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Abstract

Background: Construction sites can be hazardous places. Behavior-based safety is a method to 

optimize workers’ behaviors and improve site safety. Previous behavior-based safety has been 

criticized for their low efficiency because of manual observation. The community has conducted 

enormous studies about applying advanced computer vision-based methods to automate the 

monitoring and observation of construction sites. However, the lack of methods for extracting 

semantic information and identifying safety hazards from construction imagery still poses a significant 

challenge for the development of sophisticated vision-assisted behavior-based safety programs. 

Objectives: This research aims to automate the processes where the manual observation and 

inspection is needed in the traditional construction safety management by (1) enrich the information 

could be extracted from construction images, supporting safety hazard identification, (2) automate the 

safety hazard identification on site, and enable reasoning about the hazard identification according to 

safety regulations, and (3) automate the image records management and retrieval for efficient safety 

analysis.

Methods: Firstly, this research proposes a method to extract objects, activities, and interaction 

information from construction images. This method utilizes image captioning techniques to generate 

image captions for construction images containing semantic information. Secondly, this research 

proposes a novel visual–text semantic similarity method to compare construction image captions with 

safety regulation rules, enabling automatic safety hazard identification and reasoning. Finally, this 

research proposed a novel content-based image retrieval method for construction image repositories-
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based object detection. This will help safety managers query and retrieve similar cases from 

monitoring image records, and conduct behavior analysis.

Outcomes: This research will improve the current vision-based construction management 

applications in the following ways: (1) it helps automate the monitoring and observation of 

construction sites; (2) it provides an automated method to identify potential safety hazards on 

construction sites and give reasoning of their violation about safety rules; and (3) it provides an 

information retrieval system for construction image repositories, enabling fast image retrieval and 

case-based reasoning and analysis.
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Chapter 1

Introduction

1.1 Background

The construction industry is a crucial sector in North America, contributing 4.3% to the US GDP 

in 2021[1]. Unfortunately, construction sites are hazardous places with various safety risks that pose 

significant threats to workers. In the US alone, the construction industry reported over 1,000 deaths 

and 75,400 nonfatal injuries in 2020 [2]. The top three categories of fatal hazards are falls and slips, 

transportation incidents, and inappropriate contact with objects and equipment [2]. The frequency 

and severity of these accidents highlight the urgent need to improve safety measures in the 

construction industry.

Previous research has shown that many of these hazards can be prevented by enhancing safety 

management and minimizing exposures that may contribute to dangers and health impacts for 

construction workers. Behavior-based safety (BBS) is a widely studied approach that has been shown 

to be effective in promoting safe behavior. However, previous BBS methods in the construction 

industry have limitations such as being manual, time-consuming, and subject to observer bias, making 

them inefficient and error-prone [3–5]. These disadvantages can be attributed to the tedious and labor-

intensive nature of visual observation and the difficulties in monitoring all workers continuously [6].

Recent technological advancements, such as cameras, drones, and smartphones, have become 

standard equipment in construction engineering, enabling professionals to record construction site 

imagery, including images and videos [7–9]. Therefore, the number of digital images and videos 

captured on-site has exponentially increased, with more than 400,000 images being captured from one 

typical project site during the construction phase [10]. Traditionally, construction sites have been 

documented and tracked using images and videos taken on the project site. These images and videos 

have been used for various purposes, including documenting and tracking the status of the project
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[11], keeping a visual record of safety and quality inspections [12], maintaining a visual timeline of 

site progress, and providing evidence against damage claims [13]. 

The availability of construction site image repositories provides an opportunity to develop tools 

that can automate the inspection and observation of construction sites. Researchers have increasingly 

adopted computer vision (CV) technologies in the construction industry [5] to recognize critical 

information in monitoring images. Computer vision is a subfield of artificial intelligence that enables 

computers to process, analyze, and understand images and videos, allowing for the recognition and 

classification of objects, people, scenes, and events [14]. By leveraging computer vision, researchers 

have developed methods to recognize hazardous postures and actions, detect missing personal 

protective equipment (PPE), and automate BBS programs.

Despite the promising results of computer vision, it has its limitations when used alone in BBS. 

For example, it can only detect simple repeating objects or activities, which may not be the focus of 

typical BBS programs [5]. Furthermore, computer vision cannot leverage domain knowledge about 

safety regulations and guidelines, limiting the ability to infer whether the behaviors and interactions 

presented in the image scene follow the safety regulations. Fortunately, recent advances in natural 

language processing (NLP) technologies have enabled computers to process, understand, and infer 

from natural text languages [15]. Therefore, NLP can help extract and evaluate semantic meanings

from safety regulations and guidelines, providing valuable domain knowledge for assessing the safety 

of complex activities.

The construction industry plays a significant role in the economy, but it also poses a considerable 

threat to workers due to safety hazards. Previous studies have shown that many accidents are 

preventable by enhancing safety management and minimizing exposures. BBS is a widely studied 

approach to promoting safe behavior, but previous methods have limitations. Recent advancements 

in CV technologies have enabled researchers to automate the inspection and observation of 

construction sites. However, CV alone has limitations, and NLP can help extract and evaluate 

semantic meanings from safety regulations and guidelines, providing valuable domain knowledge for 

assessing the safety of complex activities.
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1.2 Behavior-based Safety

There is a considerable risk of accidents and injuries in the construction industry, which can 

result in large financial expenses and personal tragedies. Traditional safety programs have historically 

focused on compliance with regulations and PPE. However, there has been growing recognition of the 

importance of BBS in preventing accidents and injuries. BBS is a proactive approach to safety that 

emphasizes identifying and changing unsafe behaviors and reinforcing safe ones. In the construction 

industry, BBS has the potential to reduce accidents and injuries by encouraging workers to take 

responsibility for their safety and promoting a safety culture throughout the organization.

Construction work is inherently hazardous, with workers often exposed to multiple risks 

simultaneously. BBS programs can help identify and address the underlying causes of unsafe 

behaviors, such as lack of training, unclear instructions, fatigue, stress, or pressure to meet deadlines. 

The basic principles of BBS are observation, feedback, and reinforcement. BBS programs encourage 

workers to observe and report unsafe behaviors and provide feedback to their colleagues on correcting 

them. Positive reinforcement is used to reward safe behaviors and create a safety culture within the 

organization.

The basic steps of a BBS program include: (1) identifying unsafe behaviors; (2) observing or 

sampling identified behaviors over a time period; (3) providing feedback to increase desired behaviors 

and decrease undesirable ones through coaching and mentoring; and (4) presenting feedback 

regarding performance to the relevant audiences within the organization [16]. 

The effectiveness of BBS in the construction industry has been the subject of several studies and 

has shown promising results in reducing accidents and injuries. However, implementing a successful 

BBS program in construction requires careful planning and execution, which involves training 

workers and management on the principles of BBS, selecting appropriate observation and feedback 

methods, and establishing a system for tracking and reporting data.

Overall, behavior-based safety is an important approach to preventing accidents and injuries in 

the construction industry. Its emphasis on changing unsafe behaviors and promoting a safety culture 

can help reduce risks and create a safer work environment for all workers.
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1.3 Computer Vision for BBS

Implementing a behavior-based safety (BBS) program in construction can be a challenging and 

labor-intensive process, particularly when identifying and highlighting people's unsafe behaviors. This 

is because the initial steps of BBS involve intensive manual monitoring and observation to identify 

unsafe behaviors and observe them over time. However, this process is crucial for workers to reflect 

on and learn about how their unsafe actions can jeopardize not only their safety but also that of their 

co-workers. Recent advancements in computer vision have enabled the automatic capture and 

identification of unsafe behavior and hazards in real time from two-dimensional (2D) digital images 

and videos. These developments have generated considerable interest in the construction industry, 

leading to extensive research on the potential application of computer vision in practice [17].

Drawing on a synthesis of existing knowledge [7,9,18], Figure 1 outlines the contents, main 

techniques, deployment process, and challenges involved in effectively implementing CV for BBS. 

Vision-based construction management involves four main steps: imagery data collection, feature 

processing, information recognition of the imagery, and specific management application.

Figure 1. Contents, Techniques, Deployment and Challenges corresponding to the four 

aspects of vision-based application workflow.
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The first step of vision-based construction management is visual data collection. This involves 

designing the construction site’s camera layout and data transfer plan. The visual data includes images, 

videos, and laser point cloud data. Imagery data collected by a single camera is adopted for monocular 

vision analysis [19], while data collected by multiple cameras are employed for stereo analysis [20]. 

Currently, the main target subjects of the visual data are heavy equipment [21], human labor [22], and 

construction materials [23]. The visual data serves as the training data for deep learning models in the 

technology development process. In the deployment process, the visual data is the input data of the 

management system.

The raw imagery data must be processed for deep learning models. Unlike simple processing like 

image cropping [24], video clipping [25,26], and keyframe selection [27], which are commonly used 

in traditional computer graphics methods, the essential processing step in computer vision methods 

is feature processing [18]. It outputs a sequence of vectors representing the raw imagery's most 

significant visual feature. Current technology commonly utilizes convolutional neural network (CNN) 

as the feature extractor. CNN has several architectures, such as VGG [28], Inception [29], ResNet [30], 

etc. Based on the architecture and parameters of the CNN, the extracted feature represents the image's 

edges, patterns, and objects. The processed feature vector is then fed into a subsequent process to 

generate a high-level perception of the captured imagery. 

The information recognition process relates to essential computer vision tasks that mimic basic 

human visual perception abilities. The recognition could be categorized based on the information 

extraction target. Object detection recognizes its pixel location and category. Activity recognition 

recognizes the behavior of the target object. Interaction inference recognizes the relationship between 

objects. Pose estimation recognizes the human key point and then infers the human pose.

The last step of vision-based construction management is to combine the above-described basic 

information from site imagery with certain rulesets, logic, and workflow to complete specific 

management tasks. For example, by combining the object detection result of workers and scaffold with 

the safety rule, the safety of workers' behavior could be determined [31].

1.4 Knowledge Gaps

Despite the promising benefits provided by the computer vision technologies for the BBS program, 

there are several challenges when automating the observation and inspection on construction sites:
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(1) Most applied computer vision-based construction recognition models learn from 

correlations and recurring patterns in the input data (specifically between the features 

extracted from images). Compared to humans, these methods can rarely draw causality 

or extract higher-level semantic understanding (activities, interactions, and attributes) 

from imagery. Construction imagery contains a large amount of inexplicit information 

that needs an advanced recognition model to extract the related information, like 

interaction and attributes. Current construction studies merely deal with this semantic 

information or only extract a small portion of it, which cannot form a comprehensive 

understanding of the visual scene presented in the construction imagery. Hence, many 

vision-based applications have a low level of understanding of construction imagery and 

cannot be applied practically to complex safety management applications, such as the BBS 

program.

(2) Most computer vision-based safety hazard identification models merely deal with safety 

regulations and guidelines. These models typically rely on pre-annotated safety labels to 

learn the visual patterns related to safety hazards. Therefore, the ability of these models 

is limited to the pre-defined hazard types and needs to address the dynamic and complex 

nature of safety hazards on the construction site. Moreover, since these models output 

safety labels, they cannot provide insight into which safety rule is being violated. This is 

a critical limitation, as identifying the violation of safety rules is crucial to preventing 

future safety hazards and developing effective safety interventions.

(3) Even though an extensive repository of construction monitoring images assisted in 

observing a target behavior over time, the image data are manually retrieved and analyzed 

when conducting safety analysis on past records and similar cases. Construction monitoring 

images are essential for analyzing and observing target behaviors over time, studying the 

behavior patterns, and relating issues in the BBS program. However, manual sorting of 

construction monitoring images can be a time-consuming and labor-intensive process, 

and it can also be prone to errors or inconsistencies. Furthermore, content analysis, which

involves manually identifying and tagging images with relevant keywords or labels, can 

also be subjective and may not capture all relevant information. Moreover, without an 

adequate information retrieval system, retrieving specific photos from a vast archive of 

construction monitoring images can be problematic.
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1.5 Research Objectives and Scope

1.5.1 Research Objectives

This research aims to streamline on-site safety management efforts by automating observation 

and inspection on construction site including construction imagery processing, inspection, and 

management, thereby improving the capability and performance of vision-assisted BBS solutions. 

With the adoption of the proposed methods, construction engineers can automatically extract more 

semantic information from the construction imagery, enabling automatic safety hazard identification 

and reasoning. Additionally, the proposed method includes an information retrieval system for 

construction monitoring images that facilitates faster observation over time and behavior analysis. The 

objectives of this research and their relationship with BBS are illustrated in Figure 2.

Figure 2. The three objectives of this research and their relationship with BBS

This research focuses on the first two steps of BBS: (1) the identification of unsafe behaviors; (2) 

the observation or sampling of identified behaviors over a time period. When using CV to automate 

the identification of unsafe behaviors, two steps are needed: firstly, extracting the visual information 

from the construction images, and secondly, identifying the safety hazards. These two steps 

correspond to the first two objectives of this research. In addition, an information retrieval system is 

required for observation over time in order to retrieve the relevant image records from the construction 

image repository. This is related to the third objective of this research. The details of the three 

objectives are as follows:
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(1) To enrich the information could be extracted from construction images, supporting safety 

hazard identification : This objective focuses on improving the capabilities of computer vision 

techniques in understanding and interpreting visual data from construction sites. The goal is 

to automate the observation of related information required by safety management (e.g.,

safety hazard identification).

In achieving the first objective, and resolving the first challenge identified in former section, 

this research proposed a method for semantic information extraction for construction images: 

semantic information extraction for construction images involves identifying and analyzing 

the content of images to extract information such as objects, activities, and relationships as 

text descriptions. In this way, this method extracts rich semantic information from 

construction images and enable downstream safety hazard identification with the extracted 

information. 

(2) To automate the safety hazard identification on site, and enable reasoning about the hazard 

identification according to safety regulations: This objective aims to automate the potential 

safety hazard identification in common safety management practices. Furthermore, it seeks 

to enable reasoning about these identified hazards in accordance with safety regulations, 

providing a comprehensive understanding of the risks involved.

In achieving the second objective, and resolving the second challenge identified in former 

section, this research proposed a method for automatic unsafe behavior and hazards 

identification and reasoning: developing an unsafe behavior and hazards identification and 

reasoning using CV and NLP techniques to extract information from images and text related 

to safety hazards in the construction industry. This method analyzes the meaning of the rule 

text and image captions using NLP techniques to identify and match relevant keywords and 

phrases. The similarity between the extracted information can then be quantified using 

semantic similarity measures, which assess the degree of similarity between the text and 

image captions. In this way, this method can automatically comparing the image content 

with the related safety regulations, and generate output about safety hazard identification 

and reasoning.

(3) To automate the image records management and retrieval: This objective is about automating 

and improving the efficiency of organizing and retrieving of construction site images, thereby 
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facilitating the extraction of semantic information and the identification of safety hazards on 

a large construction image collections.

In achieving the third objective, and resolving the third challenge identified in former section, 

this research proposed a method for content-based image retrieval for construction image 

records: Developing an information retrieval system for construction image records based on 

the visual content of the images. This objective addresses the challenge of lacking a dedicated 

IRS for construction imagery and how to distinguish and balance the background and object 

features of construction imagery. With the help of this method, the construction manager 

could easily retrieve similar images to observe a target behavior over time and perform 

behavior pattern identification and analysis.

1.5.2 Connections Between Objectives

Objective 3, the creation of a content-based image retrieval method, serves as a foundational 

database that supports the first two objectives. This image retrieval system will store and organize 

construction images in a manner that allows for efficient and accurate extraction of semantic 

information (Objective 1) and hazard identification and reasoning (Objective 2).

The image retrieval system is designed to be content-based, meaning that it uses the actual 

content of the images (such as the presence of construction equipment, workers, safety measures, etc.) 

to index and retrieve images. This feature is crucial for the success of the first two objectives. For 

Objective 1, the semantic information extraction method relies on the ability to access relevant images 

from the database. Similarly, for Objective 2, the automatic safety hazard identification and reasoning 

method will utilize the images stored in the database to analyze the behaviors over time. The image 

retrieval system will provide a comprehensive visual context that aids in the identification and 

understanding of safety hazards.

In summary, the first two objectives could be used either on real time monitoring and observation 

of construction site, or work with Objective 3 to analyze past image records. Objective 3 is not just a 

standalone goal, but a critical component that enables and enhances the success of Objectives 1 and 2. 

It ensures that the methods developed for semantic information extraction and hazard identification 

have a robust, content-rich image database to work with, ultimately leading to a more effective and 

accurate system for improving construction site safety.
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1.5.3 Relation to Existing Safety Models and Frameworks

This research, focusing on the integration of computer vision and natural language processing for 

construction site safety management, aligns with and complements existing safety models and 

frameworks in the construction industry.

Cognitive Systems Engineering (CSE): Jens Rasmussen's CSE [32] emphasized the understanding 

of cognitive processes in complex work domains. This research aligns with CSE principles by 

designing a system that supports human decision-making in the complex domain of construction 

safety. The system aids in understanding the work environment and potential safety hazards that 

comes from violations of safety rules, thereby supporting informed decision-making.

Working Near the Edge: Howell et al. [33] focused on managing risks inherent in high-risk 

construction environments. Our research complements this approach by providing a tool that 

automates the identification of such risks, allowing for more efficient and accurate risk management.

Other Safety Models: Various other safety models in construction emphasize the importance of 

hazard identification, risk assessment, and effective safety management. This research contributes to 

these goals by automating the observation and hazard identification process based on safety rules, and 

by improving image records management.

It's important to note that this research is not intended to replace any existing safety models or 

frameworks. Instead, it provides a tool that enhances and supports these models. The system 

automates the observation of construction sites, identifies potential safety hazards based on 

established safety rules, and improves the management of image records. This allows for more efficient 

and accurate safety management, while still relying on human expertise for final decision-making. 

1.5.4 Research Scope and Hypothesis

This research does not include construction videos, but a further study could extend this 

framework to construction videos since videos consist of a sequence of images. This research 

hypothesis is that the camera layout on the construction site is well planned, and the image data can 

be successfully transferred and stored. It should also be noted that the proposed framework targets the 

basic methodological challenges in the current technology development process of vision-assisted BBS 

and validates the feasibility of the proposed methods. The main scope of the present research is to 

provide an essential workflow for the steps that involve construction site monitoring and observation 
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in the BBS program, which could extract semantic information from construction imagery, compare 

the extracted information with safety rules, and retrieve target images from the construction image 

repository.
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Chapter 2

Literature Review

2.1 Computer Vision Techniques

As workers’ unsafe behavior is a major contributor to site hazards [34], BBS programs have been 

implemented for decades to improve the safety performance of construction projects and 

organizations [35,36]. BBS is an approach that creates a safety partnership between management and 

employees by (1) identifying and observing unsafe actions, (2) providing direct feedback to individuals 

who committed unsafe actions, and (3) improving future safety awareness and performance through 

coaching and training [16,17]. Among these steps, observation is an essential one. However, manual 

observation could be labor-intensive, subjective, and budget-challenging. In addition, the 

corresponding manual safety observation and reporting (SOR) method also has drawbacks, such as 

increased administration time and data [37].

Recently, deep learning-based CV techniques have shown visual recognition ability comparable 

to or even better than human ability [38,39]. It has also been identified as a reliable method for 

automatically recognizing and capturing hazardous activities made by individuals during construction 

[17]. The BBS programs have been automated to automatically recognize objects and activities based 

on CV techniques, such as image classification, object detection, and image captioning. Figure 3

visually illustrates these tasks and sorts them based on label density and semantic richness.

2.1.1 Image Classification

Image classification is a task that labels the category of a whole image. An image classification 

algorithm, for example, can take images of various construction equipment as input and assign a class 

label such as "excavator," "dump truck," "forklift," and so on. A typical image classification model 

utilizes several CNN layers to extract the image feature map and then feed the feature map into a fully 

connected (FC) layer to get the feature vector of the input image. A classification layer, usually with a 
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SoftMax activation function, is the final layer of the model to predict the classification probability. 

There are many image datasets for image classification, such as ImageNet, which includes over one 

million images. Many well-known CNN architectures are proposed for image classification tasks, such 

as LeNet [40], Inception [29], and ResNet [30]. However, the image classification model has an obvious 

shortcoming: it can only recognize one single object in each image and cannot detect its location. So, 

it may fail when multiple objects are presented in the image to classify. In image classification, an 

entire image is analyzed, and one label is generated for this image; as such, the label density of image 

classification is low. And the predicted label often contains a single keyword; as such, the semantic 

richness of image classification is low.

Figure 3. Comparing the label density and semantic richness of various visual recognition 

tasks.

2.1.2 Object Detection

Object detection is a task that extracts the category and localization information of the objects in 

an image. Object detection models often rely on a CNN pre-trained on an image classification dataset. 

Based on the type of object region generation, there are two types of object detection models:

(1) The first type is named a two-stage detector based on the region proposal. This type's most 

commonly used model architecture is Faster R-CNN [41]. Faster R-CNN utilized a CNN-based 

backbone to extract the feature map of the input image. Then a Region Proposal Network (RPN) will 
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search the feature map and find region zones of the feature map that potentially contain objects. The 

proposed region is named the region of interest (RoI). Each RoI will be further processed by 

classification to predict the category label and regression to indicate the object's location.

(2) The second type of detector is named a one-stage detector based on regression. This model 

type depends on a fixed number of region anchors or proposals for an input image. The regression and 

classification will directly process these regions, mapping the image features to bounding box 

coordinates and class probabilities. An example of this model is You Only Look Once (YOLO) [42].

Object detection yields higher label density than image classification. However, because it 

predicts single keyword labels, the semantic richness is low.

2.1.3 Instance Segmentation and Semantic Segmentation

Instance segmentation is very similar to object detection. Unlike the object detection model, 

which locates the bounding box of the target object, the instance segmentation model finds all the 

pixels in the image that belongs to the target object. The widely utilized instance segmentation model 

is Mask R-CNN [43], which is similar to Faster R-CNN. Compared to Faster R-CNN, Mask R-CNN 

adds a mask generation head after the RPN. The mask generation head utilizes a fully convolutional 

network (FCN) [44] to predict if the pixel belongs to the object in each RoI.

2.1.4 Visual Relationship Detection

Visual relationship detection captures interactions between pairs of objects in images or aims to 

reason over relationships among salient objects in images. Visual relationship detectors are often built 

upon object detectors since the object detector can predict object classification and localization. For 

example, Lu et. al. [45] trained another CNN to classify the relationship between the objects according 

to the union of both object regions. More recent research [46] utilized a graph neural network (GNN) 

to detect the relationship.

2.1.5 Image Captioning

Image captioning is a task that generates a natural language description for an input image. An 

image captioning model could extract semantic information from the images. The widely used image 

captioning methods were template-based, which first detected a specific set of visual concepts from 

images. Then, the detected visual concepts are connected by sentence templates or specific grammar 
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rules to form a sentence [47–49]. Recent studies have implemented deep learning techniques in image 

captioning to provide more accurate and natural captions. The base architecture for neural image 

captioning models is the encoder-decoder architecture. This base architecture combines CNN as the 

image extraction module and RNN as the sentence generation module [50,51]. The early encoder-

decoder model approaches have obvious limitations. Firstly, the image feature vector has a fixed 

dimension and easily loses or ignores some important visual information when decoding in the 

language generation process [52]. Secondly, such a structure cannot model the correspondence 

between the input visual features and the output sequence, and this correspondence is significant for 

the tasks in image captions.

The "show, attend and tell" model [53] introduces the attention mechanism into the classic 

encoder-decoder image caption model. The image coding part of image captioning no longer uses the 

top-level representation of CNN. Still, it extracts the bottom-level vector representation from CNN 

(previously a one-dimensional vector, now a three-dimensional grid). The attention distribution on 

each grid is calculated using the attention mechanism in the decoding process. Then, when the image 

is formed, each word will be noticed in the visual grid area. Meanwhile, other types of attention 

mechanisms are proposed, such as adaptive attention [54], bottom-up attention [55], and transformers 

[56].

Compared with image classification, image captioning provides more semantic information 

regarding activities and interactions and generates labels with more semantic richness. However, 

because the output of captioning is based on the whole image, the label density remains low.

2.2 Computer Vision Applications in AEC industry

Many studies have been conducted to retrieve useful information from heavy equipment 

operation images for management purposes such as: improving the machine's health and condition 

[57], improving environmental performance [58], monitoring progress [59,60], and identifying 

potential improvement areas [61]. The target information that researchers are interested in retrieving 

from the construction operation images could be categorized into three types: (1) construction object 

detection, (2) operation activity recognition, and (3) interaction and scene analysis.
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2.2.1 Construction Object Detection

Construction object detection identifies and locates the construction objects from images. Early 

studies have implemented background subtraction algorithms [24] and machine learning models [62]

as the detection method. Recent studies have utilized more sophisticated deep learning methods based 

on CNNs and recurrent neural networks (RNNs) to conduct the object detection task. Deep learning 

methods such as Faster R-CNN have been adopted to detect construction objects, including workers, 

excavators, and sewer pipes [63,64], which have improved performance over non-deep learning 

studies. For example, Fang et al. [65] proposed a real-time detection model of workers and excavators 

on the construction site, which provides managers with information about workers and equipment to 

improve their decision-making. Cheng and Wang [63] proposed an automatic detection model for 

sewer pipes, laying the foundation for applying deep learning technology to detect sewage pipe defects. 

Kim et al. [66] utilized YOLO-V3 as the object detector to process the UAV-captured site images and 

localize the object, followed by image rectification and distance measurement. The proposed method 

can detect the danger of being injured around workers and provide early warning to ensure that 

workers are in a safe working environment. 

Although much research has been conducted on construction object detection, the detection 

results cannot represent all the information in the image scene, nor can they express the complex 

activity scene of the relationships between different objects. 

2.2.2 Activity Recognition

The second direction of vision-based operation monitoring recognizes the construction activities 

of the identified construction objects. The recognized actions of on-site equipment (e.g., working, 

idling) and workers (e.g., unsafe behaviors) can be further used for operational performance analysis 

and safety assurance. Early studies have implemented rule-based and thresholding algorithms [67,68]

and support vector machines (SVM) [69,70] as activity recognition methods. Recent studies adopted 

deep learning networks as the image processor to recognize workers' operations and mechanical 

equipment gestures [71,72]. Deep learning models have shown better image feature extraction and 

processing capabilities [38]. For example, Kim and Chi [73] proposed a hybrid model integrating CNN 

and long short-term memory (LSTM) that performs visual feature extraction and sequential pattern 

analysis to recognize earthmoving equipment activities. Their proposed method is used for automated 

cycle time and productivity analysis, which is beneficial for automated excavators' cycle time and 
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productivity monitoring. Moreover, Luo et al. [74] utilized deep learning to automatically recognize 

and track excavators' position, posture, and movement on construction sites, reducing the incidence 

of safety mishaps and preventing injury to workers within the operating range of on-site machinery 

and equipment.

2.2.3 Interaction and Scene Analysis

Object interaction and scene analysis received less interest than the former two research areas. 

Existing studies mainly utilized LSTM as an essential tool to identify the interaction through 

sequential pattern recognition for the object interaction. For example, Cai et al. [75] utilized the 

corresponding positional relationships through LSTM to classify the working group of identified 

entities, which further organized the interaction activity. The construction site's safety and 

productivity can be improved by analyzing the interaction between workers and equipment. Another 

LSTM-based model [76] is proposed to predict the workers' trajectories while considering the 

interaction with the contextual objects. It can automatically detect and collect data on workers' 

movements and building sites, assisting in proactively preventing engineering accidents. Other 

computer vision techniques are also utilized to analyze the interaction and scene. For example, Kim 

et al. [77] utilized a scene parsing method to identify whole image areas. Ham and Kamari [78] used 

semantic segmentation to investigate the UAV-captured image for objects' location and analyze the 

spatial composition by detecting all the object zones in the image and analyzing the relative locations 

between different zones. Moreover, Tang et al. [79] utilized scene graph techniques [80] to analyze the 

human-object interaction in the site image for a safety inspection.

Most of the scene analysis models are proposed separately from the object detection models, 

which means that they lack visual grounding of the recognition results. For example, when a model 

recognizes an activity, it cannot tell which object is doing this activity. And this visual grounding is 

important when the input image contains multiple objects.

2.2.4 Need for Label Density and Semantic Richness

A sophisticated vision-based safety management program requires CV technologies that can 

generate semantic richness and high label density. Semantic richness is required to understand what 

is happening in a given scene as well as how people and objects are interacting in it; information 

regarding the activity and interaction is paramount for understanding the context of a scene because
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the majority of safety risks stem from inappropriate actions and complex spatial and temporal object 

structures [5]. Finally, the need for a procedure that can generate a high label density can be linked to 

its accuracy because the underlying algorithm is not likely to ignore important information in the 

scene. Several studies have been conducted to generate dense and semantically rich labels. For 

example, Zhang et al. [81] added interaction labels into the object detection model to generate a scene 

graph. However, these labels are based on keywords, not on natural language. Dense captioning [82]

is a promising approach that jointly generates dense and rich annotations in a single model but has 

not been adopted in vision-based safety management programs yet.

2.3 Natural Language Processing in Construction Safety

Data regarding construction safety, such as safety regulations, safety guidelines, construction 

plans, safety reports, incident logs, and worker communications, are generally stored in various 

electronic text formats and used to track the progress of construction projects, identify, and address 

safety hazards and improve communication between workers and managers. NLP can be used in 

construction safety management to analyze large amounts of text-based data, such as safety reports 

and incident logs, to identify patterns and potential hazards [83], enabling construction companies to 

identify and address potential safety risks more effectively and efficiently, thus improving safety at 

construction sites [84]. Like CV, NLP provides several techniques for text data processing, such as 

document classification, knowledge extraction, and factor analysis. These techniques can be employed 

for improving construction safety management.

Document classification: Document classification is the process of arranging documents into 

predefined categories or labels and can be used to categorize construction records in the construction 

industry, such as safety reports, incident logs, and progress reports to aid in pattern identification and 

decision-making. For example, by using key attributes from injury reports, Tixier et al. [85] created an 

undirected network and then used multiple graph clustering algorithms to identify potential safety 

conflicts. Zhang [86] proposed a hybrid structured deep neural network incorporating (learned) word 

embeddings for the automatic classification of the causes of construction accidents. Fang et al. [87]

developed a DL-based text classification method based on BERT, a DL-based NLP network, to 

automate the classification of near-miss data in safety reports.
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Knowledge extraction: Knowledge extraction is the method of automatically extracting 

structured information from unstructured or semi-structured texts and involves extracting entities, 

relationships, and events from text as well as recognizing concepts, themes, and sentiments. 

Knowledge extraction has many applications in construction safety management. For example, Yeung 

et al. [88] developed a knowledge extraction and representation system to restructure a complex safety 

accident narrative text and created a narrative map to help safety project trainees comprehend and 

remember the important elements and events that led to the accident. Martnez-Rojas et al. [89] used 

NLP to extract seven types of contents from safety and health plans documents by using manually 

established rules to check if the plans satisfy safety requirements at an early stage. Wang and El-

Gohary [90] proposed a DL-based method to automatically extract and represent relations that 

describe fall protection requirements and represented the extracted information in the form of 

knowledge graph-based queries to aid in the automatic checking of safety requirements.

Factor analysis: Factor analysis is a statistical approach used for determining underlying 

correlations and patterns between data samples. Mathematically, it reduces the dimensionality of large 

datasets, retaining a small subset of the original variables, known as factors, that explain most of the 

variance in the dataset. In the construction sector, factor analysis can be used to determine the 

underlying elements that lead to safety incidents, such as identifying primary causes of accidents and 

injuries or discovering patterns in worker communication that may indicate a possible safety hazard. 

For example, Kim and Kim [91] discovered the elements of a construction fire accident from public 

news items by using multiple morphological analyses and then assessed the primary causes leading to 

fire accidents in different seasons by using principal component analysis. Xu et al. [92] extracted 37 

safety risk factors from 221 metro construction accident reports by using text mining technology. Pan 

et al. [93] developed a graph-based model to reveal the interdependency between body part factors and 

accident types..

Most NLP applications employed in construction safety management operate using only text data. 

However, in recent years, the utilization of digital cameras has gained tremendous popularity in the 

construction industry, making videos and images an important data format for monitoring 

construction sites. Combining CV and NLP in construction safety management can provide a powerful 

tool for managers to obtain a comprehensive understanding of the safety conditions on site, which, in 

turn, will help address any identified safety hazards more effectively and efficiently and improve 

overall safety at construction sites.
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Zhong et al. [94] proposed an integrated method that accepts image and text data. They first used 

NLP to extract potential hazard ontologies from project documents and then manually tagged 

construction image scenes with predefined categories. Finally, they obtained similar pictures by 

calculating the degree of similarity between image annotation (text) vectors. However, they did not 

utilize CV techniques to process the images automatically. Zhang et al. [81] proposed a more advanced 

hazard identification system by combining CV and NLP. This system first detects keywords regarding 

objects and interactions from the image and then uses a supervised BERT model to calculate the 

probability of hazards by inputting the keywords and safety regulations. Although this study achieved 

promising results, it has two limitations: (1) The semantic information in the image is represented as 

keyword pairs, which have less semantic richness than a complete sentence. As such, this method 

requires additional processing steps. (2) This hazard identification model is supervised learning-based 

and thus requires extensive data collection and model training in the case of a large number of safety 

rules.
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Chapter 3

Semantic Information Extraction from Construction Images

3.1 Introduction

The construction industry is one of the largest industry sectors in North America, which 

contributes to 4.3% of the GDP of the United States in 2021 [1]. Cameras have recently become 

standard equipment in construction engineering, allowing construction professionals to monitor their 

sites remotely [7–9]. Analyzing construction images/videos by vision-based methods is beneficial to 

construction management in terms of improving crew productivities [73], improving the machine's 

well-being [57], improving environmental performance [58], monitoring progress [59,60], reducing 

safety risks [95], and enhancing construction logistics [65]. Extracting semantic information (e.g., 

objects, activities, and interactions between objects) from construction images is the fundamental step 

for many vision-based applications in construction management [7,96–99].  

Object detection is a vision-based technology that can extract pre-defined classes of objects and 

their location information from construction images, which has been applied to defect detection 

[100,101], equipment classification [102], and safety monitoring [103] in construction engineering. 

However, object detection can only provide information of object category and localization, which 

may not be sufficient for advanced construction applications (e.g., activity recognition and interaction 

analysis) [99]. Therefore, other technologies have been employed for extracting semantic information 

from images or videos. For example, Kim and Chi [73] utilized an additional model based on the 

Recurrent Neural Network (RNN) upon the object detector to recognize the activity of excavators. Liu 

et al. [104] proposed a method to extract the semantic information from the site image as natural 

language descriptions. Tang et al. [9] combined the object detection and human-object-interactions 

recognition module to ground the interaction information of workers onto the image. Moreover, NLP 

technologies also play an important role in conducting similar roles. When current techniques could 

not directly extract target information from the images, NLP techniques extract information from 
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human observation reports. For example, researcher utilized Named Entity Recognition techniques to 

extract information about safety accident [91,105], equipment and labor information [106,107], and 

relations [108,109].

Currently, executing separate dedicated models on the site image could extract the object, activity, 

and interaction information, achieving the goal of semantic information extraction [31]. However, 

executing separate models is time-consuming, and separate models may lack the consistency of the 

entity label since they are trained on different datasets. Also, extracted semantic information by 

separate models lacks visual connections between the recognized labels with image regions. Visual 

connection is vital because the semantic information extracted in labels cannot provide enough 

information for analysis or decision-making [5,22,95,110]. For example, to track the activity of 

equipment or labor, it is required to know the object's location so that its trajectory can be generated 

and analyzed [61,111,112]. Sometimes, an activity cannot be identified as unsafe for safety 

management unless this activity happens in some restricted areas [31]. This means providing the 

location of the object and its activity is required [97,113]. Therefore, combining object detection and 

semantic information extraction into an integrated model is a promising way to provide richer and 

more integrated information for downstream analysis and decision making. 

Based on the above analysis, this section proposed a novel vision-based method by integrating 

object detection, image captioning, and data post-processing to extract semantic information for the 

construction machine images with the visual connection. This method contains a novel process to 

integrate object detection and image captioning to extract information about object categorization and 

location, object activity, and interactions between objects. A novel attention mechanism added to the 

integrated model achieves the visual connection between the object detection results and the extracted 

semantic information. This study provides a novel integrated model that will extract semantic 

information with visual connection for construction images and videos. The extracted information 

could enhance the visualization ability of current methods by providing object categorization, location, 

and activity information. It could also facilitate object tracking and safety management. For example, 

provided the location and activity information, the activity trajectory of the equipment could be 

generated, and the unsafety behavior could also be analyzed and determined.
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3.2 Methodology

Aiming to extract the related semantic information (objects, activities, and interactions), This 

section combined an image object detector and a language decoder as an integrated method. Figure 4

presents the overall architecture of this method. The proposed method is an extension of a typical 

encoder-decoder-based image captioning method. In the typical method, the encoder is a CNN that 

extracts the useful semantic feature from the whole image. The decoder then predicts the description 

words of the image according to the image features.

The input is the original image for the method proposed in this study. The object detector –

encoder – will output the object location, category, and feature maps for the whole image and object 

regions. The feature maps are used as the inputs of the language decoder. The decoder is a Recurrent 

Neural Network (RNN) built upon Long Short-Term Memory (LSTM) cells and the attention 

mechanism. In essence, the LSTM cells utilize the feature maps of the image to predict the caption 

words, with the help of an attention mechanism providing the correspondence between the input 

object features and the output words (i.e., the Attention Maps). In the last step, this study post-

processed outputs, including the object location, object category, attention maps, and caption words, 

to make the outputs more intuitive and integrated, which is presented in the right panel of Figure 4. 

The detailed introductions of each module are described later in the following subsections.

Figure 4. Overall flowchart of the proposed method.
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3.2.1 Feature Extraction

This study utilized the Mask R-CNN [43] as the image decoder to complete two tasks: (1) 

recognizing the objects in the image by performing object detection and instance segmentation; and 

(2) extracting the image feature and object feature based on recognized objects in step one. The reason 

for choosing this architecture is that based on our prototype experiments, this study found that the 

Mask-RCNN provides a better performance boost for the whole model than other object detection 

architectures.

Mask R-CNN is an extended version of the original Faster R-CNN [41]. To complete the object 

detection task, the original Faster R-CNN model has a category classification head and a bounding box 

regression head for each Region of Interest (RoI). The Mask R-CNN adds a head parallel to the existing 

heads to predict the instance segmentation using a Fully Convolution Network (FCN) [44].

Figure 5 presents the detailed architecture of the proposed encoder. The encoder utilizes the 

ResNet-101 network as its backbone to extract the feature map from the input image. ResNet-101 is 

an image classification network originally trained on the ImageNet dataset [114] and is wildly utilized 

for other tasks. This study also utilized the five convolution stages in the ResNet ('Res1' to 'Res5') as 

the feature extractor in this encoder. In panel A of Figure 5, the "7x7, 64" denotes the filter size and 

depth of the convolution process. "Res2" denotes ResNet's second stage, and so forth. "x3" denotes a 

stack of three consecutive convolution layers, and so forth. The backbone could get the image features 

after the final convolutional layer of the 4-th stage and 5-th stage, which we call C4 and C5, respectively. 

The C5 feature is sent directly to an average pooling layer and a fully connected (FC) layer to get the 

feature vector for the whole image, which will be sent to the decoder later.
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Figure 5. The architecture of the Mask R-CNN-based Encoder. 

The C4 feature is sent to the Region Proposal Network (RPN) on the other path. The RPN utilizes 

the C4 feature map to predict a set of object region proposals with a broad range of scales and ratios. 

The RPN is a small network that slides over the convolutional feature map. RPN has a classifier and a 

regressor. At each sliding location, the classifier calculates the objectiveness score – the probability of 

a region having a target object; and the regressor calculates the proposal coordinates. Regions with 

high objectiveness scores will be selected as the Regions of Interest (RoIs) and transferred to 

subsequent processes with coordinate values.

After cropping the object features on the C4 feature map based on the coordinates of each RoI 

using the RoI Align layer, another 'Res5' convolution stage further processes the object features to 

shrink the feature size and extract more semantic meaningful features. At this point, the output heads, 

labeled as panel C in Figure 5, could provide the outputs as a usual Mask R-CNN models after some 

simple pooling, deconvolution, and fully-connect layers.

Moreover, the loss function of the Mask-RCNN-based Encoder is defined as:

3-1

3-2
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3-3

3-4

where:

are the total number of classes, and mask pixels,

is the predicted and ground truth class,

is the binary indicator if the label is correct,

is the balancing weight, whose default value is 10,

is the smooth L1 loss function,

are the predicted and ground truth bounding box coordinates for class ,

are the coordinates values,

are the predicted and ground truth mask pixels,

is the binary indicator if the label is correct

3.2.2 Image Captioning-based Decoder

In this method, the object detector will be the encoder to extract the image features. The encoder 

will extract both image features of the whole image and local objects:

3-5

where the is a d-dimension feature vector for the whole image and the is a d-dimension feature 

vector for the object region proposal.
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Figure 6. The sequence of the decoding process and the detail of a decoder cell.

As shown in Figure 6, two-layer LSTMs with an attention cell have been adopted as the decoder, 

namely the Attention LSTM and the Language LSTM. The Attention LSTM layer further processes the 

image feature. It also helps the attention cell calculate the visual attention on the object zones, which 

later becomes the connection between the image captioning words and detected object zones. The 

input of the Attention LSTM layer at each time step is a concatenation of the output of the previous 

Language LSTM layer , the feature vector of the whole image , and the embedding vector of the 

previous predicted word (the word embedding is learned by random initialization without any 

pre-training): 

3-6

These inputs give the Attention LSTM layer the related information about the Language LSTM's 

current state, the feature map of the whole image, and the memory of the generated caption words so 

far. 

After getting the hidden state of the Attention LSTM by:

3-7

an attention cell is followed to calculate a normalized attention weight on each of the object 

zone features as follows:
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3-8

3-9

where the , , and are trainable parameters. Then the attended object features, which is 

the weighted summation of each object feature, could be obtained:

3-10

The Language LSTM layer takes the concatenation of the attended object feature and the output 

of the Attention LSTM layer as the input. It outputs the hidden state of the language model:

3-11

3-12

A linear layer with a SoftMax activation function added upon the Language LSTM takes these 

outputs and predicts the conditional distribution over possible output words at time step , given the 

generated sequence of words so far:

softmax 3-13

Provided with the ground truth caption words , this study updates all the trainable parameters 

(noted as ) in the captioning model by minimizing the following cross-entropy (XE) loss with 

stochastic gradient descent learning:

3-14

3.3 Implementations, Experiments, and Results

3.3.1 Experimental Setup

This study trained the detecting encoder and the captioning decoder using two datasets. The 

metadata and examples of datasets are provided in Table 1. To ensure the robustness of the trained 

model, this study include as many as possible data instances from different scenarios (environment, 

view of angle, weather, etc.). For training the encoder, this study utilized the dataset for Moving 

Objects in Construction Sites (MOCS) [115]. The MOCS dataset contains 41,668 images collected from 
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174 different construction sites and 13 object categories. This study utilized the training set (19,404 

images) and the validation set (4,000 images) to pre-train the encoder. 

For the captioning decoder, this section annotated 6000 images selected from the Alberta 

Construction Image Dataset (ACID) with natural language descriptions [116]. This annotated dataset 

is referred to as the ACID-C dataset. For each image, this study collected two to three captions. 

Captions corresponding to the images are then pre-processed by tokenization. Tokenization splits the 

sentence into a list of single words and drops all the punctuations. Next, at the beginning and the end 

of the token list, this method adds '<start>' and '<end>' words to indicate the start and end of a 

sentence. Finally, a word dictionary is built that includes all the words that appear in the caption 

corpus and indexes them by numbers. These processed 6000 data instances are randomly divided into 

training and validation sets according to an 8:2 ratio.

Table 1. Data sample for the training datasets.

Module Training Image Visualized Labels Labels Categories
Total 

Images

Encoder

{…
'bbox': 
    [279.0, 
    398.0, 
    252.0, 
    124.0], 
'category_id': 
10,
'segmentation':[…]
imgid:608,
…}

Worker 

Static Crane 

Hanging 

Head 
Crane

Roller

Bulldozer

Pump Truck 
Concrete 

Mixer

Pile Driving

19404(Train)

4000(Val)

Decoder N/A

{…
raw:
   "grader is 
driving on the 
road by a man"
    imgid:6,
sentid:10,
…}

N/A
4800(Train)

1200(Val)

3.3.2 Implementations

The experiments ran on a workstation with Xeon E5-2678 CPU and GeForce RTX 2080 Ti GPU. 

The software environment is configured as ubuntu 18.04, Python 3.8, PyTorch 1.7.1, CUDA 11.0, 

Detectron2, and other related packages.
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This study trained the encoder with an initial learning rate of 0.02 and a batch size of 8 images 

per batch. The learning rate decayed at step 90000 to and then decayed to at step 

125,000. The point in this figure is the raw record, and the lines are Locally Estimated Scatterplot 

Smoothing (LOESS) of the raw values. The training process was terminated after 155,000 steps since 

there was no significant loss value reduction and validation performance improvement. This study

then trained the decoder with this pre-trained encoder. The models are trained using the cross-entropy 

loss. The number of training epochs is set to 30. The learning curve about the loss value and learning 

rate for both encoder and decoder are shown in Figure 7. The total loss of the encoder is calculated as 

Equation 3-1 to 3-4, and the total loss of the decoder is calculated as Equation 3-14.

Figure 7. The learning curve of the decoder.

As for data post-processing, This study built a parser based on Python and utilized the NLP 

package spaCy and Sng_Parser [117] to accelerate the coding process.

3.3.3 Evaluation Metrics

This study uses the following automatic NLP evaluation metrics to evaluate the performance of 

the semantic information extraction as an image captioning task and the language quality of the 

generated captions. For all these metrics, a higher score indicates better performance. 

Bilingual Evaluation Understudy (BLEU)

The overlap between the predicted single word or n-gram (sequence of n-adjacent words) and a 

collection of reference sentences is measured by BLEU [118]. The semantic meaning of the words is 

not taken into consideration by BLEU, which solely assesses word and sentence length matches. The 
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BLEU is divided into four types: BLEU-1, BLEU-2, BLEU-3, and BLEU-4, with the number indicating 

the number of words used up to n-grams.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

The recall score of the produced sentences corresponding to the reference phrases is measured 

using n-grams in ROUGE [119]. ROUGE-L, which computes the Recall and Precision of the longest 

common subsequences between the candidate and reference phrases, is the most often used variant 

in picture captioning.

Consensus-based Image Description Evaluation (CIDEr)

CIDEr [120] measures the co-existence frequency of the n-grams in both candidate and reference 

sentences after converting the terms in both phrases to their root forms. The term-frequency-inverse-

document-frequency (TF-IDF) method was used for the measurement. In NLP, the TF-IDF is a 

commonly used statistical approach. It assesses the significance of a phrase inside a text in the context 

of a collection of documents.

Semantic Propositional Image Caption Evaluation (SPICE)

SPICE [121] score is measured by comparing the scene graph tuples of the candidate sentences 

to those of the reference sentences and calculating the degree of similarity. The scene graph contains 

the various objects, their qualities, and the relationships that were derived from the text.

3.3.4 Experimental Results

Table 2 provides the evaluation results of the image captioning task of the decoder and other 

benchmark models. The inference process speeds around 4.25 frames per second on a single RTX 2080 

Ti GPU. Managers could utilize better hardware or conduct parallel computing to achieve real-time 

operation. The proposed model has a validation performance on the evaluation metrics with BLEU-4 

of 0.36, ROUGE of 0.57, CIDEr of 1.84, and SPICE of 0.41. The performance of the image captioning 

implementation in the construction community [104] has also been reported in Table 2 as benchmarks 

1, 2, and 3. These models are in similar encoder-decoder structures but without attention mechanism 

and the visual connections to the original input image. These benchmark models are trained on a 

customized dataset for on-site workers and have the highest CIDEr score of 1.61 and SPICE of 0.36.
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MS COCO [122] is a large computer-vision community dataset that provides an image captioning 

dataset for real-life scene images. It also provides the performance of leading implementations in the 

computer vision community. On its leaderboard [123], the top two implementations are 

TencentVision [124] and panderson@MSR/ACRV [55]. The evaluation results of TencentVision are 

CIDEr-1.12 and SPICE-0.21; and the evaluation results of panderson@MSR/ACRV are CIDEr-1.18 

and SPICE-0.22.

For all the metrics, a higher score means better performance. The output range for BLEU, 

ROUGE, and SPICE is , and range for CIDEr is . A score close to zero indicates poor overlap 

between predictions and references for BLEU and ROUGE. A score close to one indicates a strong 

overlap between predictions and reference words. CIDEr and SPICE are originally designed for image 

captioning tasks with semantic match; a higher score indicates higher semantic similarity between 

predictions and references. Though the dataset used in our study is different from other benchmarks, 

the results suggest that our model has a comparable ability to extract semantic information from 

images as other state-of-arts equivalents.

Table 2. Model performance of the image captioning evaluation metrics.

Model

(Dataset)
BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE CIDEr SPICE

Proposed *

(ACID-C)
0.61 0.52 0.44 0.36 0.57 1.84 0.41

Benchmark 1

(a dedicated dataset [104])
0.52 0.43 0.36 0.32 0.50 1.09 0.36

Benchmark 2

(a dedicated dataset [104])
0.66 0.58 0.52 0.48 0.65 1.55 0.35

Benchmark 3

(a dedicated dataset [104])
0.68 0.60 0.54 0.49 0.62 1.61 0.35

TencentVision [124]

(MS COCO[122])
0.79 0.64 0.49 0.36 0.57 1.12 0.21

panderson@MSR/ACRV [55]

(MS COCO[122])
0.80 0.64 0.49 0.37 0.57 1.18 0.22

The evaluation of the decoder also demonstrated slightly lower BLEU scores and better CIDEr 

and SPICE scores. The BLEU metric is based on strict matches of the words and sentence length 
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between the predicted and reference captions. Previous investigations have reported that BLEU 

algorithmic variations "don't reflect either grammaticality or meaning preservation very well" [125]

and "don't map well to human judgments in evaluating NLG (natural language generation) tasks" 

[126]. CIDEr and SPICE are originally designed for image captioning tasks, adding semantic match 

and word mapping. Thus, CIDEr and SPICE are more suitable for evaluating the ability to extract 

semantic information from images. Our decoder performs well on CIDEr and SPICE, and its results 

suggest that it has a good ability to extract semantic information from the site images. 

3.3.5 Image Results Demonstration

Figure 8 provides samples of the retrieved semantic information as captions for the images. It also 

provides a visualization of the parsed model output for three test site images in Figure 9. These three 

sample images are never used in the training process of this model. The object detection and instance 

segmentation results are provided in the first row. The second row provides the predicted image 

description of the image. The third row provides the visualized attention mapping for the first object 

word in the caption with the image object zone. The connected object zone is drawn as a red square 

in the image. The fourth row shows the post-processed semantic information in tabular format. And 

the fifth row provides the scene graph constructed for the semantic information.

The first column of Figure 9 shows that the encoder has successfully recognized the excavator 

and truck in the image. The decoder has extracted the semantic information as a caption: "an excavator 

is excavating dirt while a dump truck is parking beside". The attention map has connected the object 

word "excavator" with the object region of the excavator recognized by the encoder. The data post-

processing has identified the entities "excavator", "dirt", and "dump truck" in the caption. The rich 

semantic information represented as triplet "excavator-excavating-dirt" is also extracted successfully. 

Finally, the graph formatted semantic information could be extracted as shown in the fifth row. The 

second and third columns also show that our system has successfully extracted the semantic 

information in other test images.
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Figure 8. Examples of the semantic information extracted as a caption for construction 

images.

Figure 9. Visualization of the model output, including the encoder and decoder outputs, 

the visualized attention map, and the final output in tabular and graph formats.
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3.4 Discussion

3.4.1 Feasibility of Encoder 

This study evaluates the object detection and instance segmentation performance on the MOCS 

validation set of the encoder to indicate the feasibility of the encoder. This study utilizes Mean Average 

Precision (mAP) to evaluate the performance of the object detection and instance segmentation [54].

The evaluation metric is based on average precision (AP). Given a certain level of confidence 

value , the integrates the precision scores at different recall levels :

3-15

and the is average of values over all N classes:

3-16

Finally, this study utilized the following metrics to conduct the evaluation:

3-17

The mAP performance of the encoder can be found in Table 3. The bounding box mAP of the 

encoder on the MOCS validation dataset is 54.1%. It also reports the evaluation scores from the 

benchmark models from [115]. The benchmark models for object detection are Mask R-CNN, Faster 

R-CNN, YOLO-v3, and RetinaNet, whose mAP scores are 50.8%, 50.6%, 39.0%, 50.0%, respectively. The 

mAP score of the proposed encoder for instance segmentation is 40.6%. The benchmark models for 

instance segmentation tasks are Mask R-CNN, MS R-CNN, and SOLO-v3, whose mAP scores are 

43.18%, 42.86%, and 43.64%, respectively.
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Table 3. Evaluating the mAP performance for the object encoder.

Type Model mAP(%)

Bounding Box Proposed Model

(Mask R-CNN based)

54.1

Faster R-CNN 50.6

YOLO-v3 39.0

RetinaNet 50.0

Segmentation Mask Proposed Model

(Mask R-CNN based)

40.6

MS RCNN 42.9

SOLO-v3 43.6

The results show that our encoder has a slightly better performance on object detection and a 

slightly lower performance on instance segmentation than other benchmark models. The evaluation 

indicates that our encoder could correctly extract the visual features of the object regions. 

3.4.2 Failure Cases

Table 4 provides several false inference samples in the validation process. There are two main 

types of error. The first type of error is the false recognition of construction materials. For example, in 

the first sample in Table 4, the model recognizes the material in the backhoe loader's bucket as dirt 

instead of rock. In the second sample, the construction material here is snow, but the model 

recognized it as soil. The second type of error is false recognition of the construction equipment. For 

example, in the third sample in Table 4, the model recognized the object as a wheel loader by mistake, 

which should be a dozer. In the fourth sample, the model mistakenly recognized a steel box as a dump 

truck. In the fifth sample, the model made two types of mistakes; it recognized a pump truck as a 

mobile crane by mistake and failed to recognize the construction material that the pump truck was 

working on.
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Table 4. Examples of failure cases in the validation process.

Index Image Caption

1 a backhoe loader is excavating dirt

2 a grader is grading the soil ground

3 a wheel loader is driving on the ground

4 an excavator is dumping dirt into a dump truck

5
a concrete mixer truck is dumping cement while a mobile 

crane is transferring

The first type of error may come from the absence of regional material features. In the 

implementation, the encoder was trained on a dataset that only labels the heavy equipment. So, the 

detailed visual feature is only for equipment. When inferencing the construction material, the decoder 

has to look at the whole image feature, which is less detailed. To solve this problem, further studies 

could prepare a dataset that labels the construction material. This will improve the accuracy of 

material recognition. The second type of error may come from a confusing angle of view or over-

similar objects. Improving the number of data instances of the training dataset with more variations 

should solve this problem.
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3.4.3 Discussion of Explainable AI

Though deep learning has demonstrated its potential to automate industries, achieving or 

surpassing human performance in recognition precision for certain tasks, it is often identified as a 

"black box" or opaque system. As the "black box" paradigm remains in deep learning, existing deep 

learning-based methods merely provide clues or explanations for why specific results are generated or

the decisions are made. [127] This limitation occasionally generates absurd results and undermines 

users' faith in using deep learning models to make important decisions. Thus, interpretability is 

essential for users to understand, trust, and effectively manage the deep learning models for many 

crucial applications [128], especially for making life and death decisions such as construction safety 

monitoring and management.

While the proposed method tries to extract semantic information from construction imagery with 

adequate accuracy, it also extends the interpretability toward the explainable artificial intelligence 

(XAI) goal. In the image encoding process, the proposed method did encode not only the entire image 

feature but also the image feature based on detected object zones. This makes the decoder could utilize 

a specific region of data from the whole image. By monitoring which region of data is utilized, users 

could understand what object data is utilized. During training, the attention mechanism in the decoder 

generates an object-word relevance loss, which digitizes whether the generated word considers the 

object zones in the input image well. With more and more training steps executed, the model could 

generate better outputs considering the object regions. During the testing or implementation, the 

attention mechanism generates weights for each encoded object zones, indicating the relevance 

between the object zone and the extracted word in the pair. By providing the weight for the object-

word pair, this model provides insight into the utilization of inputs towards the decision-making, at 

least on some intuitive level.

This method did not solve all the interpretability problems of the deep learning models. For 

example, it cannot provide an intuitive explanation of the weights in the CNN-based visual feature 

extractor. More studies are needed to improve the interoperability of deep learning models.

3.4.4 Methodological and Practical Contributions

This proposed method has demonstrated its ability to extract semantic information with visual 

connections from construction imagery. It has several methodological contributions:
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(1) This method proposed to utilize regional visual features as the input for the image 

captioning-based decoder. The regional visual feature is extracted by the object detector-

based encoder. This regional visual feature integrates object detection and image 

captioning. At the same time, it also improves the performance of the information 

extracting precision.

(2) This method proposed an attention mechanism in the decoder. This module achieves an 

explicit visual connection between the extracted information and the image region. The 

visual connection extends the extracted semantic information with location information. 

Thus, it could improve the visualization and enable more sophisticated management 

tasks.

(3) This method improves the explainability of the vision-based models. The explainability 

may enable an intuitive representation of the calculation mechanics inside the deep 

learning model and improve the utilization of deep learning models in construction 

management.

Besides the methodological contributions, this proposed method also has the following practical 

implications:

(1) This method could improve the visualization and documentation in construction 

management. The visual connection ability enables displaying the related image zone for 

extracted information. This provides an intuitive visualization of the extracted semantic 

information. The extracted semantic information could serve as enriched metadata to

simplify the construction image documentation process.

(2) This method could improve the current practice of vision-based monitoring and 

management by providing richer semantic information and visual connections. The 

extracted semantic information could provide an integral information package for 

downstream construction management applications. This information enables more 

complex decision-making processes and management tasks. For example, to monitor the 

usage of equipment on-site, managers could simply retrieve and analyze the activity and 

combine it with the time tag in the image metadata.
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3.4.5 Limitations of the Proposed Method

This study proposed an integrated system architecture that extracts semantic information with 

visual connections from site images for the construction community. The limitations of the proposed 

method are illustrated as follows:

(1) This study implemented and validated the method for construction images. Though the 

feasibility of this method has been confirmed, applying the proposed method to

construction videos still needs minor modifications to datasets and the input module of 

the proposed architecture. 

(2) Though our model performs better than existing methods, it may fail on several 

conditions, such as rare view-of-angle and confusing construction materials. Moreover, 

there may be a mismatch between the image regions and caption words. Since there is no 

ground truth of the visual connection in the training dataset, fine-tuning the visual 

connection is tricky and difficult. Extending the data instances of the training dataset 

should solve this problem.

(3) The proposed model is not fully interpretable. For example, the explainability of the CNN-

based encoder is still low. Future research in both the computer science and construction 

management communities is still needed to further extend the explainability of deep 

learning models.

3.5 Conclusion

This section presented an integrated information extraction system for on-site images, extracting 

semantic information such as objects, activities, and interactions. It contains three modules: (1) the 

object detector-based encoder, which detects the object in the image and extracts the feature maps of 

the image and objects; (2) the image captioning decoder, which extracts the semantic information as 

a natural language sentence according to feature maps; (3) the post-processing module, which parses 

the output sentence into scene graph and maps the recognized objects with the object zones of the 

image. The extracted information has both advantages of rich information and visual connections. 

Our implementation's evaluation results show good performance on various tasks such as object 

detection and semantic information extraction via captioning. 
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The contributions of this study are: practically, (1) this method could improve the visualization 

and documentation in construction management; (2) this method could improve the current practice 

of vision-based monitoring and management by providing richer semantic information and visual 

connections; methodologically, (1) this method uses regional visual feature for better recognition and 

information extraction performance, (2) this method designs an architecture which could provide a 

visual connection between the image and extracted information, (3) the architecture of the proposed 

method provides a certain level of explainability.
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Chapter 4

Automatic Safety Hazards Identification and Reasoning

4.1 Introduction

Construction sites are hazardous places with various safety risks that pose a serious threat to 

workers. In the United States, the construction industry reported over 1000 deaths and 75,400 nonfatal 

injuries in 2020 [2]. The top three categories of fatal hazards are falls and slips, transportation incidents, 

and inappropriate contact with objects and equipment [2]. The frequency and severity of these 

accidents highlight the urgent need to improve safety measures in the construction industry.

Many of these hazards can be prevented by enhancing safety management and minimizing 

exposures that may contribute to hazards and affect the health of construction workers. Behavior-

based safety (BBS) is effective in promoting safe behavior. BBS is an approach to occupational safety 

that focuses on changing individual behaviors to reduce workplace accidents and injuries. However, 

existing BBS methods in the construction industry have limitations such as being manual, time-

consuming, and subject to observer bias, thus making them inefficient and error-prone [3–5]. These 

disadvantages can be attributed to the tedious and labor-intensive nature of manual observation and 

the difficulties in monitoring all workers continuously [6].

To address these limitations and automate the inspection and observation of construction sites, 

computer vision (CV) technologies have been increasingly adopted in the construction industry [5]. 

CV is a subfield of artificial intelligence that enables computers to process, analyze, and understand 

images and videos, thus allowing for the recognition and classification of objects, people, scenes, and 

events [14]. By leveraging CV, methods have been developed to recognize hazardous postures and 

actions [8], detect missing personal protective equipment (PPE) [129], and automate construction 

safety management [17].

Although existing methods yield satisfactory results, there are limitations to using CV alone in 

safety management. For example, CV methods can detect only simple repeating objects or activities 
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[5]. In contrast, the traditional method of BBS prefers detecting complex patterns and relationships of 

worker behavior and then identifying potential safety hazards. Furthermore, CV methods cannot 

leverage domain knowledge regarding safety regulations and guidelines, thus limiting their ability to 

infer if the behaviors and interactions presented in the image follow the safety regulations. Recent 

advancements in natural language processing (NLP) technologies have enabled computers to process, 

understand, and infer natural text languages [15]. NLP can aid in extracting and evaluating semantic 

meanings from safety regulations and guidelines, thereby providing valuable domain knowledge for 

assessing the safety of complex construction activities.

In this section, the author proposed a framework for construction safety management by 

integrating CV and NLP technologies to automate the safety hazard identification and reasoning in 

construction sites. The safety hazard identification could generate classifications of a behavior about 

whether it is safe or unsafe, while the hazard reasoning provides the reason of an identified unsafe 

behavior. The framework comprises two modules: (1) an image processing module based on CV and 

dense image captioning technologies to recognize behaviors and interactions in images, and (2) a text 

processing module based on NLP technologies to extract and evaluate the semantic similarities of 

safety regulations and guidelines. The proposed framework can improve safety management in the 

construction industry and minimize the occurrence of fatal and nonfatal injuries.

4.2 Methodology

To extract semantic information regarding objects, activities, and interactions and link it to the 

domain knowledge base for hazard causes and identification, this study combined dense image 

captioning and NLP within a single framework. A graphical overview of the modules and submodules 

used in the proposed framework is presented in Figure 10. The first module transforms image data 

into text data. It first recognizes several target regions inside the site image. These image regions often 

contain important objects for safety management, such as workers, PPE, and tools. Subsequently, this 

module recognizes the semantic information inside each region and describes the information in a 

natural language caption format. The second module performs safety hazard reasoning and 

identification by measuring the semantic similarity between the region captions obtained from the 

first module and domain knowledge base. This module first groups the captions belonging to a worker 
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and then uses semantic similarity to determine whether the actions performed in the image follow the 

safety rules.

Figure 10. Main modules of the proposed method.

The computational flow of the proposed framework is illustrated in Figure 11. Figure 11a and 3b 

correspond to the first module and second module, respectively. The details regarding each part and 

the calculation processes are presented in the following subsections.

Figure 11. Computational workflow of the proposed method.
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4.2.1 Visual Recognition and Description Generation

In this subsection, the calculation process illustrated in Figure 11a is described. An image of the 

construction site is taken as input. After processing this image, semantic information is extracted as 

text descriptors of multiple subregions of the image. The image data is generally represented using a 

three-dimensional (3D) tensor:

(4-1)

Feature extraction: The image data are first forwarded to a convolutional neural network 

(CNN)-based feature extraction network to obtain the image feature map. CNNs are a type of neural 

network designed to process grid-like input and have been used to process image data [38]. The CNN 

breaks down the grid data into smaller feature maps to reflect the visual properties of the image. The 

deeper the layer in the CNN, the higher the representation level of the image feature in the layer’s 

output. For instance, shallow layers of the CNN identify lines and edges in the image when processing 

images, whereas deeper layers identify shapes, such as the overall shape of a safety helmet. 

(4-2)

where is the visual feature map, is the number of channels of the feature map, and 

are the height and width of the feature map.

Region proposal: The extracted image feature map is forwarded to a region proposal network 

(RPN) to generate target regions in the image. RPN is a CNN proposed by Ren et al. [41] and has been 

used for object detection. RPN uses the sliding window approach, wherein the network generates 

multiple subregions of the input image with different locations, sizes, and aspect ratios. These 

subregions have their counterparts called anchor boxes on the extracted feature map. The RPN then 

uses these anchor boxes to predict whether each anchor box contains an object of interest and, if so, 

adjusts the size and position of the bounding box to fit the object more accurately. This is accomplished 

using a set of regression coefficients learned during training:

(4-3)

After obtaining the subregions’ coordinates and scores , the final target subregions are filtered

out by applying a threshold score, whereas the image feature vectors of the subregions are obtained 

using another small CNN:

(4-4)
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Dense captioning: The region features are forwarded to a long short-term memory (LSTM)-

based recurrent neural network (RNN) to realize semantic information recognition and extraction. 

Figure 12 illustrates how the semantic information is recognized and how the region caption is 

generated in the LSTM cells. The LSTM cell performs several calculations to encode the necessary 

information as the hidden state. The hidden state transfers the information between cells, meaning 

that the previous cell’s hidden state is used to calculate the hidden state of the current time step.

Figure 12. The region caption generation process.

The previous hidden state and previous output word are inputted into the LSTM cell at the 

current time step. Caption words are represented by one-hot vectors. The initial hidden state is the 

region feature vector, and the initial input word is a special word token “<start>” indicating the 

start of the captioning process:

,

,

,

,

(4-5)

where is the timestep in the LSTM decoding process, is the hidden state of the decoder at 

time step t, is the input of the LSTM at time step t, is the vector representation of the output word 

at time step t, and is the feature vector of an image subregion.

As this method is a dense captioning application, all the region features are forwarded to the 

LSTM cells to obtain the caption text for each region.
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4.2.2 Caption Grouping

In the grouping process, captions are organized into separate groups on the basis of which worker 

the caption is describing. Because multiple workers may be present in an image, the captions may be 

disordered and not properly grouped by the workers. To resolve this issue, a grouping method is used 

to assign captions belonging to the same worker into a single group. This helps ensure that all captions 

describing a particular worker are organized together, thus making it easier to analyze and identify 

the safety status. In this study, overlap measurement was used as the grouping method.

First, the main captions that describe the worker are extracted. The data annotator is required to 

describe the worker in the first word of the main captions; this is achieved by filtering out captions 

that begin with the word “worker.” Subsequently, to calculate the intersection area, each of the 

bounding boxes related to the remaining captions is compared with the main bounding boxes. This 

allows the calculation of the intersection ratio as follows:

4-6

An overlap ratio threshold is used to determine which main caption group the current caption 

belongs to. In this study, the ratio threshold was set as . Accordingly, when a caption box had an 

overlap ratio larger than with multiple main boxes, the caption was assigned to the main group 

that has the highest overlap ratio. In contrast, when a caption box had no overlap ratio larger than 

with any main boxes, the caption was regarded as redundant.

4.2.3 Word Embedding and Sentence Embedding 

As illustrated in Figure 11b, the NLP-based hazard reasoning and identification process includes 

steps called “static word embedding” and “dynamic word embedding.” The word embedding steps are 

essential for the second module as they enable understanding the semantic meaning. 

One-hot word vectorization: Traditionally, machine learning (ML) algorithms utilize one-hot 

vectorization to represent words. One-hot vectorization is a method used for encoding categorical data 

as numerical data that can be used as input to ML models, such as words in a lexicon. This method 

creates a new dimension for each word in the vocabulary and assigns a binary value (1 or 0 to 

respectively indicate the presence or absence of the word. This method produces a high-dimensional 

and sparse representation of the words, with most values being zero. The one-hot vectorization of 
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several words and the two-dimensional and 3D visualization of some of the word vectors are illustrated 

in Figure 13a. This method is simple and efficient for encoding categorical data but cannot represent 

the semantic relationship between words. As shown in Figure 13a, all the word vectors are orthogonal 

to each other, providing no clue regarding the relationship between words such as synonyms and 

antonyms. 

Figure 13. Comparison between one-hot word vectorization and word embedding.

Word embedding: In contrast to one-hot vectorization, where word vectors are orthogonal, the 

word embedding method represents words as continuous-valued vectors in a low-dimensional space 

where words that have similar meanings are spatially close together. The vector representation for 

words is typically trained using large datasets and can capture word context as well as word 

relationships. A common word embedding training method is Word2Vec [130], which produces a 

vector space with a dimensionality of several hundred; each unique word in the corpus is allocated a 

matching vector in the space, as illustrated in Figure 13b. Thus, each dimension in the vector space 

can be used to measure a semantic or syntactic property of the word, resulting in semantically similar 

words having close representation vectors.

Static word embedding: Word embedding based on Word2Vec is a type of static word 

embedding. Word vectors do not change when used with a different language corpus, and the same 

word is always represented by the same vector no matter which context it appears in, hence the name 
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“static.” Word vectors are typically pretrained on a large corpus of text and then used as a fixed input 

for downstream tasks. The use of this type of word embedding is illustrated in Figure 14a. The word 

embedding lookup table is obtained through the training process. Each time a word vector is required, 

the program indexes the lookup table to query the corresponding word vector. In other words, 

embeddings do not adapt to the specificity of sentences or datasets for which the model is being called. 

Thus, static word embedding represents the semantic characteristics of a word in a large context 

scenario and may not provide an accurate representation of the semantic relationship in the current 

context:

4-7

where is the one-hot vectorization of the word in a sentence, and is 

the static word embedding matrix containing static word vectors in it.

Figure 14. Comparison between the static word embedding method based on Word2Vec 

and the dynamic word embedding method based on the Transformer network.

Dynamic word embedding: Dynamic word embedding provides contextualized word vectors 

that adapt to specific sentences. Dynamic embedding uses more advanced models to create 

representations that change depending on the context. Several dynamic word embedding models are 

available, such as BERT [131], universal sentence encoder (USE) [132], and Sentence-BERT [133]. 

These models are based on the Transformer architecture, which is a type of neural network proposed 

by Vaswani et al. [134]. As illustrated in Figure 14b, dynamic word embedding is achieved using a 
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Transformer-based language encoder. Generally, the input of the Transformer-based encoder is the 

static word embedding together with the positional encoding that gives the position of a word in a 

sentence. The Transformer-based encoder is trained on a large language corpus to learn the 

parameters for encoding word embeddings. During encoding, the self-attention mechanism allows the 

model to focus on certain parts of the input while processing it, thus enabling the model to understand 

the context in which words appear and generate better context-sensitive embeddings for a given 

sentence input:

4-8

where is the static word embedding of the word in a sentence, and 

is the static word embedding matrix containing static word vectors in it.

After word embeddings for the words in a sentence are generated, the vector representation of a 

given sentence can be obtained by applying average pooling on the word vectors:

4-9

4.2.4 Universal Sentence Encoder

In this study, the USE [132] was used as the dynamic sentence embedding tool because the USE 

exhibited better performance on the data and implementation in this study. However, the USE does 

not outperform other methods such as BERT and Sentence-BERT in all scenarios; future research is 

required to explore different embedding methods.

The USE is a pretrained DL model that can generate dynamic numerical embeddings of sentences. 

The USE is based on a deep neural network trained on various NLP tasks, such as sentiment analysis, 

paraphrase identification, and natural language inference. One of the key features of the USE is its 

ability to encode the semantic meaning of a sentence rather than just its surface-level syntax. This 

means that sentences with similar meanings are mapped to similar vectors even if they use different 

words or structures.

The USE is based on a deep neural network architecture called the Transformer, which was 

proposed by Vaswani et al. [134] for machine translation tasks and has since become a popular choice 

for various NLP tasks due to its ability to model long-range dependencies and capture global context.



51

In the USE architecture, the main component is the encoder, which is a multilayer Transformer 

network that processes the input sentence and generates a sequence of hidden states, one for each 

token in the sentence. The pooling layer then aggregates the hidden states into a fixed-length vector, 

which serves as the sentence embedding. The Transformer-based encoder is illustrated in Figure 15.

Figure 15. Architecture of the Transformer-based encoder.

The USE can generate text embeddings that can be used for various natural language 

understanding tasks. To achieve this, the model is trained using a multitask learning framework, 

where it learns to perform several tasks simultaneously. This approach helps the model learn a more 

general understanding of the input text, resulting in embeddings that can be used for multiple tasks. 

The multitask training process is illustrated in Figure 16.

Figure 16. Multitask training in the universal sentence encoder [132]; the tasks and task 

structures share the same encoder layers and parameters.
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In the question-answering task (Figure 16a), the model is trained to predict the correct answer to 

a given question according to the context provided. This task helps the model learn to understand the 

semantic relationship between questions and answers; this can be useful for other tasks that involve 

understanding the meaning of the text.

The Stanford Natural Language Inference dataset [135] comprises sentence pairs, where each pair 

is labeled as either entailment, contradiction, or neutral (Figure 16b). The model is trained to predict 

the correct label for each sentence pair; this helps the model learn to recognize semantic relationships 

between sentences. This task enhances the model’s ability to understand the meaning of the text at a 

sentence level; this can be useful for tasks that involve comparing sentences.

Furthermore, the model is trained on large-scale unsupervised data from sources such as 

Wikipedia and news articles (Figure 16c). This training helps the model learn general language 

understanding and construct a broader knowledge base. Pretraining on such data exposes the model 

to diverse topics, writing styles, and vocabulary, thereby enabling it to generate embeddings that can 

be used for a wide range of tasks.

The combination of the aforementioned tasks helps the USE learn a rich understanding of text 

semantics, thereby allowing it to generate embeddings that capture the meaning of the input text. The 

final pretraining of the USE benefits from this multitask learning approach, resulting in embeddings 

that can be used for tasks such as text classification, sentiment analysis, and semantic textual similarity. 

This is also the reason why a pretrained USE model was utilized as the dynamic sentence embedding 

model in this study.

4.2.5 Rule Compliance Checking

Rule compliance checking is performed by measuring the semantic similarity of the embedding 

vectors of captions and rules. As discussed in section 3.3, word embedding is a technique that 

represents words in a continuous, dense vector space, where each dimension represents some 

semantic or syntactic feature of the word. These vectors, which in the context of this study describe 

the region captions and the safety rule corpus, constitute a vector space that enables the evaluation of 

the semantic similarity between these two textual pieces of information. This process is illustrated in 

Figure 17 intuitively.
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Figure 17. Graphical illustration of rule compliance checking based on semantic similarity 

match.

Semantic similarity is a measure of how closely related two words, phrases, or sentences are in 

meaning. The most common approach used for calculating semantic similarity is to calculate the 

cosine similarity of the word embeddings of the words or phrases in query and target texts. Given the 

dynamic embedding vectors of both image captions set and rule sets 

, a similarity matrix:

(4-10)

can be obtained by calculating the cosine similarity:

(4-11)

Rule compliance checking can be regarded as evaluating the semantic similarity between image 

captions and related safety rules . The workflow of checking the compliance between region 

captions and related safety rules is displayed in Figure 17. First, the semantic similarity between each 

of the region captions and safety rules is calculated and a similarity matrix is obtained:

. (4-12)

Next, the semantic similarity vector is calculated by applying maximum pooling on the 

similarity matrix:

,
(4-13)
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After obtaining the similarity vector, the safety rules that must be complied with can be selected 

according to a given threshold . If the similarity score is larger than , then it can be selected 

as a safety rule that must be complied to:

. (4-14)

4.3 Experiments and Implementation

4.3.1 Data Preparation

This study prepared a dataset containing 2000 site images shared by Zhang et al. [81]. This study

labeled dense image caption labels on these images. Labeling guidelines and examples are provided in 

Figure 18. The target image subregions were categorized into four main classes: human, PPE, tool, and 

construction materials. For each region caption, this method developed a language template to guide 

the caption labeling process, which required subject, operation, and object described in the caption; 

attributes (e.g., color and number) and complement (e.g., environment information) were also 

encouraged to be described.

Figure 18. Dense captioning labeling guidelines and examples.

In addition, this study developed an online annotation task schema to assist the two-step labeling 

process, as shown in Figure 19. In the first step, the labelers were asked to draw bounding boxes for a 

set of target object categories. In the second step, after each bounding box was annotated on the image, 
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a query popped up asking the labeler to provide a text description for the drawn bounding box, 

providing semantic information for the subregion.

Figure 19. The annotation platform and schema.

As a result, more than 10,000 image subregions and captions were labeled. As illustrated in the 

“example” section of Figure 18, each image in the dataset has an bounding box annotation 

matrix indicating the subregion coordinates, where is the number of subregions. Each image also 

contains a list of strings, which contains captions indicating the captions of each of the subregions.

This study implemented the proposed method in a Python environment by using the workflow 

shown in Figure 20. In addition to the prepared and annotated image dense captions, this study

prepared several safety rule sets as presented in Table 5. In preparing these safety rules, we selected 

rules from OSHA codes related to the construction tasks in the dataset. The author also interpretate 

the rules in simple sentences in according to the requirement of current model. More complex rules 

need additional processing that will be discussed in the discussion part.

After labeling the caption dataset for the construction images, the dataset was randomly split into 

the training set and test set in the 8:2 ratio. The dense captioning model was then trained and fine-

tuned. This study constructed this model based on the proposed method by using Python libraries 

such as PyTorch [136] and TorchVision [137]. This method used a pretrained ResNet-50 network [138]

as the image feature extracting network since ResNet is a commonly utilized feature extractor. The 

captions and related rules sets were then fed into the NLP part for sentence embedding and semantic 

similarity evaluation. For the NLP, this study developed the module by using Python libraries such as 

HuggingFace Transformer [139] and spaCy [140]. Furthermore, this study used Word2Vec as the static 

word embedding method and the USE as the dynamic word embedding model.
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Figure 20. The implementation workflow.

Table 5. The safety rules used in this study.

Ruleset Activity Type Regulations

1 Height working 1. Worker should wear hardhat.

2. Worker should wear falling prevention device.

2 concrete 1. Worker should wear foot protection boots.

2. Worker should wear gloves.

3. Worker should wear safety hats.

3 bricking 1. Worker should wear safety helmet.

2. Worker should wear gloves.

4.3.2 Evaluation Metrics

Two objectives must be achieved when generating regional captions by using the proposed 

module: (1) generating well-localized target regions (in object detection tasks), and (2) generating 

accurate descriptions (in image captioning tasks).
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Mean average precision (mAP) is a common metric used to evaluate the performance of object 

detection models. It is calculated as the mean of the average precision (AP) for different threshold 

levels. The threshold is defined as intersection of union (IoU), which quantifies the overlap between 

the ground-truth (GT) detection bounding box and the predicted (PD) box:

4-15

An IoU threshold is used to distinguish the true positive (TP), false positive (FP), and 

false negative (FN) detections. For example, if , then a detected bounding box should have an 

IoU larger than 0.5 with the ground truth to be considered as a correct detection (i.e., TP). Based on 

the IoU threshold, for each image in the validation dataset, the model’s predicted bounding boxes are 

compared with the ground truth annotations to create a set of true positive (TP), false positive (FP), 

and false negative (FN) detections, and the precision and recall are calculated accordingly:

4-16

The AP is the mean of the precision at different recall levels:

4-17

mAP is the average of AP at different IoU thresholds:

4-18

Metric for Evaluation of Translation with Explicit Ordering (METEOR) [141] is a metric used to 

evaluate the quality of image captioning models. It is a variant of the BLEU [118] metric, which is 

commonly used in machine translation. METEOR is based on n-gram overlap between the predicted 

and reference captions but also considers synonyms and paraphrases by using a stemming algorithm 

and WordNet, a large lexical database of English. METEOR is a more sophisticated and robust method 

than BLEU for evaluating image captioning models as it considers synonyms, paraphrases, and word 

order. This study also used a METEOR threshold to distinguish TP, FP, and 

FN. In addition, this study used another score to measure the AP across all pairwise 

settings of IoU thresholds and METEOR thresholds .
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When conducting manual checking of the result of activity classification, hazard identification, 

and hazard reasoning, accuracy metric is used:

4-19

4.4 Results and Discussion

4.4.1 Model Predictions and Evaluation Results

Examples of the dense captioning output obtained using the model are shown in Figure 21; only

the target subregions with top 10 confidence are shown, and the regional captions are sorted according 

to the confidence rate. The evaluation results for mAP are presented in Table 6. The inference speed 

of the model was around 15 images/s on a single RTX 3080 Laptop GPU. The proposed model exhibited 

an of 51.3% when evaluating only the target-region localization. An et al. [115] reported a 

benchmark of 50.64% for a Faster R-CNN model (ResNet50) on the MOCS dataset. This means 

that the object detection performance of the model is feasible. When the METEOR threshold was 

considered, the proposed model yielded an of 41.2%.

The accuracies of activity classification, hazard identification, and rule reasoning were mannually

evaluated. Because the dataset has no label about hazard identification and reasoning, and the these 

processes in the proposed method is unsupervised, the author manually checked the output and 

compared them to human judgement using common Accuracy metric. As can be seen from the results 

presented in Table 7, the accuracy scores of the activity classification were 75%, 84%, and 93% for 

bricking, height working, and spreading concrete, whereas for hazard identification, the accuracy 

scores were 99%, 84%, and 64%, respectively. The rule reasoning accuracy was evaluated to determine 

whether the model correctly predicted the safety rule that had been violated. As can be seen from the 

analysis results, the corresponding score was almost identical to hazard identification accuracy. In 

addition, some examples of safety hazard identification and rule reasoning are provided in Table 8.
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Figure 21. Examples of the dense captioning outputs of the site images.

Table 6. Evaluation scores for the mean average precision of the dense captioning model.

Model mAP (%) mAPcap (%)

This Study 51.3 41.2

An et al. [115] 50.6

Table 7. Activity classification, hazard identification, and reasoning accuracy.

Task Type Activity Classification 

(%)

Hazard Identification 

Accuracy (%)

Rule Reasoning 

Accuracy (%)

Bricking 75 99 99

Height working 84 84 84

Spreading concrete 93 64 63

Table 8. Examples of the image captioning and safety hazard identification.

Image Captions Unsafe? Violated Rule

[“worker laying clay bricks on the wall,”

“gloves worn by the worker,” “brick held by 

the worker”]

TRUE [“worker should wear a 

safety helmet”]
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[“worker laying clay bricks on the wall,”

“yellow safety helmet worn by the worker,”

“gloves worn by the worker,” “brick held by 

the worker”]

FALSE []

[“worker spreading the concrete mix,”

“yellow safety helmet worn by the worker,”

“rubber boots worn by the worker,” “rubber 

boots worn by the worker,” “concrete 

spreader held by the worker,” “gloves worn 

by the worker,” “rubber boots worn by the 

worker”]

FALSE []

[“worker spreading the concrete mix,”

“wheelbarrow pushed by the worker,” “gloves

worn by the worker”]

TRUE [“worker should wear a 

safety helmet,” “worker 

should wear safety boots”]

[“worker creating a scaffold at a height,”

“yellow safety helmet worn by the worker,”

“gloves worn by the worker”]

TRUE [“worker should wear fall-

prevention device”]

[“worker creating a scaffold at a height,”

“yellow safety helmet worn by the worker,”

“fall-prevention device worn by the worker”]

FALSE []

In summary, the integration of image captioning and semantic similarity for the automatic 

identification of safety hazards in construction images has immense potential; however, there are 

some limitations. Failure cases and major error causes are presented in the subsequent subsection. 

Further investigation and refinement are required to enhance the proposed method’s accuracy and 

efficiency. Nevertheless, the evaluation results demonstrate that the proposed method can feasibly 

integrate image captioning and semantic similarity techniques for identifying safety hazards. The 
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system successfully identified a considerable proportion of the hazards in the images, highlighting the 

potential of this method to enhance safety on construction sites.

4.4.2 Failure Cases

This study identified three major causes for the errors: (1) false image captioning, which occurs 

when the system generates a caption that does not accurately describe the contents of the image; (2) 

missing image captioning, where the system fails to provide a caption for an object; and (3) over-

similar word embedding, which occurs when the system cannot distinguish between words in the 

construction domain. Examples of failure cases along with the associated errors that caused these 

failures are presented in Table 9. 

Table 9. Examples of the failure cases.

Cause Image Captions Unsafe? Violated Rule

False image 

captioning

(False caption 

indicated by 

underline)

['falling prevention 

device worn by 

worker', 'worker 

forming a scaffold on 

the height', 'yellow 

safety helmet worn 

by worker']

False N/A

Missing captioning

(Missing caption for 

the rubber boots)

['glove worn by 

worker', 'worker 

spreading concrete 

mix', 'yellow safety 

helmet worn by 

worker', 'glove worn 

by worker', 'concrete 

mix vibrator held by 

worker']

TRUE ['worker should 

wear safety boots']

The first cause of error identified in the study is false image captioning, which occurs when the 

system generates a caption that does not accurately describe the contents of the image. This error can 

have different consequences depending on which part of the image the false caption is describing. 

When the caption refers to the main worker behavior, it can lead to the model matching the wrong 

safety ruleset on it. This type of mistake contributes the most to the activity classification error. In 
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contrast, when a false caption is describing objects or other regions in the image, it can cause the 

semantic similarity matching to yield wrong results. This error may lead to the identification of 

irrelevant safety hazards or missing actual ones, undermining the accuracy of the safety hazard 

identification and safety rule reasoning.

The second cause of error identified in the study is missing image captioning, which occurs when 

the system fails to provide a caption for an important object (e.g., PPE) or an important subregion. 

This is problematic when the worker is following safety guidance, but the system identifies the 

worker’s behavior as a safety hazard due to the lack of image captioning. This type of mistake is more 

significant when describing images related to the activity of “spreading concrete” where it mainly 

contributes to the sudden drop in the accuracy of hazard identification. In the case of the error 

presented in Table 9, the image captioning module overlooked the safety boots worn by the worker, 

and the hazard identification module falsely predicted a safety hazard due to the lack of foot protection.

The two aforementioned causes of error identified in this study, that is, false image captioning 

and missing image captioning, are limitations of the image captioning module. The occurrence of false 

image captioning and missing image captioning imply that the image captioning module may not have 

been trained on a sufficiently diverse set of construction site images containing numerous potential 

safety hazards. These limitations can be addressed by improving the efficiency of the image captioning 

module through the optimization of the model architecture or by increasing the size and diversity of 

the training dataset. Incorporating more data instances into the training dataset will improve the 

model’s ability to accurately describe safety hazards in various contexts.

The third cause of error identified in this study is over-similar word embedding, which occurs 

when the system cannot distinguish between semantically similar words in the construction domain. 

This problem was observed several times in this study when generating word embeddings of PPE 

words. Because many PPE items share similar semantic features and functions, the model’s word 

embedding module may have assigned similar word vectors to these words, leading to confusion 

during semantic similarity matching. To address this issue, this study suggests fine-tuning the 

similarity threshold to eliminate this type of error. However, a more effective solution would be to 

train the word embedding model on a corpus specific to the construction domain as it would enable 

the model to learn to distinguish between semantically similar words in the construction context, such 
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as different types of PPE, thereby resulting in more accurate semantic similarity matching and a 

reduction in the occurrence of over-similar word embedding errors.

4.4.3 Feasibility Discussion

Image captioning is a highly researched and developed field of CV and NLP. Image captioning 

can be employed for generating descriptions of construction sites, buildings, and other structures from 

construction images. The application of DL algorithms and pretrained models, such as CNNs and 

RNNs, can aid in the high-precision analysis and comprehension of the visual information present in 

construction images. This data can then be used to create descriptive captions that provide useful 

information regarding the structures depicted in the images. The viability of using image captioning 

for this purpose depends on several factors, such as the quality and resolution of the images, the 

diversity of the structures and scenes within the dataset, and the availability of vast quantities of 

annotated training data. Nevertheless, with the advancement of CV and NLP technologies, the 

potential for using image captioning to generate descriptions for construction images is substantial 

and warrants further investigation.

Semantic similarity is the method of measuring the degree of relatedness between two pieces of 

text, such as image captions and safety regulations. This method can be used to compare image 

captions generated by image captioning algorithms with safety regulations in the construction 

industry. The feasibility of using semantic similarity for this purpose depends on several factors, such 

as the quality of the image captions, the specificity and coverage of the safety regulations, and the 

performance of the semantic similarity algorithms.

If the image captions adequately represent the visual information contained in the images and 

the safety requirements are extensive and well-defined, semantic similarity can be an effective method 

for detecting potential safety violations at construction sites. By matching image captions with safety 

requirements, instances in which the represented structures or activities violate safety regulations can 

be feasibly detected. This information can then be used to take corrective action and improve the 

overall safety of the construction site.

4.4.4 Methodological and Practical Contributions

The proposed method can integrate visual and textual semantic information for safety hazard 

identification and provides the following advantages:
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1) The proposed method utilizes dense captioning to extract regional descriptions from site 

images. Compared with existing visual recognition models, the proposed method 

provides outputs with higher label density and semantic richness; in addition, it provides 

richer semantic information regarding objects, actions, and interaction with localization 

for safety management.

2) The proposed method can integrate construction image data and text data by using 

visual–text semantic similarity. First, the image data are transformed into text-based 

regional captions, which contain semantic information. Next, word embeddings of the 

region captions are used to understand and process the text data. The proposed workflow 

minimizes the gap between image data and text data in the development of vision-based 

safety management programs.

3) Compared with existing safety hazard identification methods that use visual and text data, 

the proposed method decouples visual recognition from safety hazard identification, 

which means that the developer can optimize the visual module or language module 

separately without changing the overall architecture. In addition, the language module of 

the proposed method is an unsupervised method, which means that the language module 

retains its robustness when the safety rule changes, or new safety rules are added.

In addition, the proposed method offers the following practical advantages:

1) The proposed method can automate traditional construction safety management, which 

requires observations to be collected by dedicated personnel and is thus expensive and 

less efficient. The proposed method employs CV technologies to help observe 

construction sites through an automated process, thereby improving the efficiency and 

lowering the cost.

2) The proposed method can be used to improve existing vision-based safety management 

programs by automating hazard identification. The integration of automatic semantic 

information extraction with dense captioning and visual–text semantic similarity 

techniques enables the proposed method to make inferences regarding complex safety 

hazards, enabling managers to make safety-related decisions efficiently.

3) Though not presented in this study, the proposed method can be employed for other 

applications in construction management. For example, the regional descriptions 
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generated by the dense captioning module can be utilized to generate daily reports on site 

automatically. The descriptions can also be utilized as metadata for site image archives; 

this would aid in querying the image database in an information retrieval system. 

Moreover, the visual–text semantic similarity technique can be used to check if manual 

observation reports are in agreement with image monitoring records.

4.4.5 Limitations and Recommendations

The limitations of the proposed method and areas for improvement are described as follows:

1) In this study, safety rulesets comprising simple and clear sentences were used, which are 

not necessarily the same as the original safety regulations. Other NLP techniques must be 

explored to parse the safety regulations into usable rulesets. This type of technology 

relates to the sentence simplification task (split-and-rephrase) in NLP. Researchers in the 

construction industry are suggested to adopt the existing tools in NLP (e.g., [142–145]) to 

help in this task.

2) In real safety management practices, there are complex rules that require make decision 

on multiple parameters/rules. In this scenario, combining more advanced rule matching 

(such as decision tree, or other multi-criteria decision-making methods) with cosine 

similarity to determine the rule compliance. It is also feasible to utilizing large language 

models (LLM) like GPT-4 for better reasoning capability on complex rule matching.

3) The word embedding models used in this study, namely the Word2Vec-based static model 

and the BERT-based dynamic model, were developed for general purposes, and may 

ignore important semantic meanings and relationships for some words in the 

construction safety context and may not provide the best performance for construction 

related applications. Word embedding models trained on construction-related corpus 

may improve the NLP performance in construction scenarios.

4.5 Conclusion

This section proposed a novel approach for the automatic identification of safety hazards in 

construction images by integrating image captioning and semantic similarity techniques. The 

evaluation results demonstrated that the proposed method is feasible and has potential for further 
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investigation. The proposed method can accurately identify safety hazards in construction images by 

using natural language descriptions and semantic similarity measures. The results indicated that the 

integration of image captioning and semantic similarity has promise for improving safety in 

construction environments; however, the accuracy and efficiency need to be improved.

The contributions of this study are as follows: (1) It proposed a method that utilizes dense 

captioning to extract rich semantic information from site images and visual–text semantic similarity 

to integrate image data and text data. (2) It can be used to automate the observation process of 

traditional construction safety management programs. (3) It is advantageous for vision-based safety 

management as it enables automatic safety hazard identification. (4) It can be used for automatic 

report generation and information retrieval from image databases.

In future studies, the author will extend the dataset to include more on-site activities and 

interactions to further increase the information that can be extracted from the site images. In addition, 

the author will develop more NLP-based technologies to make automatic safety hazard identification 

on more complex safety regulations.
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Chapter 5

Content-based Image Retrieval for Construction Image Management

5.1 Introduction

An information retrieval system (IRS) is critical in construction management because it facilitates 

the effective organization and management of information related to construction projects. The 

complexity and large volume of technical documents require the use of an IRS to organize and 

categorize information, making it easier to access and retrieve relevant information when needed [84]. 

Additionally, an IRS can reduce the effort required to gather information, potentially assisting 

construction managers in making informed decisions based on the most up-to-date information 

available [83]. 

Recently, cameras have become standard equipment for monitoring construction projects and 

improving management [18,39,66,96]. However, the increasing volume of digital images and videos 

captured on-site has created a challenge for construction management. For instance, a typical 

construction project during the construction phase may capture more than 400,000 images [10]. 

However, such construction visual data are manually sorted in most cases, content-analyzed, and then 

preserved [146]. The existing IRS in the construction industry focuses on retrieving text data in a text 

corpus. Image data, unlike text data, cannot be directly queried and retrieved using text keywords 

without. Therefore, developing new visual data management and retrieval methods for the 

construction industry with the ability to perceive, associate, and analyze image records within a 

specific site, zone, and even a precise angle of view with geographical and temporal boundaries is 

essential [147–150].

One such method is content-based image retrieval (CBIR), which retrieves images based on their 

content or characteristics. This method uses algorithms to extract attributes from images, such as color, 

texture, and shape, to search for, and retrieve, similar images. CBIR has several advantages, including 

eliminating the requirement for manual annotations or metadata, which allows for retrieving images 
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without keyword input. Additionally, it can be applied to managing large image collections and suits 

the expanding needs of image repositories. CBIR is also robust to changes in lighting, orientation, and 

other factors, making it possible to retrieve similar images even if they are not identical [151–153]. 

CBIR is intuitive and efficient; it facilitates relevance-based image retrieval and helps users quickly 

find the most relevant images based on the features they are interested in.

Deep learning-based computer vision technologies have demonstrated their superiority in 

extracting visual features from images, with their ability being comparable to that of humans [38]. 

Incorporating computer vision in CBIR can greatly enhance the capability of image retrieval systems, 

particularly in construction scenarios. Deep learning-based computer vision algorithms can be trained 

to recognize and extract specific visual features, making CBIR a powerful tool for image retrieval 

applications. 

However, current deep learning-based CBIR methods may not be as efficient in construction 

scenarios as in general scenarios, as they tend to gather images based on the visual feature of the whole 

image or large-scale image regions. This approach may not be effective for construction images, which 

often present complex scenes with many similar objects, such as workers, equipment, and materials, 

making the extracted visual features indistinguishable. This characteristic of construction images 

presents unique challenges for CBIR. Therefore, there is a pressing need for a more detailed 

granularity method to extract nuanced visual information for construction image retrieval for 

improving construction management, tracking progress, and monitoring safety management activity, 

among others.

This section proposes a feature aggregation process based on object detection for retrieving 

construction images via the CBIR method. The method is specifically designed for construction images 

and consists of three main processes. First, a deep learning-based feature extractor extracts visual 

features from the construction image using a convolutional neural network (CNN). Second, a feature 

aggregator based on object detection aggregates regional visual features for both the object of interest 

regions and background object regions. Finally, an indexing process enhances the feature 

representation using mathematical methods, enabling effective retrieval of construction images based 

on detailed visual features. The proposed retrieval method can effectively retrieve construction images, 

aiding the management and retrieval of construction visual data, as well as other applications, such as 
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localization, behavior recognition, and tracking workers and equipment across different cameras and 

sites.

5.2 Methodology

As shown in Figure 22, the proposed image retrieval method comprises two primary steps: feature 

extraction aggregation and indexing. In the first step, the CNN obtains the convolution feature map of 

the entire image when a new construction image is added to the image database. Additionally, the 

feature aggregation module aggregates the feature vectors of specific regions on the feature map, and 

the feature representation of the image content is stored in the feature set. In the second step, the 

feature vectors undergo normalization processing during indexing to simplify the feature vectors, and 

the image similarity is calculated by measuring the distance between feature vectors. Thereafter, the 

images are retrieved based on their similarity. 

Figure 22. Overall framework of the proposed content-based image retrieval method.

The proposed feature extractor includes a feature aggregator based on object detection, which sets 

it apart from typical solutions. This feature aggregator conducts refinement work on the feature map, 

obtaining more detailed visual features about the subregions of the construction images. Figure 23

illustrates the detailed computational workflow. In summary, the proposed feature extractor employs 

CNNs to obtain a feature map of the input image. After acquiring the feature map, the feature 

aggregator “crops” the feature map of the entire image based on object zones to obtain feature maps 

for each object zone. This object-level feature map allows for refined control of visual features in 

construction images. The process details of the proposed method are elaborated in the following 

subsections.



70

Figure 23. Computational workflow of the typical method and the proposed method.

5.2.1 Feature Extraction

The first module of the proposed engine is the CNN backbone, which conducts convolution 

calculations on the image to obtain the feature map. CNNs are specialized neural networks that 

process grid-like data and have been highly effective in processing image data [38]. In essence, CNNs 

transform the image data into increasingly smaller feature maps that represent the visual 

characteristics of the image. The deeper the layer in the CNN, the higher the level of representation of 

the image feature in the output of the layer. For instance, when using a CNN to process excavator 

images, the shallow layers of the CNN recognize lines and edges in the image, whereas deeper layers 

recognize shapes, such as the excavator bucket.

Several recent studies have proposed numerous CNN architectures with good performance in 

extracting image features, including VGG [28], Inception [29], MobileNet [154] and ResNet [155]. 

Each architecture has its own strengths and optimized applications. For this study, ResNet was chosen 

as the image feature extractor because it maintains a low training error rate while enabling very deep 

neural networks. It also enables skip connections, which facilitate easier training and reuse of the 

features learned in previous layers on deep CNNs. ResNet is chosen because it is the standard feature 

extraction network for the object detection module used in this study, which will be discussed in the 

following sections.

Mathematically, given a colored image, the CNN processes and transforms it into a three-

dimensional feature map
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(5-1)

where denotes the input image having a width , a height , and three-color channels (red, 

green, and blue).

5.2.2 Baseline Feature Aggregator

Although the feature map output by the CNN backbone already represents the image content, a 

feature aggregator module is also required to extract significant image features, filter out noise on the 

feature map, and transform the feature map into a vector. Therefore, the feature aggregator processes 

the image feature map into meaningful feature vectors. This section introduces two commonly used 

aggregation methods that serve as baselines for comparison with the proposed method.

Generalized-mean pooling (baseline aggregator)

Considering that the output of the CNN backbone denotes the feature map of the image, the 

GeM features are given by

(5-2)

(5-3)

The pooling parameter can be manually set or learned. Because this study are using this method 

as a baseline, the is set as three, following common practices [156].

Regional maximum activation of convolutions (baseline aggregator)

Regional maximum activation of convolutions (RMAC) [157] is a feature aggregator proposed for 

general CBIR methods. RMAC extracts regional visual features of an image and adds details to the 

output feature vector. It extracts regional features from a CNN by computing the maximum activation 

of each feature map within each region. The regions are defined by a set of fixed-size rectangular boxes 

that are densely sampled across the image. The maximum activations within each region are then 

pooled together using an integral operator to obtain a fixed-size vector representation of the image.

In R-MAC, the regions are defined by square boxes, and a scale parameter is used to determine the 

size of the box. For an image feature map with a width of and height of , when , the side 

length of the box is determined as

(5-4)
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The boxes are sampled along the longer side of the image, ensuring that the intersection of 

consecutive boxes is as close as possible to 40%. For every other scale, the box's side length is 

determined as:

(5-5)

Figure 24 illustrates the sample regions of R-MAC at different scales. The gray box represents the 

top-left region, and the dashed boxes represent the neighboring regions. The region features are 

extracted by region-of-interest pooling (RoI Pooling) [158] to obtain a set of regional feature maps. The 

final feature vector is

(5-6)

where is the total number of regions and is the total number of levels .

Figure 24. Sample regions extracted in the R-MAC aggregator at three scales (L = 1, 2, 3).

5.2.3 Proposed Feature Aggregator based on Object Detection

While RMAC is a powerful feature aggregation method, it has several shortcomings when applied

in construction image retrieval scenarios. RMAC samples rectangular boxes across the entire image, 

causing some subregions to contain little or no meaningful visual content. This makes it sensitive to 

noise and irrelevant information in construction image retrieval. Moreover, the sampling subregions 

are not tightly related to the objects in the construction image, resulting in it lacking detailed object-

level information and being difficult to interpret.

To address these issues, this study proposes a feature aggregation method that utilizes object 

detection to detect object subregions, thus improving the CBIR performance for construction images. 

The new method selectively chooses relevant subregions and provides interpretable information about 

the image, including the location and type of detected objects. Furthermore, the new method is less 

sensitive to noise and clutter in the image, making it effective in detecting the presence and absence 

of objects and filtering out irrelevant subregions.
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This study utilizes a Faster R-CNN [41] based model as the regional visual feature extractor and 

aggregator to complete two tasks: (1) recognizing the objects in the image by performing object 

detection; and (2) extracting the object feature based on the recognized objects in step one. This 

method chose this architecture because, based on their prototype experiments, they found that Faster 

R-CNN provides a better performance boost for the whole model than other object detection 

architectures.

Figure 25 presents the detailed architecture of the proposed feature extractor and aggregator. The 

module uses the ResNet network as its backbone to extract the feature map from the input image. 

ResNet is an image classification network originally trained on the ImageNet dataset [114] and is 

widely utilized for other tasks. The authors also use the five convolution stages in the ResNet (Res1–

Res5) as the feature extractor in this module. In panel A of Figure 25, "7x7, 64" denotes the filter size 

and depth of the convolution process. Res2 denotes the second stage, and so forth. "x3" denotes a stack 

of three consecutive convolution layers, and so forth. The backbone extracts the image features after 

the final convolutional layer of the 4-th stage, which is coded as C4 features.

Figure 25. The architecture of the Faster R-CNN-based regional feature extraction and 

aggregation.

The detected regions come from the Regional Proposal Network (RPN), as shown in Figure 25b. 

Figure 26 illustrates the basic architecture of an RPN. Its main function is finding image regions that 
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potentially contain objects of interest. To achieve this, the RPN utilizes a sliding window that iterates 

over the feature map outputted by the CNN backbone. The window slides over all the feature maps 

like a convolution filter. At each sliding position on the feature map, the sliding window generates 

several anchor boxes with different sizes and aspect ratios (typically 0.5, 1, or 2). The features 

remaining in the anchor box are extracted and processed by a simple convolution stage to obtain a 

feature vector of the anchor box. The network then calculates the object score of this anchor box to 

determine whether it contains an object of interest and resizes it to fit the object via box-coordinate 

regression. The region with an object score higher than a given threshold is selected as the object 

region to extract the visual object feature:

(5-7)

Figure 26. Illustration of the calculation process of regional proposal network.

The proposed object detection-based aggregator utilizes a different approach from RMAC for 

extracting regional features from the image feature map: specifically, it utilizes region of interest (ROI) 

Align [43] during the process. It works by dividing an ROI into a grid of uniformly sized rectangular 

cells and generating four regularly spaced sampling points inside each cell. The feature map values for 

each of these sampling points are obtained using bilinear interpolation to reduce quantization errors 

and improve alignment accuracy. The final feature value for each cell is computed as the maximum 

of the four interpolated values. ROI Align helps to extract accurate and fine-grained features from 

image sub-regions. Additionally, it can handle ROIs of varying sizes and aspect ratios:

(5-8)
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After obtaining the ROI features of each region generated by the RPN, the ROI features are further 

processed by the fifth convolution stage of the ResNet to obtain feature vectors. The feature maps of 

the regions are transformed into vectors:

(5-9)

The final vector representation of these regions is calculated as the mean pooling of these vectors:

(5-10)

Notably, the proposed object detection-based feature aggregator could be trained to yield various 

types of object regions. An RPN pretrained on a dataset that covers construction objects will propose 

the significant object regions for workers, heavy equipment, PPE, and tools, among others, on site 

images. On the other hand, an RPN pretrained on a general object dataset will propose the general 

object regions (often presented on the construction images as background objects), such as trees, soils, 

and roads, of the site images. By balancing those object regions, the proposed aggregator can generate 

image feature vectors that contain more detailed content information about the site images.

5.2.4 Indexing

After extracting visual feature vectors from construction images, an indexing method for effective 

retrieval of construction images is implemented. The indexing process involves normalization, 

distance measurement, and ranking. The process guarantees the retrieval and ranking of the most 

relevant construction images at the top, resulting in an efficient and effective content-based image 

retrieval system for construction management.

Normalization

Vector normalization is an important step in information retrieval systems because it helps to 

ensure that the similarity between two vectors is based on the direction of the vectors rather than their 

magnitude. Therefore, it can help in eliminating the influence of vector length on the similarity 

calculation [159], thereby improving the performance of the retrieval system by enhancing the 

discrimination of the feature vectors. In other words, it helps to make the feature vectors more 

comparable and distinguishable, which leads to more accurate retrieval results.

This study utilized L2-normalization on the image feature vectors. L2-normalization is a widely 

used technique in information retrieval systems that normalizes the feature vectors to have a unit 

length. The L2-norm, which is related to the Euclidean norm, is defined by:
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(5-11)

Distance Metric

Table 10 lists some of the most common distance metrics used to compare the similarity of real-

valued vectors in machine learning-based applications. The Euclidean Distance is the straight-line 

distance between two points in Euclidean space. It is calculated by taking the square root of the sum 

of the squared differences between the corresponding elements of the two vectors. The Manhattan 

Distance is the distance between two points in a grid-like path. It is calculated by summing the absolute 

differences between corresponding elements of the two vectors. The Minkowski Distance is a 

generalization of both the Euclidean and Manhattan distances. It is calculated by taking the 

root of the sum of the absolute differences between corresponding elements of the two vectors, where 

is a positive integer. In addition, the Cosine Distance is defined as the distance obtained by 

considering the angle between two vectors. It is calculated by subtracting from the dot product of 

the two vectors divided by the product of their magnitudes. 

Table 10. Common distance metrics for comparing the similarity of real valued vectors.

Distance Metric Calculation

Euclidean Distance (5-12)

Manhattan Distance (5-13)

Minkowski Distance (5-14)

Cosine Distance (5-15)

Each distance metric has its own advantages and disadvantages, and the choice of distance metric 

may depend on the specific scenario. The present study tested these distance metrics and observed 

that the differences in evaluation results on the normalized feature vectors were subtle. Because the 

feature vectors were normalized to unit vectors, the rank ordering produced by both Euclidean 

Distance and Cosine Distance in the experiments conducted were identical. The experiments 

demonstrated that the Euclidean Distance performed the best. Notably, it is the most commonly used 
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metric for k-nearest neighbors (k-NN) algorithms, and this study used it as the distance metric in this 

study.

Ranking Algorithm

This study used the k-NN ranking algorithm to retrieve similar images from the image dataset 

based on a given query image. The k-NN algorithm is widely used in image retrieval tasks due to its 

simplicity and effectiveness [84,160]. Moreover, the k-NN algorithm is nonparametric and does not 

require model training, which makes it computationally less expensive than other machine learning-

based ranking algorithms. Furthermore, our feature vector normalization reduces the dimensionality 

of the data, making the k-NN algorithm more efficient in retrieving the most similar images.

The k-NN algorithm operates by calculating the distance between the feature vector of the query 

image and the feature vectors of all images in the dataset. The algorithm then retrieves the k images 

with the smallest distance to the query image, which are ranked as the top k similar images.

5.3 Implementations, Experiments, and Results

5.3.1 Image Collections and Retrieval Scenario Setup

This study utilized two construction image collections for the experiments, as listed in Table 11. 

The equipment collection comprised heavy equipment operations, with heavy equipment and 

materials being the primary objects in the images. The collection was sourced from the Alberta 

Construction Image Dataset (ACID) [116]. The worker collection, on the other hand, comprised 

worker activities, with workers, personal protective equipment (PPE), tools, and materials being the 

primary objects in the images. This collection was obtained from the work of Zhang et al. [161]. Figure 

27 provides sample images from both collections.
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Table 11. Details of the construction image collections.

Label Target Scene Main Objects in Scene

Equipment heavy equipment operations

Heavy Equipment 

(excavator, truck, loader, etc.)

Materials

(soil, rocks, bricks)

Worker worker activities

Worker

PPE

(helmet, glove, harness, etc.)

Tool

(hammer, ladder, hoe, etc.)

Material

(concrete, brick, wood, rebar, etc.)

Figure 27. Sample images from the construction image collections used in this study.

This study considers two scenarios in construction image retrieval: 

1) The first scenario is retrieving images taken from the same construction site or view angle. 

This scenario allows users to quickly retrieve images that are relevant to a specific 

construction project or view. For example, a construction manager could retrieve images 

of a specific construction phase, such as foundation laying or beam installation, from 

different dates or time points to compare progress and identify any problems. This can 

improve project documentation and decision-making, ultimately improving project 

outcomes.
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2) The second scenario is retrieving images that have the same construction activity. This 

scenario allows users to quickly retrieve images that are relevant to a specific construction 

activity, such as excavation or scaffolding. This can be helpful for productivity analysis 

and safety management. For example, a construction manager could retrieve images of 

excavation activities to monitor progress and ensure that the excavation is being done 

correctly and safely. This scenario can also aid in identifying potential hazards and 

improving overall safety in construction sites.

After categorizing the construction images based on the established scenarios, the images were 

assigned to different categories and labeled with a unique ID. Images taken from the same 

construction site or the same construction activity were assigned to the same category. Subsequently, 

the images were divided into two sets: the query and gallery set. The query set comprised images used 

as input for the image retrieval system, whereas the gallery set served as the image database to be 

retrieved.

5.3.2 Object Detection Model Developing and Training

To enable the proposed feature aggregator to detect important sub-regions of construction images, 

an object detection model was utilized in this study. The Faster R-CNN architecture was selected as it 

is a state-of-the-art object detection method based on deep CNNs [41]. The Detectron2 deep learning 

framework was used to build and train the detection models [162].

To train the object detection model, we used a subset of our construction image dataset that 

contains annotated bounding boxes for the relevant objects. The objects in the image were labeled by 

bounding boxes with the object category based on the scene presented in the construction image. The 

annotated dataset was then randomly split into training and validation sets in an 8:2 ratio, and data 

augmentation was performed during training, including randomly flipping and rotating the images, 

as well as performing brightness and contrast adjustments. The Adam optimizer was used during 

training [163], and the loss function used was a combination of classification and regression losses.

After training, the object detection model was fine-tuned on the construction image dataset used 

in the experiments by using the same hyperparameters as those in the original training. The best 

validation performance model was used, and the object detection model was employed to generate the 

relevant object proposals for the proposed object detection-based feature aggregator.
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To verify that the object detection models developed in this study could accurately establish

subregions from the construction images, the mean average precision (mAP) evaluation for object 

detection was conducted on each object detection model, which is consistent with previous object 

detection-related studies [115,116,164]. The evaluation results verified the feasibility of using these 

models to aggregate sub-regional image features in construction images. Table 12 provides the details 

and evaluation performance of the object detection models used in this study.

Table 12. Details and evaluations of the object detection models utilized in this study.

Label Dataset Target Object
Object 

Kind
Architecture AP0.5-0.95(%) AP0.5(%)

DET-

Equipment
ACID

Heavy 

Machine
Foreground Faster R-CNN 50.6 74.6

DET-Worker

Newly 

developed 

dataset

Worker, PPE, 

Tool, Material
Foreground Faster R-CNN 61.6 87.0

In addition to the two object detection models trained in this study to detect construction-related 

objects, a pretrained Visual Genome model was utilized to detect general and background objects. It 

is a widely used object detection model pretrained on a large-scale visual dataset [165]. By 

incorporating this pretrained model, the proposed method could detect and balance foreground and 

background objects in the construction images.

5.3.3 Retrieval Model Development

The construction image retrieval system was built in a Python environment using the relevant 

package [166] to expedite the development process. The proposed object detection-based feature 

aggregator was developed and implemented, and the object detection module was connected to the 

retrieval system.

To compare the performance of the proposed method with existing CBIR methods, several 

benchmark models proposed in prior studies were implemented. The first benchmark model directly 

utilized the feature maps output by VGG without any detailed object feature, as proposed by Ha et al.

[167]. The second benchmark model used the same CNN feature extractor (ResNet) as the proposed 

method, making the comparison fair. The third benchmark model adopted the RMAC feature 
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aggregator [157]. Instead of using the visual features of the whole image, R-MAC extracted several 

regions on the image based on a fixed grid of regions, regardless of where the object was located in the 

image.

The proposed models included two different methods based on the proposed feature aggregator, 

with one method using only foreground object region feature maps and the other using both 

foreground and background object region feature maps. The references for each model are provided 

in Table 13.

Table 13. The details about the benchmark models and the proposed models implemented 

in this study.

Label CNN Aggregation Object Detector Note

Benchmark 1 VGG GeM -- Uses the final feature map 

outputted by VGG feature 

extractor.

Benchmark 2 ResNet GeM -- Uses the final feature map 

outputted by ResNet feature 

extractor.

Benchmark 3 ResNet RMAC -- Uses a combination of subregion 

feature maps. The subregion 

features are aggregated based on a 

fixed grid of the image. 

Proposed -

Foreground

ResNet DET Equipment/Worker The proposed method that only 

uses the feature maps of 

foreground object regions.

Proposed -

Combined

ResNet DET Equipment/Worker

&

VG

The proposed method that uses the 

feature maps of both foreground 

and background object regions.

5.3.4 Retrieval Evaluation Metrics

To evaluate the performance of the proposed construction image retrieval method, mAP and 

recall at k metrics were utilized. These are common evaluation metrics for image retrieval methods 

and are based on precision and recall:
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Precision (5-16)

Recall (5-17)

The Average Precision measures the performance of a set of retrieval results based on the 

Precision (p) and Recall (r) metrics. If a submitted result has N rows sorted by its confidence score, 

then the Average Precision is computed using the following formula:

(5-18)

The mAP is the mean of all the AP scores for all queries:

(5-19)

This study also utilized for metric learning to evaluate the image retrieval performance. 

in this context defined as the percentage of queries with at least one neighbor retrieved in 

the first k results [168]. This type of evaluation has commonly been used in recent image retrieval 

competitions [169–171] and related studies [172–174].

In the context of this work, the proposed image retrieval method retrieves top-k items as the 

results. If at least one correct retrieval result is obtained, this process is labeled positive and will be 

given a score of one. If no correct result is obtained, the score is zero. The recall at k metric is the mean 

of scores among N times of retrieval attempts:

(5-20)

(5-21)

This study reports the mAP and the recall at 1, 2, or 4 for metric learning to verify the performance 

and feasibility of the proposed method.
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5.4 Results and Discussion

5.4.1 Experimental Results

Table 14. Evaluation results of the models for same-site retrieval.

Model mAP(%) Recall1(%) Recall2(%) Recall4(%)

Benchmark 1 52.4 71.2 76.2 83.8

Benchmark 2 62.1 81.2 85.0 91.2

Benchmark 3 69.2 90.0 96.2 98.8

Proposed - Foreground 59.4 80.0 88.8 95.0

Proposed - Combined 86.4 97.5 98.8 100

Table 14 presents the evaluation results of the models on the same site retrieval scenario, 

including the mAP and recall scores for each model at different levels. Among the benchmark models, 

Benchmark 1 achieved the lowest mAP of 52.4%, whereas Benchmark 3 achieved an mAP of 69.2%. 

Both proposed models, Proposed–Foreground and Proposed–Combined, achieved higher mAP scores 

of 59.4% and 86.4%, respectively, than the benchmark models. The Proposed–Combined model 

achieved the highest recall scores of 97.5%, 98.8%, and 100% for recall at 1, 2, and 4, respectively, 

indicating that it can accurately retrieve images from the same construction site. This model also 

outperformed the other models in terms of mAP, demonstrating the effectiveness of the proposed 

object detection-based feature aggregator for construction image retrieval.

Table 15. Evaluation results of the models on same-activity retrieval.

Model mAP(%) Recall1(%) Recall2(%) Recall4(%)

Benchmark 1 40.6 50 60 75

Benchmark 2 38.6 50 60 80

Benchmark 3 38.2 60 65 80

Proposed - Foreground 39.7 70 85 90

Proposed - Combined 77.3 95 100 100

Table 15 presents the evaluation results of the models on the same-activity retrieval scenario. The 

baseline models achieved lower mAP scores than those presented in Table 5, with Benchmark 1 

achieving the lowest mAP of 40.6%. This performance drop is unsurprising considering the same-
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activity retrieval is stricter on the desired retrieval results. The proposed models, Proposed–

Foreground and Proposed–Combined, achieved mAP scores of 39.7% and 77.3%, respectively. The 

Proposed–Combined model achieved the highest recall scores of 95%, 100%, and 100% for recall at 1, 

2, and 4, respectively, indicating that it can accurately retrieve images with the same-construction 

activity.

Figure 28. Curve graph of the evaluation results.

This study also illustrated the evaluation results graphically in Figure 28. As presented in the 

evaluation results, the proposed method performs better in both the same-site and same-activity 

retrieval scenario. Among the several model variants, the model architecture that combines the 

ResNet backbone with foreground and background object feature aggregators had the best evaluation 

score, indicating that combining and balancing the foreground object and background features would 

significantly improve retrieval precision.

5.4.2 Results Visualization

Scenario 1 – Same Site Retrieval

Figure 29 presents a visualization of the top five retrieval results for an image query on the same 

site retrieval scenario. The first row of the figure represents the ground truth, i.e., images taken from 

the same construction site that the models are expected to retrieve. The query image is enclosed in a 

purple bounding box, and the retrieval results are presented in each subsequent row. The correct 

retrieval results are highlighted with a green bounding box, whereas the false retrieval results are 

indicated with a red bounding box.
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Figure 29. Visualized example of site image retrieval on the equipment image collection. 

Scenario 2 – Same Activity Retrieval

Figure 30 illustrates the results of the same activity retrieval on the worker image collection using 

two query examples. In the first query, the input image shows a worker laying concrete bricks on the 

ground. The benchmark models did not perform well in this query because images containing workers

were received but without considering the activity or other important construction objects such as 

bricks. In contrast, the proposed models could correctly retrieve the target construction images. In the 

second query, the input image shows a worker tying netting to the scaffold. This query is more 

challenging because many images contain scaffolds, but the workers are engaged in different tasks. 

Moreover, the benchmark models did not perform well in this query. The proposed method using only 

the foreground object features correctly retrieved three instances, with two being incorrect. The 

proposed method using both foreground and background object features correctly retrieved four 

instances, with one being false.
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Figure 30. Visualized example of site activity retrieval on the worker image collection. 

Figure 31. Visualized example of site activity retrieval on the equipment image collection 

(using the proposed-foreground model).

The proposed method for construction image retrieval can also be applied to retrieving same 

activity images for equipment images. Figure 31 presents examples of the Proposed–Foreground 

model for same-activity retrieval for the equipment image collection. The model could retrieve same 

activity images across different construction site images, demonstrating its effectiveness in retrieving 

construction images based on activity.
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5.4.3 Content-based Method Compared to Label-based Method

Label-based methods for image retrieval often have several limitations, and using metadata or 

automatic tagging methods may not accurately capture the actual image content. For instance, an 

image taken on a construction site and tagged with location and time may not provide any information 

about what objects are present in the image or what is happening in the image. Therefore, retrieving

specific images that contain certain objects or events can be challenging. In contrast, CBIR allows 

users to search for images based on their actual visual content. The system can retrieve images that 

contain specific objects or events, even if they are not tagged with specific metadata. This makes it 

easier to find relevant images, saving construction managers time and effort.

Moreover, metadata or automatic tagging methods may not be able to capture all the relevant 

information in an image. An image may contain several different objects, and automatic tagging may 

only capture information about one or two of those objects. In contrast, CBIR can capture information 

about all the objects in an image, making it easier to retrieve images that contain specific object

combinations.

Overall, while metadata or automatic tagging based on location/time may provide basic 

information about the construction site, they may not capture the detailed visual content of 

construction images, which can be critical for construction management. CBIR methods can 

efficiently capture the visual content of images, making it easier for managers to retrieve and analyze 

the images based on specific visual features. However, there may be certain scenarios where label-

based methods are preferred, such as when specific objects or actions are irrelevant in the retrieval. In 

such cases, label-based methods may be preferable. Therefore, both CBIR and label-based methods 

have their advantages and limitations, and the choice between them should be based on the specific 

needs and scenarios of construction management.

5.4.4 Method Efficiency and Granularity

Previous CBIR methods, such as RMAC, may have limitations in construction-related image 

retrieval due to the entire image or rectangular boxes being sampled to define the visual features, 

resulting in some subregions with little or no meaningful image content. It is sensitive to noise and 

clutter in the construction image because regions that contain noisy or irrelevant information can 

contribute to the feature representation. Moreover, previous methods do not provide object-level 
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information about the image, including the presence or absence of specific objects or object categories. 

This can limit its usefulness for tasks such as object recognition and localization.

To address these shortcomings, this study proposes an improved feature aggregation method that 

selectively chooses sub-regions containing relevant objects or regions of interest through object 

detection. This method can provide targeted and interpretable information about the image, such as 

the location and type of detected objects, improving CBIR performance for construction images. 

Additionally, this method is less sensitive to noise and clutter as it can filter out irrelevant subregions. 

However, this proposed method may require additional training and computational resources, 

which can be achieved by upgrading the computation hardware. The benefits of increased 

interpretability and improved performance make it a worthwhile tradeoff for construction image 

retrieval scenarios.

5.4.5 Methodological and Practical Contributions

This study makes several methodological contributions. First, it proposes a content-based image 

retrieval method based on visual features extracted via CNN, a deep learning-based computer vision 

technology. By extracting higher-level visual features about objects, rather than only low-level visual 

features about shapes and patterns, this study demonstrates the feasibility and performance of 

computer vision techniques in constructing CBIR. This could provide better retrieval performance in 

construction image management. Second, this method introduces a new feature aggregator based on 

object detection that extracts detailed object visual features. This module is carefully designed to 

aggregate and balance the visual features of both common foreground objects and background objects 

in the construction image. This allows the module to represent more detailed and richer visual features 

of the construction images, resulting in accurate retrieval of target images, even when construction 

images have similar visual properties.

This study also has practical implications. First, the construction image retrieval system can assist

construction managers to gather images from the same construction site or view of angle, providing a 

structured visual monitoring repository that represents the changes in the site over time. This can help 

construction managers to identify and track the progress of working zones over time. Second, the 

construction image retrieval system can help construction managers in querying same-activity images 

from a large monitoring image collection, providing visual reference for productivity analysis and 
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safety management. For example, if an unsafe behavior is captured in the monitoring image, the 

construction manager could retrieve similar behavior images, analyze the behavior patterns, and 

develop a solution for this unsafe behavior. This could ultimately improve safety in the construction 

industry.

5.5 Conclusion

This study presents an improved content-based construction image retrieval method using object 

detection to extract detailed visual features from construction images. The proposed method 

incorporates a feature extraction approach that balances the visual features of foreground objects and 

background objects in construction images. The study prepared two construction image collections 

including heavy equipment images and worker activity images, and evaluates the mAP and recall at k 

on same-site retrieval and same-activity retrieval scenarios. The evaluation results report that it 

outperforms existing methods.

Methodologically, this study proposes a novel feature aggregator that extracts detailed object 

visual features and configurations that fit different construction image retrieval scenarios. Practically, 

the proposed method is useful in documenting and tracking progress and improving productivity and 

safety for construction management application. The authors plan to improve the proposed method 

by extending the dataset to include more objects and combining the foreground and background object 

detectors.
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Chapter 6

Conclusions, Contributions, and Future Works

6.1 Conclusions

A construction site can be a hazardous place, suffering from fatal and non-fatal injuries. Safety 

managers have adopted BBS programs for decades to improve site safety. Recently, with the help of 

construction monitoring imagery containing important visual information about worker behaviors 

and interactions and CV technology that could automatically recognize target information on the 

image, the manual observation of the construction site has been automated to a certain level. However, 

the current practice of using CV technology in BBS programs is challenged in three notable respects:

(1) The recognized information from construction images is limited either in label density or 

semantic richness, so the current visual recognition method does not provide the information 

required for further data analysis and safety hazard identification.

(2) CV-only methods need help understanding safety regulations and guidelines. Safety hazard 

identification and reasoning still need manual work.

(3) Existing vision-based applications are inefficient because, although a large quantity of 

monitored image data is acquired and stored, significant time is consumed in processing and 

retrieving related information during similar case analysis and behavior pattern identification.

This research aims to automate the processes involves manual observation and inspection in 

traditional BBS and construction safety management. In addressing the gaps above, three objectives 

are included in this research:

(1) To enrich the information could be extracted from construction images, supporting safety 

hazard identification.

(2) To automate the safety hazard identification on site, and enable reasoning about the hazard 

identification according to safety regulations.
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(3) To automate the image records management and retrieval for safety analysis.

This research proposes to integrate CV and NLP technologies into image description generation, 

safety hazard identification, and content-based image retrieval for a sophisticated vision-assisted BBS 

program. The main idea here is to convert the image data into structured text captions, thereby 

extracting important semantic information about objects, activities, and interactions from the site 

monitoring images. In this way, the image scene information can be compared with the safety 

regulations using semantic similarity comparison, which is an NLP technique, since they are in the 

same data format. In addition, this research also proposes an image retrieval method dedicated to 

construction images, providing fast and accurate image query that helps the observation of target 

behavior over time and similar case analysis. To accomplish the goal and objctives of this research, the 

methods are summarized below:

(1) Development of a semantic information extraction method for construction images: Recently, 

vision-based monitoring has been widely adopted in construction management to improve 

crew productivity, reduce safety risks, and facilitate site planning. However, automated 

retrieval of semantic information (e.g., objects, activities, and interactions between objects) 

from construction images remains challenging due to the complex nature of construction 

sites. This research proposes a novel semantic information extraction method by integrating 

deep learning object detection and image captioning, which aims to explore more salient 

information from construction images or videos. In the proposed method, object detection 

has been employed as an encoder to extract the feature maps of construction object zones and 

the holistic image. Image captioning has been selected as the decoder to extract the semantic 

information. Furthermore, a post-processing method has been proposed to parse the semantic 

information into tabular and graph formats for better accessibility and visualization. In 

experiments, the proposed method has achieved a consensus-based image description 

evaluation (CIDEr) of 1.84. In addition, more salient and hidden information behind 

construction images can be presented to construction managers to assist their decision-

making.

(2) Development of an automatic safety hazard identification and reasoning method: The 

construction industry has a high rate of fatal and nonfatal injuries, which can be prevented 

by optimizing safety management and promoting safe behavior. One approach, BBS, has been 
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widely studied, but traditional manual methods are time-consuming and error-prone. To 

automate BBS, researchers have adopted CV technologies, which can recognize hazardous 

postures and actions and detect missing PPE. However, existing methods have significant 

limitations, such as only detecting simple repeating objects or activities. This research

proposes a framework for a vision-based BBS program that bridges the gap between 

construction monitoring images and safety knowledge bases. The framework includes two 

modules: an image processing module that uses computer vision and dense image captioning 

technologies and a text processing module that uses natural language processing technologies 

to evaluate semantic similarities. The proposed framework was tested on a dense image 

captioning dataset and achieved a mean average precision of 50.64% and an average safety 

hazard identification accuracy of 82.3%. The results suggest that the proposed framework has 

the potential to automatically identify potential safety hazards on monitoring images and 

improve safety management in the construction industry.

(3) Development of a content-based image retrieval method: Visual data (i.e., images and videos) 

has become necessary documentation in construction management, potentially replacing 

traditional paper-based site documentation. However, retrieval of construction images 

containing specific contents of interest, such as images from the same angle view across 

different capturing devices, is still challenging due to the large volume of images accumulated 

in construction projects. This research proposes a content-based image retrieval method to

accurately retrieve interested construction images by inputting a query image. The proposed 

method was validated in the experiment to retrieve target images from construction images 

of 60 sites. The proposed method achieved the best mean average precision of 86.4%. This 

technology contributes to decision-making applications in construction management by 

providing a quick information retrieval system.

6.2 Contributions

This research makes several notable contributions to the knowledge of vision-assisted behavior-

based safety for construction. The academic and industrial contributions are outlined in this section.
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6.2.1 Methodological contribution

(1) The proposed method for semantic information extraction from construction images utilizes 

regional visual features extracted by an object detector-based encoder as input for the decoder, 

which integrates object detection and image captioning to improve information extraction 

precision. Additionally, the method incorporates an attention mechanism in the decoder, 

which establishes a visual connection between the extracted information and the image region, 

enhancing the extracted semantic information with location information. This explicit visual 

connection improves visualization and enables more sophisticated management tasks, leading 

to more accurate and effective image captioning. Combining these two methods presents a 

promising approach to improving image captioning performance.

(2) This method proposes a novel approach based on dense captioning to extract regional 

descriptions from construction site images, offering outputs with higher label density and 

semantic richness than existing visual recognition models for construction images. The 

method enhances BBS programs by providing richer semantic information about objects, 

actions, and interactions with localization, contributing to a more accurate and effective 

analysis of construction site images. The method presents a promising approach for improving 

the quality of regional descriptions for construction site images, providing a valuable 

contribution to the field.

(3) The proposed method presents a novel workflow that integrates construction image data and 

text data through visual-text semantic similarity, offering a valuable contribution to developing 

the vision-assisted BBS program. The workflow transforms image data into text-based regional 

captions with semantic information, providing a more accurate representation of construction 

site images. Additionally, the method utilizes word embeddings of the region captions and 

other text in construction safety regulations to understand and process text data, allowing for 

a more comprehensive safety hazard analysis. By bridging the gap between image and text data, 

the proposed workflow enhances the capability of vision-assisted BBS, contributing to a more 

efficient safety hazard identification. The integration of image and text data through visual-

text semantic similarity presents a promising approach for improving the analysis of 

construction site data.

(4) The study proposes a novel CBIR method for construction image management that is based 

on visual features extracted by CNN. The study verifies the feasibility and performance of using 
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deep learning-based CV techniques in constructing CBIR, with CNN being able to extract 

higher-level visual features about objects beyond just low-level features about shapes and 

patterns. The proposed method introduces a new feature aggregator that extracts detailed 

object visual features from the CNN feature map, carefully designed to balance the features of 

significant objects and environmental objects in construction images. The method presents 

detailed and richer visual features of the construction images, resulting in improved retrieval 

precision and recall compared to existing methods, even when images have similar visual 

properties. The proposed method provides a valuable contribution to the field of CBIR for 

construction image management, enhancing the accuracy and effectiveness of image retrieval 

through integrating deep learning-based computer vision technologies.

6.2.2 Practical Implication

(1) This method could improve the visualization and documentation of construction 

management. The visual connection ability enables displaying the related image zone for 

extracted information. This provides an intuitive visualization of the extracted semantic 

information. The extracted semantic information could serve as enriched metadata to 

simplify the construction image documentation process. This method could improve the 

current practice of vision-based BBS and management by providing richer semantic 

information and visual connections. Furthermore, the extracted semantic information 

could provide an integral information package for downstream safety management 

applications such as safety hazard identification. 

(2) The proposed method presents a valuable contribution to automating traditional BBS 

programs, offering a more cost-efficient and productive solution to construction site 

observation. Traditional BBS programs rely on manual observation, which can be time-

consuming and labor-intensive. By utilizing computer vision technologies, the proposed 

method automates the observation of construction sites, enhancing the efficiency and 

productivity of traditional BBS programs. Furthermore, the automation of BBS through 

computer vision technology provides a more accurate and comprehensive analysis of 

construction site data, contributing to improved safety management practices and 

decision-making processes. The proposed method presents a promising approach to the 

automation of traditional BBS programs, contributing to a safer working environment for 
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construction workers and increased efficiency in construction site management. 

Furthermore, the proposed method can reduce the risk of human error and bias in 

traditional BBS programs, making it a valuable addition to the field of construction safety 

management.

(3) This method improves existing vision-assisted BBS programs by providing automatic 

hazard identification ability. The proposed method could use the extracted semantic 

information to infer potential hazards automatically. Furthermore, the dense captioning 

technique and visual-text semantic similarity technique enables the proposed method to

identify more complex safety hazards. By utilizing the extracted semantic information 

and the novel workflow for integrating image and text data, the proposed method can 

automatically infer potential safety hazards. The dense captioning technique and visual-

text semantic similarity technique employed in this method enable it to identify more 

complex safety hazards, making it suitable for more complex decision-making processes 

and safety management tasks compared to other vision-assisted BBS programs. With its 

ability to automatically identify potential safety hazards, the proposed method can 

enhance the efficiency and accuracy of safety hazard identification in construction sites, 

leading to improved safety management practices and a safer working environment for 

construction workers.

(4) Developing a CBIR system for construction images is valuable to its management. With 

the ability to quickly query and retrieve related image records, the CBIR system enhances 

the efficiency and productivity of construction site management. By providing a more 

accurate and detailed representation of construction site images, the CBIR system can 

help identify and analyze similar cases and behaviors in the image repository, leading to 

more effective behavior pattern analysis for BBS programs. This analysis can contribute 

to a better understanding of safety hazards and risks on construction sites, leading to more 

effective safety management practices. The CBIR system provides a valuable tool for 

construction site managers to improve their decision-making processes and identify 

potential safety hazards. Overall, the contribution of a CBIR system for construction 

images can enhance the efficiency and effectiveness of construction site management and 

contribute to a safer working environment for construction workers.
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6.3 Practice and Implementation Considerations

6.3.1 Potential Safety Applications

There are several applications that this proposed methods could fit in current safety management 

workflow:

• Safety Training: The model could be used to generate examples of potential hazards for safety 

training purposes. By providing real-world examples from actual construction sites, the 

training could be more effective and engaging for workers.

• Daily Safety Briefings: Before the start of each workday, the model could analyze images from 

the construction site to identify any new or emerging hazards. These could be discussed 

during the daily safety briefing to ensure all workers are aware of the hazards and know how 

to avoid them.

• Incident Reporting: In the event of a safety incident, the model could analyze images from the 

incident to help determine the cause. This could provide valuable information for the 

incident report and for any subsequent investigations.

• Safety Audits: During safety audits, the model could be used to analyze a large number of 

images from the construction site in a short period of time. This could make the audits more 

efficient and comprehensive.

6.3.2 Legal Considerations

The implementation of a computer vision and natural language processing system for 

construction site safety management, while promising in its potential to enhance safety measures, 

must be carefully navigated within the confines of the legal framework. Several key legal 

considerations must be taken into account:

• Privacy Laws: Respect for workers' privacy rights is paramount. Informed consent should be 

obtained before recording, and the system should be used in a manner that respects privacy.

• Data Protection Laws: Our system processes personal data, so it must comply with data 

protection laws. This involves implementing robust data security measures and respecting 

individuals' rights over their data.
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• Employment Laws: Laws about monitoring employees at work vary by jurisdiction. 

Employers may need to inform employees about the monitoring and restrict how the data 

can be used.

• Safety Regulations: The system must comply with existing safety regulations on construction 

sites. It should align with these regulations and contribute to a safer working environment.

To facilitate the practical implementation of the proposed methods, it is always recommended to 

understand the specific legal requirements in the jurisdictions where the system will be used. 

Furthermore, developing comprehensive policies for obtaining consent, protecting data, and 

complying with other legal requirements will be crucial steps towards implementation. A pilot study 

may also be beneficial to demonstrate the effectiveness and legality of the system in a real-world 

context.

6.3.3 Potential Unintended Consequences and Mitigation Strategies

While the integration of computer vision and natural language processing offers significant 

potential for enhancing construction site safety, it's important to acknowledge and address potential 

unintended consequences. Here are some key considerations:

• Privacy Concerns: Continuous monitoring could raise privacy concerns among workers. 

Clear communication about data collection, usage, and privacy protection is crucial. 

Implementing strict data access controls and anonymizing data where possible can help 

mitigate these concerns.

• Over-reliance on Technology: The risk of over-reliance on the technology, potentially leading 

to complacency, is a significant concern. Emphasizing that the technology is a tool to assist 

with safety, not a replacement for human judgement and vigilance, can help address this 

issue.

• Misinterpretation of Outputs: The risk of misinterpreting the system's outputs, especially if 

they are complex or technical, is another potential issue. Providing clear, user-friendly 

outputs and adequate training can help ensure correct interpretation and usage.

• Technological Errors: Like any technology, there's a risk of errors or malfunctions, which 

could lead to missed hazards or false alarms. Regular maintenance, testing, and updates can 

help ensure the technology functions correctly and reliably.
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• Workplace Stress: Continuous monitoring could potentially increase stress among workers if 

they feel they are constantly being watched. Communicating that the purpose of the 

technology is to improve safety, not to monitor individual performance, can help alleviate 

this concern.

Acknowledging these potential unintended consequences and proactively implementing 

mitigation strategies can ensure that the benefits of this technology are realized while minimizing 

potential drawbacks. This approach aligns with the principle of responsible innovation, ensuring that

technological advancements serve to enhance, rather than compromise, the well-being of individuals 

and communities.

6.4 Future Works

Each section of the modules in this research identifies the research limits in order to enhance the 

performance and feasibility of the proposed method. The key drawbacks, which are summarized in 

this thesis, are as follows, along with some recommended future research directions:

1) While the proposed method for semantic information extraction in construction safety 

management has shown promising results, the scale of the dataset used for training still 

needs to be expanded. To further improve the accuracy and effectiveness of the models, 

more images and types of objects and activities should be collected and labeled. This can 

enhance the capability of the models to identify safety hazards in construction sites, 

contributing to more accurate safety management practices.

2) The semantic similarity matching module currently used in this research is limited to 

simple sentences. More advanced technologies should be explored to improve its 

functionality in handling compound safety regulation sentences to transform these 

sentences into simpler ones. Furthermore, the matching algorithm could be optimized to 

handle more complex safety rule combinations. This can enhance the accuracy and 

effectiveness of the safety hazard identification process, contributing to a safer working 

environment on construction sites.

3) While the pre-trained models utilized in this research have shown promising 

performance, there is still room for improvement. Training these models on construction-



99

related data can further enhance their performance in identifying safety hazards on 

construction sites. This can improve the accuracy and effectiveness of the proposed 

vision-assisted BBS technique, contributing to more effective safety management 

practices in construction projects.

The proposed vision-assisted BBS technique can improve safety management practices on 

construction sites by automating site observation and safety hazard identification. However, to fully 

apply this method to BBS programs and safety management, more on-site case studies and 

applications are needed to integrate the proposed method into construction projects. This can provide 

more comprehensive and accurate safety hazard identification and prevention, contributing to a safer 

working environment for construction workers. 
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