This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 3Convex Geometry
- 2Geometric Tomography
- 1Busemann-Petty problem
- 1Combinatorial Geometry
- 1Cone
- 1Covering
- 1Litvak, Alexander (Mathematical and Statistical Sciences)
- 1Vladyslav, Yaskin (Mathematical and Statistical Sciences)
- 1Vritsiou, Beatrice (Mathematical and Statistical Sciences)
- 1Yaskin, Vladyslav (Department of Mathematical and Statistical Sciences)
- 1Yaskin, Vladyslav (Mathematical and Statistical Sciences)
-
Fall 2022
Let n ≥ 3 and B ⊂ ℝⁿ. The Illumination Conjecture states that the minimal number I(B) of directions/‘light sources’ that illuminate the boundary of a convex body B, which is not the affine image of a cube, is strictly less than 2ⁿ. The conjecture in most cases is widely open, and it has only been...
-
Fall 2015
The Busemann-Petty problem asks the following: if 𝐾,𝐿 ⊂ ℝⁿ are origin-symmetric convex bodies such that volₙ₋₁(𝐾 ∩ ξ^⊥)) ≤ volₙ₋₁(𝐿 ∩ ξ^⊥) ∀ ξ ∈ Sⁿ⁻¹, is it necessary that volₙ(𝐾) ≤ volₙ(𝐿)? This problem received a lot of attention, and many analogues have been considered. For origin-symmetric...