This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 47Deep Learning
- 20Machine Learning
- 9Computer Vision
- 8Artificial Intelligence
- 3Convolutional Neural Network
- 3Image Classification
-
Scalable Solutions to Image Abnormality Detection and Restoration using Limited Contextual Information
DownloadFall 2020
Detecting and interpreting image abnormalities and restoring images are essential to many processing pipelines in diverse fields. Challenges involved include randomness and unstructured nature of image artefacts (from signal processing perspective) and performance constraints imposed by...
-
Fall 2019
There has been tremendous research progress in estimating the depth of a scene from a monocular camera image. Existing methods for single-image depth prediction are exclusively based on deep neural networks, and their training can be unsupervised using stereo image pairs, supervised using LiDAR...
-
Towards an Autonomous Robot-based Laser Cladding Repair Process: A Framework for Damage Detection, Localization and Path Planning
DownloadFall 2021
With piling scientific evidence and growing public concerns about climate change and depletion of natural resources, policymakers are being forced to implement stringent environmental regulations. One such sector under scrutiny for the concerning pace at which it is ...
-
Spring 2023
Traditional survey based methods for clinical depression detection are not always effective; the patient may not reflect their actual mental health condition because of the cognitive bias exhibited while filling out questionnaires about depression. Established through ample earlier work, social...
-
Fall 2023
The increasing popularity of Deep Neural Networks (DNN) has led to their application to many domains, including Music Generation. However, these large DNN-based models are heavily dependent on their training dataset, which means they perform poorly on musical genres that are out-of-distribution...
-
Vision-assisted behavior-based construction safety: Integrating computer vision and natural language processing
DownloadFall 2023
Background: Construction sites can be hazardous places. Behavior-based safety is a method to optimize workers’ behaviors and improve site safety. Previous behavior-based safety has been criticized for their low efficiency because of manual observation. The community has conducted enormous studies...
-
Fall 2023
Oftentimes, machine learning applications using neural networks involve solving discrete optimization problems, such as in pruning, parameter-isolation-based continual learning and training of binary networks. Still, these discrete problems are combinatorial in nature and are also not amenable to...