 and water content W2, then discharged by a primary

primer pump; the discharged froth has flowrate F3, density ρ3 and water con-

tent W3. A mass balance equation can be obtained as,

F1 · ρ1 ·W1 + F2 · ρ2 ·W2 = F3 · ρ3 ·W3 (6.1)

Therefore, the water content for the discharged froth is calculated as,

W3 =
F1 · ρ1 ·W1 + F2 · ρ2 ·W2

F3 · ρ3
(6.2)

Unfortunately, in Equation (6.2), only F2, ρ2,W2 and F3 are known, ρ3 is not

directly measured, but can be approximately inferred from two existing density

readings. Critical missing information includes F1, ρ1 and W1, which implies

infeasibility of using the first principle model to estimate W3. Hence, the only

solution is to use statistical approach to retrieve the missing information.

The following assumptions are made in the modeling analysis:

(i) water content of the froth in different storage tanks are the same, and
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Table 6.1: Selected secondary variables for froth line modeling
Input Description
F 1
0 + F 2

0 Total froth flow to storage tanks
L1, L2, L3 Tank volume based weighted level

F2 Flowrate of hot process water
ρ2 Density prior to primary pump
F3 Pipeline discharge flowrate
ρ3 Density of discharged froth

1
τ

∑

τ W
1
0 + W 2

0 Average water content in storage tanks

the value does not change significantly within one hour (considering the

normal residence time τ is around 4 hours);

(ii) the flowrate of gland water added to the primary pump and boost pump

set is small enough to be neglected.

Based on the above assumptions, the following variables, as shown in Table

6.1, are selected as the input variables for soft sensor modeling.

6.3.2 Synthesis of Secondary Variables Using PCR

Synthesis of secondary variables is also known as process modeling, which is

one of the key steps to achieve a successful soft sensor application. Depending

on the studied process, the model of the soft sensor could be first-principle

or data-driven, dynamic or static, linear or nonlinear, and the parameters are

estimated using historical data.

Considering the collinearity among the selected variables, a latent variable

technique, Principle Component Regression, (PCR) (Jolliffe, 1982), is chosen

for data modeling. The calculation process is described as follows: First, the

normalized input variable matrix U(n × m) is analyzed by using principle

component analysis (PCA) approach (Jolliffe, 2002). The factor score matrix

T (n×m) and loading matrix L(m×m) can be obtained as

U = T · LT (6.3)

T = U ·W (6.4)
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Table 6.2: Error comparisons between PCR model and hardware sensor
MAE STD RMSE

Hardware sensor 3.23 4.96 5.66
Model prediction 1.77 2.05 2.17

W (m×m) is the factor score coefficient matrix, where

W = (LT )+ = (LTL)−1L (6.5)

Second, replace the input matrix U by factor score matrix T , and perform

least squares regression with the normalized output vector over the factors,

Y = T · β + e (6.6)

To learn the PCR parameters, output and input data are collected from his-

torical database; robust regression (Rousseeuw and Leroy, 2003) method is

used to obtain the model parameters β.

As the factors are the combinations of the input variables, Equation (6.6)

can be written as a direct regression model between input and output variables

Y = U ·W · β + e

= U · Θ + e
(6.7)

To validate the PCR model, a set of new data is collected and compared

with the simulated result from the PCR model. The results are shown in

Figures 6.4 and 6.5, from which we can see that the estimated model is able

to capture water content dynamics in general.

Table 6.2 shows the performance comparisons in terms of mean absolute

error (MAE), standard deviation (STD), and root mean square error (RMSE).

It clearly shows that PCR model prediction overall outperforms existing hard-

ware sensors.
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Figure 6.4: PCR model testing results (trends plot).
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Figure 6.5: PCR model testing results (scatter plot).
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6.3.3 Bayesian Model calibration

Equation (6.7) can also be represented in a state-space form as follows

xk = uk · θk−1 + ωx
k

θk = θk−1 + ωθ
k

yk = xk + νk

(6.8)

where xk is the unknown true process output (i.e., noise-free water content) at

time step k; θk−1 is the PCR model parameter; ωx
k and νk are process noise and

measurement noise, respectively; ωθ
k is a random variable representing model

parameter uncertainty.

Due to the modeling error or presence of process uncertainties (e.g., pro-

cess drifting), model prediction can be deviated from the true output as time

increases. To ensure the soft sensor performance, multiple observation sources

of various sampling rates for primary variable are synthesized to update model

parameters within the Bayesian framework (Shao et al., 2011). The objective

is to construct a posteriori distribution of the unknown variable by recursively

solving the following steps (Huang, 2008).

Prediction:

p(xk, θk|Dk−1) =

∫

p(xk, θk|xk−1, θk−1)p(xk−1, θk−1|Dk−1)dxk−1dθk−1. (6.9)

Update:

p(xk, θk|Dk) =
p(Yk|xk, θk)p(xk, θk|Dk−1)

p(Yk|Dk−1)

=
p(y1k|xk, θk)p(y2k|xk, θk) · · ·p(yNo

k |xk, θk)p(xk, θk|Dk−1)

p(y1k, y
2
k, · · · , yNo

k |Dk−1)

∝ p(xk, θk|Dk−1)
No
∏

n=1

p(ynk |xk, θk),

(6.10)

where p(xk, θk|xk−1, θk−1) and p(ynk |xk, θk) are the probabilistic forms of Equa-

tion (6.8); Dk = {Y1, · · · ,Yk} represents all the observations up to time k;

Yk = {y1k, · · · , yNo

k } denotes the measurement set from No observation sources.

In this chapter, No equals to 2, which indicates both water content hardware

124



0 0.5 1 1.5 2 2.5

x 10
4

−30

−25

−20

−15

−10

−5

0

5

10

15

Sample

H
2O

 %

Train 1

 

 

Hardware sensor
Soft sensor
Lab data

Figure 6.6: Soft sensor testing results (trends plot).

Table 6.3: Error comparisons between soft sensor and hardware sensor
MAE STD RMSE

Hardware sensor 3.23 4.96 5.66
Soft sensor 0.89 1.04 1.09

sensor reading and lab analysis data are synthesized. In the implementation,

initial guess of x0 was obtained based on mean value of historical data, and θ0

is the preidentified PCR model parameter.

Considering the nonlinear and non-Gaussian nature for the investigated

process, a sequential Monte Carlo sampling based particle filter (PF) (Gordon

et al., 1993) is used for Bayesian model calibration. Readers can refer to

Shao et al. (2011) for more details about the calibration strategy, while in

this section, only main results are presented. From Figures 6.6 and 6.7, as

well as Table 6.3, it can be clearly seen that the performance of soft sensor

has been further improved due to the combination of additional measurement

information.
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Figure 6.7: Soft sensor testing results (scatter plot).

6.4 Soft Sensor Performance Assessment

To assess the soft sensor estimation performance, some tests are carried out

and described below.

6.4.1 Preliminary Step Test

Preliminary step test was first conducted on the variables (e.g., hot process

water flow) identified having direct influences on the soft sensor model outputs.

Figure 6.8 shows OSI PI readings of the online step test results, from which it

can be concluded that: (i) soft sensor and hardware water content sensor give

the same trend when both work reliably; (ii) hardware sensor gives abnormal

reading when increasing hot process water flow to a certain amount, while soft

sensor is able to work reliably and captures the operating condition changes;

(iii) hardware sensor could give abnormal reading (e.g., negative value) without

any obvious reasons.
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Figure 6.8: Online hot water flowrate step test for soft sensor model validation.

6.4.2 Performance Assessment Using Lab Data

To further assess soft sensor performance, both Aurora unit lab result (using

centrifuge machine separation approach) and Base Plant main lab results (us-

ing Nuclear Magnetic Resonance analyzer, NMR) are used to compare with

soft sensor model prediction. Figure 6.9 shows the test result, from which we

can see that the trend of the soft sensor model output is consistent with Aurora

unit lab result as well as Base Plant NMR result, and soft sensor model output

has less variation than Aurora unit lab data. The values of soft sensor model

output are generally located within the NMR upper and lower bounds, except

for the points with extremely high water content (this mismatch is expected

to be compensated by the model calibration strategy).

Figure 6.10 shows the soft sensor on-line implementation results, from

which we can see that soft sensor estimate is reliable and accurate in compar-

ison with Aurora unit lab data and much better than hardware water content

sensors.
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Figure 6.10: Soft sensor online implementation performance.
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Figure 6.11: Inferential control for water content.

6.4.3 Soft Sensor Based Water Content Control

To take the full advantages of the developed soft sensor, an inferential con-

trol strategy is proposed in this section to control the water content within a

desired range. Soft sensor estimate is chosen as the primary control variable

(CV), hot process water is chosen as the manipulated variable (MV), froth

flow and density are chosen as the disturbance variables (DVs). A feedforward

plus feedback cascade control loop is designed as shown in Figure 6.11. In the

implementation, proportional-integral (PI) type controllers were used for both

inner and outer loops with sampling rate of 1 second and 30 seconds, respec-

tively. Furthermore, in order to improve stability, a gap option was practically

configured for the primary controller (i.e., water content controller) to achieve

range control philosophy. By doing this, the setpoint values for secondary

controller (i.e., hot water addition) will remain unchange if the primary CV

(i.e., water content) stays within the desired range. The result of on-line im-

plementation in the actual process is shown in Figure 6.12. Based on the

data analysis, we noticed that water content off-spec time has been reduced

by 17.3% after the implementation of soft sensor and inferential control, and

the quality variable (QV) variation has been reduced from 1.492 to 0.802.
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Figure 6.12: Inferential control performance.

6.5 Conclusion

A Bayesian information synthesis approach is proposed to develop soft sen-

sors for the estimation of froth quality in oil sands bitumen froth transporta-

tion process. The approach synthesizes all of the existing information to pro-

duce more reliable and more accurate estimation. With the implementation of

Bayesian model calibration, the developed soft sensor is sufficient for closed-

loop control. An inferential control strategy is designed and tested for online

froth quality control and the results obtained from the industrial application

show effectiveness of the developed soft sensor.

130



Bibliography

Chen, L., Nguang, S., Li, X., Chen, X., 2004. Soft sensors for on-line biomass

measurements. Bioprocess and Biosystems Engineering 26(3), 191–195.

Domlan, E., Huang, B., Xu, F., Espejo, A., 2011. A decoupled multiple model

approach for soft sensor design. Control Engineering Practice 19:2, 126–134.

Dougan, P., McDowell, K., 1997. Sensor development in oil sand processing. In:

Proceeding of 1997 Dynamic Modeling Control Applications for Industry.

Espejo, A., 2011. Managing & leveraging a large control system. In: Interna-

tional Symposium on Advanced Control of Industrial Processes.

Gordon, N., Salmond, D., Smith, A., 1993. Novel approach to nonlinear/non-

Gaussian Bayesian state estimation. In: IEE Proceedings F Radar and Sig-

nal Processing.

Government of Alberta, 2009. Alberta energy: Oil sands. In:

www.energy.gov.ab.ca/OurBusiness/oilsands.asp. Government of Alberta.

Huang, B., 2008. Bayesian methods for control loop monitoring and diagnosis.

Journal of Process Control 10:9, 829–838.

Jolliffe, I., 2002. Principal Component Analysis. Springer-Verlag.

Jolliffe, I. T., 1982. A note on the use of principal components in regression.

Journal of the Royal Statistical Society 31:3, 300–303.

Joseph, D., Bai, R., Mata, C., Sury, K., Grant, C., 1999. Self-lubricated trans-

port of bitumen froth. Journal of Fluid Mechanics 386, 127–148.

131



Kadleca, P., Gabrys, B., Strandtb, S., 2009. Data-driven soft sensors in the

process industry. Computers and Chemical Engineering 33, 795–814.

Khatibisepehr, S., Huang, B., 2008. Dealing with irregular data in soft sensors:

Bayesian method and comparative study. Ind. Eng. Chem. Res. 47, 8713–

8723.

Kresta, J., 1997. Advanced process control of extraction : Sensors and models.

In: International heavy oil symposium.

Rousseeuw, P., Leroy, A., 2003. Robust regression and outlier detection. Wiley-

IEEE.

Shao, X., Huang, B., Lee, J., Xu, F., Espejo, A., 2011. Bayesian method for

multirate data synthesis and model calibration. AIChE Journal 57:6, 1514–

1525.

132



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this dissertation, particle filter (PF) is investigated for solving nonlinear

state estimation problems. The PF approach is based on a rigorous Bayesian

formulation and uses sequential Monte Carlo (SMC) sampling technique to

propagate all information recursively. As opposed to other Bayesian estima-

tors, PF dose not rely on common assumptions of Gaussian or fixed-shape dis-

tributions; therefore it is more suitable to handle nonlinear and non-Gaussian

estimation problems.

Applications of PF to practical chemical engineering processes however are

restrained by (i) complicated process constraint, (ii) unknown but bounded

uncertainty, (iii) imperfect model, (iv) multirate and possibly abnormal ob-

servations, etc. This research addresses practical issues and applies the PF to

soft sensor developments in oil sands Extraction processes.

The following items summarize the main results of this thesis:

(i) Chapter 2 reviews both optimal and sub-optimal Bayesian algorithms

for nonlinear state estimation problems, with a focus on the state-of-the-

art particle filtering approach. Illustrative examples show that PF out-

performs many commonly used estimation approaches, including EKF,

UKF, MHE, and it has a good potential for real applications in complex

chemical engineering processes.
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(ii) Proper use of constraint knowledge is critical for the successful imple-

mentation of Bayesian estimators. In Chapter 3, two different constraints

handling strategies are discussed under the generic PF framework. Sev-

eral new constrained PF algorithms are implemented based on hybrid

use of acceptance/rejection and optimization schemes. Three case stud-

ies demonstrate the efficacy of the proposed approaches in complicated

constraint handling.

(iii) Chapter 4 presents a robust PF algorithm that is applicable to where

the description of uncertainty, due to modeling error or measuring noise,

is unknown but bounded. A robust solution has been obtained for non-

linear uncertain systems based on Monte Carlo sampling and nonlinear

set membership approach.

(iv) A novel application of particle filter is presented in Chapter 5 for data-

driven model calibration using multiple-source observations. The ap-

proach is built within a PF framework to synthesize fast sampled but

low accurate observations with high accurate but slow sampled obser-

vations to obtain more accurate process information. To enhance the

robustness in the presence of abnormal data, a robust Bayesian fusion

formulation with time-varying observation noise variance is proposed.

Simulation study and industrial application demonstrate that PF can

provide improved estimation by fusing multirate observations.

(v) Chapter 6 introduces a PF based approach to develop industrial soft

sensors, with a focus on froth quality estimation in oil sands froth trans-

portation process. The approach synthesizes all of the existing informa-

tion to produce more reliable and more accurate quality variable esti-

mation. Furthermore, an inferential control strategy has been designed

based on the soft sensor estimate, and online application results illustrate

the promising potential of the PF approach.
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7.2 Future Work

New and open research problems have been identified throughout this disser-

tation writing. These problems have potential theoretical and practical values

to process control community, and hence are summarized as follows:

(i) Improvement of robust particle filtering algorithms, including stability

studies, estimation of the minimum number of samples required, and a

practical formulation of particle filters with uniform convergence prop-

erty.

(ii) Further studies on the data fusion technique when the measurement

noises are not independent. As discussed in Chapter 5, particle filter

based data fusion is used with the assumption that noises of different

measurements are independent of each other. In practice the measure-

ment modes may be correlated, and the correlation information can po-

tentially be used to improve the results.

(iii) Online application of the developed estimation algorithms to more com-

plex processes, including oil sands Upgrading processes. The developed

PF estimation algorithm can be further tested on more complex pro-

cesses to demonstrate the efficacy of the methods.

(iv) Extending the research to multirate inferential control. Soft sensor based

inferential control has been introduced in Chapter 6, but without ex-

tensive further development. Practical or theoretical study of PF ap-

proaches with closed-loop feedback control is challenging and needs extra

attentions.
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Appendix A

Constrained PFs based on
Equations (3.9) and (3.10)

Since Equation (3.7) is the same with clipping, hereby only the constrained

PFs based on Equation (3.9) and (3.10) are summarized as follows:

Algorithm 3: A novel constrained PF algorithm based on Equation (3.9)

step a. initialization: generate initial particles {xi
0}Ni=1 from a priori distri-

bution p(x0), and set k = 1;

step b. importance sampling: generate prior particles, {xi,−
k }Ni=1, from im-

portance sampling distribution q(xk|X i
k−1, Yk);

step c. weighting: calculate constrained likelihood and importance weights

according to Equations (3.2) and (3.3), then normalize the weights as

wi
k = w̃i

k/
∑N

j=1 w̃
j
k;

step d. resampling: if Neff ≤ Nthr, then generate posterior particles, {x̃i
k}Ni=1,

based on resampling strategy, and set wi
k = 1/N ;

step e. Chi-square test: calculate the sample mean of the posterior parti-

cles, x̄k = 1
N

∑N
i=1 x

i
k, and compute the output residual, ek = yk −h(x̄k);

test the Chi-square criteria with a preset Σ;

step f. optimization: project the parent particles (i.e. the subset particles
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selected for resampling) to new locations by solving Equation (3.9) if

performance test in step e fails; recalculate the weights and resampling;

step g. output estimate the state by calculating x̂k = 1/N · ∑N
i=1 x̃

i
k, set

k = k + 1 and go back to step b.

Algorithm 4: A novel constrained PF algorithm based on Equation (3.10)

step a. initialization: generate initial particles {xi
0}Ni=1 from a priori distri-

bution p(x0), and set k = 1;

step b. importance sampling: generate prior particles, {xi,−
k }Ni=1, from im-

portance sampling distribution q(xk|X i
k−1, Yk);

step c. weighting: calculate constrained likelihood and importance weights

according to Equations (3.2) and (3.3), then normalize the weights as

wi
k = w̃i

k/
∑N

j=1 w̃
j
k;

step d. resampling: if Neff ≤ Nthr, then generate posterior particles, {x̃i
k}Ni=1,

based on resampling strategy, and set wi
k = 1/N ;

step e. Chi-square test: calculate the sample mean of the posterior parti-

cles, x̂k = 1
N

∑N
i=1 x

i
k, and compute the output residual, ek = yk −h(x̂k);

test the Chi-square criteria with a preset Σ;

step f. optimization: calculate the projected mean, x̃k, by solving Equation

(3.10) if performance test in step e fails;

step g. output yield the projected mean as PF output; calculate state co-

variance, P̃k, by using EKF method, and regenerate particles from a

normal distribution N(x̃k, P̃k); set k = k + 1 and go back to step b.
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