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Abstract

The Busemann-Petty problem asks the following: if K,L ⊂ Rn are origin-

symmetric convex bodies such that

voln−1(K ∩ ξ⊥) ≤ voln−1(L ∩ ξ⊥) ∀ ξ ∈ Sn−1,

is it necessary that voln(K) ≤ voln(L)? This problem received a lot of atten-

tion, and many analogues have been considered. For origin-symmetric convex

bodies K and L in hyperbolic space Hn, we find a suitable condition which

guarantees voln(K) ≤ voln(L).

Origin-symmetry is important in many problems in convex geometry. By

Brunn’s Theorem, each central hyperplane section of an origin-symmetric con-

vex body K ⊂ Rn has maximal volume amongst all parallel sections of K.

Makai, Martini and Ódor proved the converse of this statement for star bod-

ies. Again working in Hn, we prove an analogue of this result.
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Chapter 1

Introduction

1.A Background

The Busemann-Petty problem (BP), first posed in [4] in 1956, asks the follow-

ing: for origin-symmetric convex bodies K and L in Rn such that

voln−1(K ∩ ξ⊥) ≤ voln−1(L ∩ ξ⊥) ∀ ξ ∈ Sn−1, (1.1)

where ξ⊥ is the central hyperplane in Rn orthogonal to ξ, is it necessary that

voln(K) ≤ voln(L)? This problem is trivially true for n = 2, but otherwise it

remained largely open for many years. Larman and Rogers proved in [15] that

the answer is negative for n ≥ 12. Ball [2] verified that the volume of every

central hyperplane section of the unit cube is bounded above by
√

2. Using this

bound, he then showed that appropriate dilations of the n-dimensional cube

and ball provide a counterexample to BP for n ≥ 10. Giannopoulos [10] and

Bourgain [3] constructed counterexamples for n ≥ 7. Subsequently, Gardner

[7] and Zhang [22] showed BP is negative for n ≥ 5. Finally, Gardner [5] and
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Zhang [22] proved that BP is affirmative for n = 3 and n = 4, respectively.

Independently, Gardner, Koldobsky, and Schlumprecht gave a unified solution

to BP in [8]: it is true for n ≤ 4, and false for n ≥ 5.

The section function of a convex body K ⊂ Rn is defined by

SK(ξ) = voln−1(K ∩ ξ⊥) ξ ∈ Sn−1.

It is then extended to Rn \{0} as a homogeneous function of degree n−1. Let

∆ denote the Laplacian operator in Rn. For α ∈ R and a function f on Rn,

define the fractional power (−∆)α/2 by

(−∆)α/2f =
1

(2π)n

(
|x|α2 f̂(x)

)∧
,

with the Fourier transform taken in the sense of distributions. It is proven

in [14] that if K,L ⊂ Rn are origin-symmetric convex bodies such that

(−∆)α/2SK(ξ) ≤ (−∆)α/2SL(ξ) ∀ξ ∈ Sn−1 (1.2)

for some α ∈ R with n − 4 ≤ α ≤ n − 1, then voln(K) ≤ voln(L). For

0 ≤ α < n− 4, there are origin-symmetric convex bodies K,L ⊂ Rn such that

equation (1.2) holds, but voln(K) > voln(L). Observe that α = 0 corresponds

to the classic BP.

Variations of BP have also been studied in non-Euclidean spaces. In [21],

Yaskin completely solved BP in the spherical (Sn) and hyperbolic (Hn) spaces.

The solution to the BP problem in Sn is exactly the same as in Euclidean

space, but it is different in hyperbolic space. For n ≥ 3, Yaskin constructed
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origin-symmetric convex bodies K,L ⊂ Hn so that

voln−1(K ∩H) ≤ voln−1(L ∩H) (1.3)

for every central totally-geodesic hyperplane H in Hn, but voln(K) > voln(L).

BP is trivially true in H2.

Using the idea from [14], we prove a modified version of BP in hyperbolic

space. Let K,L ⊂ Hn be convex bodies. The section function SK(ξ) for

K is defined as before, with ξ⊥ denoting the totally-geodesic hyperplane in

Hn passing through O (a fixed origin) and perpendicular to ξ ∈ Sn−1 in the

tangent space to Hn at O. We show that equation (1.2), interpreted in the

setting of hyperbolic space, ensures voln(K) ≤ voln(L) when n−2 ≤ α < n−1.

For 0 ≤ α < n− 2, we find counterexamples. Our proof is based on the study

of the Fourier transform of the distribution

|x|−α2 ‖x‖−1K
1− ( |x|2‖x‖K

)2
.

For ξ ∈ Sn−1, let

AK,ξ(t) = voln−1(K ∩ (ξ⊥ + tξ)), t ∈ R,

be the parallel section function of a convex body K ⊂ Rn. Brunn’s theorem

(See Theorem 2.A.1) implies that if K is origin-symmetric and convex then

max
t∈R

AK,ξ(t) = AK,ξ(0). A natural question is whether the converse is true

and it was affirmatively answered by Makai, Martini and Ódor [16]: If K is

a convex body in Rn such that AK,ξ(0) = max
t∈R

AK,ξ(t) for all ξ ∈ Sn−1, then

K is origin-symmetric. Ryabogin and Yaskin gave an alternative proof of this
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result using Fourier transform techniques. In fact they prove the result not

for convex bodies, but for star bodies. Of course, for star bodies there is no

analogue of Brunn’s theorem, so they use the assumption that AK,ξ(t) has a

critical point at t = 0 for every ξ ∈ Sn−1. Using similar techniques, we prove

the corresponding result in Hn.
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Chapter 2

Preliminaries

2.A Some Definitions from Geometry

We give some definitions and theorems as defined in [13].

Definition 2.A.1 (Minkowski Functional):

A set K in Rn is called a body if it is compact and equal to the closure of

its interior. The Minkowski functional of the body K is defined by

‖x‖K= min{a ≥ 0 : x ∈ aK}.

Definition 2.A.2 (Star body):

A body K in Rn is called a star body if for every x ∈ K, the interval [0, x)

is in the interior of K, and the Minkowski functional of K is continuous on

Rn.
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Definition 2.A.3 (Radial Function):

The radial function of a star body K is defined by

ρK(x) = max{a ≥ 0 : xa ∈ K}, x ∈ Rn\{0}.

Remark: We observe that

ρK(x) = ‖x‖−1K , x ∈ Rn\{0}.

If ξ ∈ Sn−1, then ρK(ξ) gives the distance from the origin to the boundary

of K in the direction of ξ.

Figure 2.1: Radius of K in the direction of ξ ∈ Sn−1.

We say that the body K is Ck-smooth if ρK(x) ∈ Ck(Rn \ {0}).

If we have a star body K in R2, we can think of ρK as a function of the

polar angle, i.e a function on [0, 2π]. The curvature of the boundary curve is
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given by [see [6]]

2(ρ′K)2 − ρKρ′′K + ρ2K(
(ρ′K)2 + ρ2K

)3/2 (2.1)

Definition 2.A.4 (Convex bodies):

A set K ⊂ Rn is called convex if (1− λ)x+ λy ∈ K whenever x, y ∈ K and

0 ≤ λ ≤ 1. A convex body is a body which is also convex.

Definition 2.A.5 (Origin-symmetric):

A body K is origin-symmetric if K = −K.

Remark: The Minkowski functional becomes a norm on Rn if the body K is

convex and origin-symmetric.

Definition 2.A.6 (Parallel section function):

For ξ ∈ Sn−1, the parallel section function AK,ξ(t) is defined by

AK,ξ(t) = voln−1(K ∩ (ξ⊥ + tξ)), t ∈ R,

where ξ⊥ = {x ∈ Rn : 〈x, ξ〉 = 0}.

We will often use the following formula in polar coordinates:

∫
Rn
f(x)dx =

∫
Sn−1

∫ ∞
0

rn−1f(rθ)drdθ.

Then we have

AK,ξ(t) =

∫
〈x,ξ〉=t

χ(‖x‖K)dx.
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Figure2.2:ParallelsectionfunctionAK,ξ(t)

Hereχisthecharacteristicfunctionof[0,1].Thus,

AK,ξ(0)=voln−1(K∩ξ
⊥)=

x,ξ=0

χ(xK)dx

=
Sn−1∩ξ⊥

∞

0

rn−2χ(rθK)drdθ

=
Sn−1∩ξ⊥

θ−1K

0

rn−2drdθ

=
1

n−1 Sn−1∩ξ⊥
ρn−1K (θ)dθ.

Theorem2.A.1(Brunn’sTheorem):

LetKbeaconvexbodyinRn.Thenforafixeddirectionξ∈Sn−1:

1.ThefunctionA
1
n−1

K,ξ isconcaveonitssupport.

2.IfKisorigin-symmetric,then

max
t∈R
AK,ξ(t)=AK,ξ(0).

3.IfKisorigin-symmetricand2-smooth,thenAK,ξ(0)≤0.
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Proof. See [13, Theorem 2.3].

2.B Gamma function, Fourier transform of dis-

tributions and Fractional derivatives

Definition 2.B.1 (Gamma function):

For z ∈ C with positive real part, the gamma function Γ is defined by :

Γ(z) =

∫ ∞
0

tz−1e−tdt. (2.2)

Integrating equation (2.2) by parts, we get

Γ(z + 1) = zΓ(z). (2.3)

This shows that Γ generalizes the factorial function.

Gamma function is analytic in the domain {z ∈ C : Re(z) > 0}. Using the

formula (2.3) we can extend the gamma function in to an analytic function in

the domain C \ (−N ∪ {0}).

Definition 2.B.2 (Space of test functions):

We consider test functions from the Schwartz space S = S(Rn) of rapidly

decreasing, infinitely differentiable functions.

Definition 2.B.3 (Fourier transform):
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The Fourier transform of a function φ ∈ S is defined by

Fφ(y) = φ̂(y) =

∫
Rn
φ(x)e−i〈x,y〉dx, y ∈ Rn.

Remark: The map F : S → S is a bijection.

A distribution is an element of the continuous dual S ′ of S. The action of a

distribution f on a test function φ is denoted by 〈f, φ〉. The Fourier transform

of a distribution f is the distribution f̂ defined by

〈f̂ , φ〉 = 〈f, φ̂〉, ∀ φ ∈ S.

For φ ∈ S, we have the identity

(φ̂)∧(ξ) = (2π)nφ(−ξ).

If φ is even, then

(φ̂)∧ = (2π)nφ and 〈f̂ , φ̂〉 = (2π)n〈f, φ〉.

A distribution f is called even homogeneous of degree p ∈ R if for every

test function φ

〈f(x), φ(x/α)〉 = |α|n+p〈f, φ〉, α ∈ R \ {0}.

We say that a distribution f is positive definite if its Fourier transform is a

positive distribution; that is 〈f̂ , φ〉 ≥ 0 whenever φ ∈ S is such that φ ≥ 0.
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Lemma 2.B.1: Let f be an even homogeneous functions of degree −n+ 1 on

Rn, continuous on the sphere Sn−1. Then the Fourier transform of f is an

even homogenous of degree −1, continuous on Rn \ {0} function such that,

for every ξ ∈ Sn−1, ∫
Sn−1∩ξ⊥

f(θ)dθ =
1

π
f̂(ξ).

As an application we get Theorem 2.B.2.

Theorem 2.B.2: Let K be origin-symmetric star body in Rn. The Fourier

transform of the function ‖x‖−n+1
K is a homogeneous of degree −1 on Rn,

continuous on Rn \ {0} and such that,

AK,ξ(0) = voln−1(K ∩ ξ⊥) =
1

π(n− 1)

(
‖·‖−n+1

K

)∧
(ξ).

Definition 2.B.4 (Fractional derivatives):

Fractional derivatives generalize derivatives to non-integer orders. Let φ be a

continuous, integrable function on R which is m-smooth in a neighbourhood

of 0, and let q ∈ C, −1 < Re(q) < m, q 6= 0, 1, ...,m − 1. The fractional

derivative of φ of order q at 0 is defined by

φ(q)(0) =
1

Γ(−q)

∫ 1

0

t−1−q
(
φ(t)− φ(0)− ...− φm−1(0)

tm−1

(m− 1)!

)
dt

+
1

Γ(−q)

∫ ∞
1

t−1−qφ(t)dt+
1

Γ(−q)

m−1∑
k=0

φk(0)

k! (k − q)
.

Moreover, if q is a non negative integer, one can observe that the fractional

derivative of integer orders coincide with usual derivatives up to a sign (as a
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limit of the latter expression as q → k ).

φ(k)(0) = (−1)k
dk

dtk
φ(t)|t=0, k ∈ N ∪ {0}.

Theorem 2.B.3: Let D be an infinitely smooth origin-symmetric convex body

in Rn, ξ ∈ Sn−1. Then for every q ∈ (−1,∞), q 6= n − 1, the fractional

derivative of the order q of the parallel section function at zero can be ex-

pressed in the form

A
(q)
D,ξ(0) =

cos(πq/2)

π(n− q − 1)
(‖·‖−n+q+1

D )∧(ξ).

Moreover, if k ≥ 0, k 6= n− 1, is an even integer, then

(‖·‖−n+k+1
D )∧(ξ) = (−1)k/2π(n− k − 1)A

(k)
D,ξ(0)

and if k ≥ 1, k 6= n− 1, is an odd integer, then

(‖·‖−n+k+1
D )∧(ξ)

= (−1)(k+1)/22(n− 1− k)k!

×
∫ ∞
0

AD,ξ(z)− AD,ξ(0)− A′′D,ξ(0) z
2

2
− ...− Ak−1D,ξ (0) zk−1

(k−1)!

zk+1
dz.

Proof. [13, Theorem 3.18]

We will often use the following version of Parseval’s formula :

Let f, g ∈ C∞(Sn−1) and 0 < p < n. Then

∫
Sn−1

(
f
( x
|x|

)
|x|−p

)∧
(θ) ·

(
g
( x
|x|

)
|x|−n+p

)∧
(θ)dθ = (2π)n

∫
Sn−1

f(θ)g(θ)dθ.
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See [13, Lemma 3.22] or [17]

2.C Hyperbolic and Spherical Geometry

We recall some facts on spherical and hyperbolic geometry, as given in [1]

and [21].

Let Sn be the unit sphere in Rn+1. Using the stereographic projection (from

the north pole onto the hyperplane P = {(x1, x2, ..., xn+1) ∈ Rn+1|xn+1 = 0})

we can think of Sn as Rn with the metric:

ds2 = 4
dx21 + ...+ dx2n

1 + (x21 + ...+ x2n)2
. (2.4)

To define convexity in spherical space, we need the the geodesic joining any

two points to be unique. However, this is not true on the full sphere. Thus,

we will work within the open hemisphere, where geodesics are unique. Note

that under the stereographic projection, the south hemisphere gets mapped

onto the open unit ball Bn in Rn.

We will identify the hemisphere with Bn equipped with the metric (2.4).

Hyperbolic space can also be identified with the open ball Bn equipped with

the metric :

ds2 = 4
dx21 + ...+ dx2n

1− (x21 + ...+ x2n)2
. (2.5)

In this metric, geodesic segments are in fact arcs of the circles orthogonal to

the boundary of the ball Bn. If a segment passes through the origin, then the

segment becomes a straight line.

We will treat spherical, hyperbolic and Euclidean cases simultaneously by
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consideringBnwiththemetric:

ds2=4
dx21+...+dx

2
n

1+δ(x21+...+x
2
n)
2
, (2.6)

whereδ=1,−1,0correspondtospherical,hyperbolicandEuclideancases

respectively.

Todistinguishbetweendifferenttypesofconvexity,wewilladoptthefol-

lowingnotation.LetKbeabodyintheopenunitballBn.ThebodyKis

s-convex(+1-convex)ifthebodyKisconvexunderthesphericalmetric

definedintheballBn.Similarly,h-convexity(-1-convexity)ande-convex-

ity(0-convexity)aredefinedwithrespecttothehyperbolicandEuclidean

metrics,respectively.

Figure2.3:Convexhullsindifferentmetrics

Someexamplesforconvexhullsoffourpointsareshowninthefigure(2.3)

fordifferentmetrics.
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Clearly any e-convex body containing the origin is a h-convex body. Also any

s-convex body containing the origin is e-convex.

A submanifold F in a Riemannian space R is called totally geodesic, if

every geodesic in F is also a geodesic inR. In the Euclidean space and spherical

space these totally geodesic submanifolds are represented by Euclidean planes

and great subspheres respectively. In the Poincaré model of the hyperbolic

space these submanifolds are spheres orthogonal to the boundary of the unit

ball Bn and Euclidean planes through the origin.

For the purposes of our calculations in the following chapters, we find the

volume element dµn corresponding to the metric

ds2 = 4
dx21 + ...+ dx2n

1− (x21 + ...+ x2n)2
.

Since the metric is diagonal,

dµn = 2n
dx1...dxn(

1− (x21 + ...+ x2n)
)n = 2n

dx

(1− |x|22)n
.

The volume of a body K is then given by

voln(K) =

∫
K

dµn = 2n
∫
K

dx

(1− |x|22)n
.

In polar coordinates we have,

voln(K) = 2n
∫
Sn−1

∫ ‖θ‖−1
K

0

rn−1

(1− r2)n
drdθ.

15



Similarly,thevolumeelementofthehypersurfaceξ⊥is,

dµn−1=2
n−1 dx

(1−|x|22)
n−1

andthe(n−1)-volumeofthesectionofKwillbe

SK(ξ)=
K∩x,ξ=0

dµn−1=2
n−1

K∩x,ξ=0

dx

(1−|x|22)
n−1
.

Figure2.4:Diskmodels

InChapter3wewillbeworkingwithadifferentmodelcalledtheBeltrami-

Kleinmodel.Euclideangeodesicsandhyperbolicgeodesicsarethesameinthis

hyperbolicmodel.Inacertainway,thisisanadvantageforcalculations.There

isanisomorphismbetweenthePoincaŕeandBeltrami-Kleinmodels. The

mappingbetweenthesemodelscanbedescribedastwoprojections,illustrated

inFigure2.5.
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Figure2.5:AnisomorphismbetweenKleinandPoincaŕemodel
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Chapter 3

Modified BP problem in

Hyperbolic Space

In this chapter we will show that, for an origin-symmetric convex bodies K,L

in hyperbolic space Hn, if the distribution

|x|−α2 ‖x‖−1K
1− ( |x|2‖x‖K

)2
(3.1)

is positive definite, then it follows that voln(K) ≤ voln(L) whenever,

(−∆)α/2SK(ξ) ≤ (−∆)α/2SL(ξ) ∀ ξ ∈ Sn−1

Therefore, the problem is reduced to finding α ∈ R such that the distribution

in (3.1) is positive definite.

The following lemma is an analogue of Theorem 2.B.2 in non-Euclidean

settings.
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Lemma 3.1: Let K be an origin symmetric h-convex body in Bn. Let ξ⊥ be

the totally geodesic hyperplane through the origin perpendicular to ξ ∈ Sn−1.

Then the volume of the section of the body K by the hyperplane ξ⊥ will be :

SK(ξ) =
2n−1

π

(
|x|−n+1

2

∫ |x|2
‖x‖K

0

rn−2

(1− r2)n−1
dr

)∧
(ξ), (3.2)

and

(−∆)α/2SK(ξ) =
2n−1

π

(
|x|−n+1+α

2

∫ |x|2
‖x‖K

0

rn−2

(1− r2)n−1
dr

)∧
(ξ), ξ ∈ Sn−1.

(3.3)

K is assumed to be smooth enough. So that the latter is a continuous

function on Sn−1.

Proof. We give the proof as in [21, Lemma 2.2].

Using polar coordinates we obtain:

SK(ξ) = 2n−1
∫
ξ⊥
χ(‖x‖K)

dx

(1− |x|22)n−1

= 2n−1
∫
Sn−1∩ξ⊥

∫ ‖θ‖−1
K

0

rn−2dr

(1− r2)n−1
dθ.

Since |θ|2= 1 for θ ∈ Sn−1, then :

SK(ξ) = 2n−1
∫
Sn−1∩ξ⊥

|θ|−n+1
2

∫ ‖θ‖−1
K

0

rn−2dr

(1− r2)n−1
dθ.

Then using Lemma 2.B.1 :

SK(ξ) =
2n−1

π

(
|x|−n+1

2

∫ |x|2
‖x‖K

0

rn−2

(1− r2)n−1
dr

)∧
(ξ).
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Now we prove (3.3). This result follows immediately from (3.2).

By definition :

(−∆)α/2SK(ξ) =
1

(2π)n
(|x|α2 ŜK(x))∧

=
2n−1

π

(
|x|−n+1+α

2

∫ |x|2
‖x‖K

0

rn−2

(1− r2)n−1
dr

)∧
(ξ), ξ ∈ Sn−1.

Note that (−∆)α/2SK(ξ) is a homogeneous function of degree −1− α on Rn \

{0}.

Theorem 3.1: Let K and L be two h-convex origin symmetric bodies in Bn

and suppose
|x|−α‖x‖−1

K

1−( |x|2‖x‖K
)2

is a positive definite distribution. If

(−∆)α/2SK(ξ) ≤ (−∆)α/2SL(ξ),

for every ξ ∈ Sn−1, then

voln(K) ≤ voln(L).

Proof. First we prove the following inequality [21].

For a, b ∈ (0, 1)

a

1− a2

∫ b

a

rn−2

(1− r2)n−1
dr ≤

∫ b

a

rn−1

(1− r2)n
dr.

Observe that r
1−r2 is increasing in the interval (0, 1). Therefore,

a

1− a2

∫ b

a

rn−2

(1− r2)n−1
dr =

∫ b

a

rn−1

(1− r2)n
a

1− a2

(
r

1− r2

)−1
dr

≤
∫ b

a

rn−1

(1− r2)n
dr.
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(Note that a ≤ b is not necessary)

We let a = ‖x‖−1K and b = ‖x‖−1L . Then

∫
Sn−1

‖x‖−1K
1− ‖x‖−2K

∫ ‖x‖−1
L

‖x‖−1
K

rn−2

(1− r2)n−1
drdx ≤

∫
Sn−1

∫ ‖x‖−1
L

‖x‖−1
K

rn−1

(1− r2)n
drdx.

If the left hand side of the inequality is non negative it follows that,

∫
Sn−1

∫ ‖x‖−1
K

0

rn−1

(1− r2)n
drdx ≤

∫
Sn−1

∫ ‖x‖−1
L

0

rn−1

(1− r2)n
drdx

That is,

voln(K) ≤ voln(L).

Therefore to complete the proof we only need to show the following in-

equality

∫
Sn−1

‖x‖−1K
1− ‖x‖−2K

∫ ‖x‖−1
K

0

rn−2

(1− r2)n−1
drdx

≤
∫
Sn−1

‖x‖−1K
1− ‖x‖−2K

∫ ‖x‖−1
L

0

rn−2

(1− r2)n−1
drdx.

To prove the inequality we use Parseval’s formula, the equation (3.3) and

our assumption (−∆)α/2SK(ξ) ≤ (−∆)α/2SL(ξ). Note that if K is sufficiently

smooth, then (
|x|−α2 ‖x‖−1K
1− ( |x|‖x‖K )2

)∧
,

restricted to the sphere is a continuous function. Moreover if K is not smooth,

then the latter Fourier transform may not be a function, but still there is a

positive measure γ on Sn−1, that corresponds to the restriction of this Fourier
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transform to the sphere. See [13, Corollary 2.26]. Thus :

(2π)n
∫
Sn−1

‖x‖−1K
1− ( |x|2‖x‖K

)2

∫ |x|2
‖x‖K

0

rn−2

(1− r2)n−1
drdx

= (2π)n
∫
Sn−1

(
|x|−α2 ‖x‖−1K
1− ( |x|2‖x‖K

)2

)
·

(
|x|−n+1+α

2

∫ |x|2
‖x‖K

0

rn−2

(1− r2)n−1
dr

)
dx

=

∫
Sn−1

(
|x|−n+1+α

2

∫ |x|2
‖x‖K

0

rn−2

(1− r2)n−1
dr

)∧
(θ)dγ(θ)

=

∫
Sn−1

π

2n−1
(−∆)α/2SK(ξ)dγ(θ)

≤
∫
Sn−1

π

2n−1
(−∆)α/2SL(ξ)dγ(θ)

=

∫
Sn−1

(
|x|−n+1+α

2

∫ |x|2
‖x‖L

0

rn−2

(1− r2)n−1
dr

)∧
(θ)dγ(θ)

= (2π)n
∫
Sn−1

(
|x|−α2 ‖x‖−1K
1− ( |x|2‖x‖K

)2

)
·

(
|x|−n+1+α

2

∫ |x|2
‖x‖L

0

rn−2

(1− r2)n−1
dr

)
dx

= (2π)n
∫
Sn−1

‖x‖−1K
1− ( |x|2‖x‖L

)2

∫ |x|2
‖x‖K

0

rn−2

(1− r2)n−1
drdx.

Theorem 3.2: Let L be a h-convex infinitely smooth origin-symmetric body in

Bn and suppose
|x|−α‖x‖−1

L

1−( |x|2‖x‖L
)2

is not a positive definite distribution. Then there

exists an h-convex body K in Bn such that

(−∆)α/2SK(ξ) ≤ (−∆)α/2SL(ξ),

for every ξ ∈ Sn−1, but

voln(K) > voln(L).

Proof. By continuity of

(
|x|−α2 ‖x‖

−1
L

1−( |x|2‖x‖L
)2

)∧
there is a neighbourhood of ξ where
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this function is negative.

Ω =

{
ξ ∈ Sn−1 :

(
|x|−α2 ‖x‖−1L
1− ( |x|2‖x‖L

)2

)∧
(ξ) < 0

}

Choose a non positive infinitely smooth even function υ supported on Ω∪

{−Ω}. Now we extend υ to a homogeneous function r−1−αυ(θ) of degree−1−α

on Rn. By [13, Lemma 3.16], the Fourier transform of r−1−αυ(θ) is equal to

r−n+1+αg(θ) for some infinitely differentiable function g on Sn−1.

Then we construct a body K such that,

∫ ‖θ‖−1
K

0

rn−2

(1− r2)n−1
dr =

∫ ‖θ‖−1
L

0

rn−2

(1− r2)n−1
dr + εg(θ)

For some small ε > 0 (to make sure the body K is still convex). Now define

αε(θ) such that

∫ ‖θ‖−1
L

0

rn−2

(1− r2)n−1
dr + εg(θ) =

∫ ‖θ‖−1
L +αε(θ)

0

rn−2

(1− r2)n−1
dr

It follows that :

‖θ‖−1K = ‖θ‖−1L +αε(θ).

Therefore :

(−∆)α/2SK(ξ) =
2n−1

π

(
|x|−n+1+α

2

∫ |x|2
‖x‖K

0

rn−2

(1− r2)n−1
dr

)∧
(ξ)

=
2n−1

π

(
|x|−n+1+α

2

∫ |x|2
‖x‖L

0

rn−2

(1− r2)n−1
dr

)∧
(ξ)

+
2n−1

π

(
|x|−n+1+α

2 εg(θ)

)∧
(ξ)
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=
2n−1

π

(
|x|−n+1+α

2

∫ |x|2
‖x‖L

0

rn−2

(1− r2)n−1
dr

)∧
(ξ)

+
2n−1(2π)n

π
ε|x|−1−α2 υ(ξ)

≤ (−∆)α/2SL(ξ)

On the other hand,

(2π)n
∫
Sn−1

(
|x|−α2 ‖x‖−1L
1− ( |x|2‖x‖L

)2

)∫ |x|2
‖x‖K

0

rn−2

(1− r2)n−1
drdx

= (2π)n
∫
Sn−1

(
|x|−α2 ‖x‖−1L
1− ( |x|2‖x‖L

)2

)
·

(
|x|−n+1+α

2

∫ |x|2
‖x‖K

0

rn−2

(1− r2)n−1
dr

)
dx

=

∫
Sn−1

(
|x|−α2 ‖x‖−1L
1− ( |x|2‖x‖L

)2

)∧
(θ) ·

(
|x|−n+1+α

2

∫ |x|2
‖x‖K

0

rn−2

(1− r2)n−1
dr

)∧
(θ)dθ

=

∫
Sn−1

(
|x|−α2 ‖x‖−1L
1− ( |x|2‖x‖L

)2

)∧
(θ) ·

(
|x|−n+1+α

2

∫ |x|2
‖x‖L

0

rn−2

(1− r2)n−1
dr

)∧
(θ)dθ

+

∫
Sn−1

(
|x|−α2 ‖x‖−1L
1− ( |x|2‖x‖L

)2

)∧
(θ)

(
ε|x|−n+1+α

2 g(x/|x|2)
)∧

(θ)

=

∫
Sn−1

(
|x|−α2 ‖x‖−1L
1− ( |x|2‖x‖L

)2

)∧
(θ) ·

(
|x|−n+1+α

2

∫ |x|2
‖x‖L

0

rn−2

(1− r2)n−1
dr

)∧
(θ)dθ

+ (2π)n
∫
Sn−1

(
|x|−α2 ‖x‖−1L
1− ( |x|2‖x‖L

)2

)∧
(θ)

(
ε|x|−1−α2 υ(θ)

)
dθ

> (2π)n
∫
Sn−1

(
|x|−α2 ‖x‖−1L
1− ( |x|2‖x‖L

)2

)∫ |x|2
‖x‖L

0

rn−2

(1− r2)n−1
drdx.

As in the proof of Theorem 3.1, this means voln(K) > voln(L).
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In order to find α such that the distribution

|x|−α2 ‖x‖−1K
1− ( |x|2‖x‖K

)2

is positive definite we use ellipsoids. With the help of ellipsoids proof follows

from defining a body which is obtained by perturbing the Euclidean ball.

For small ε > 0 and k > 2 define a body K such that

‖x‖−1K = |x|−12 −εk‖x‖−1E , ∀x ∈ Rn\{0},

with the ellipsoid E and the norm

‖x‖E=

(
x21 + x22 + ...+ x2n−1 +

x2n
ε2

)1/2

. (3.4)

Theorem 3.3: The body K is well defined and convex for small ε.

Proof. See [20]. This is a standard perturbation argument. We do a similar

proof in Theorem 3.8.

Lemma 3.2: Let en be the standard nth coordinate vector. If 0 ≤ α < n− 4,

then (
‖x‖−1E |x|

−α
2

)∧
(en) ∼ Cε−n+α+2,

where C is a positive constant and the notation a(ε) ∼ b(ε), means

lim
ε→0

a(ε)/b(ε) = 1

Proof. When α is an integer, it follows from part (iii) of [20, Lemma 3.3].
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We will give the proof when α is not an integer.

If k > n−α−2
2

by [20, Lemma 3.1], we get

(
‖x‖−1E |x|

−α
2

)∧
(en) = C(k, α, n)

∫
Sn−1

|(x, en)|2k−n+α+1∆k
(
‖x‖−1E |x|

−α
2

)
dx,

where ∆ is the Laplace operator on Rn, and

C(k, α, n) =
(−1)k+1π

2Γ(2k − n+ α + 2) sin(π(2k − n+ α + 1)/2)
.

Now use the following formula (see [12, p.9])

∫
Sn−1

f((x, θ))dθ = |Sn−2|
∫ 1

−1
(1− t2)(n−3)/2f(t)dt, x ∈ Sn−1. (3.5)

Then it follows

(
‖x‖−1E |x|

−α
2

)∧
(en) ∼

C

∫ 1

0

x2k−n+α+1
n · (1− x2n)

n−3
2 ∆k(‖x‖−1E |x|

−α
2 )
∣∣∣
x21+···+x2n−1=1−x2n

dxn.

Now we introduce a variable z where xn = ε · z. Then

(
‖x‖−1E |x|

−α
2

)∧
(en)

∼ Cε2k−n+α+2

∫ 1/ε

0

z2k−n+α+1·(1−ε2z2)
n−3
2 ∆k

ε (|x|−12 ‖x‖−αE∗ )
∣∣∣
x21+···+x2n−1=1−ε2z2,xn=z

dz,

where E∗ is the ellipsoid given by

‖x‖E∗=
(
x21 + · · ·+ x2n−1 + ε2x2n

)1/2
, (3.6)
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and

∆ε =
∂2

∂x21
+ · · ·+ ∂2

∂x2n−1
+

1

ε2
∂2

∂x2n
.

The largest term is obtained when we apply 1
ε2

∂2

∂x2n
to |x|−12 successively k

times.

(
‖x‖−1E |x|

−α
2

)∧
(en)

∼ Cε−n+α+2

∫ 1/ε

0

z2k−n+α+1·(1−ε2z2)
n−3
2
∂2k

∂x2kn
(|x|−12 )

∣∣∣
x21+···+x2n−1=1−ε2z2,xn=z

dz.

It is enough to show that

∫ 1/ε

0

z2k−n+α+1 · (1− ε2z2)
n−3
2
∂2k

∂x2kn
(|x|−12 )

∣∣∣
x21+···+x2n−1=1−ε2z2,xn=z

dz

has a finite nonzero limit as ε→ 0+.

Observe

∫ 1/ε

0

z2k−n+α+1 · (1− ε2z2)
n−3
2
∂2k

∂x2kn
(|x|−12 )

∣∣∣
x21+···+x2n−1=1−ε2z2,xn=z

dz

=

∫ 1/ε

0

z2k−n+α+1 · (1− ε2z2)
n−3
2

2k∑
m=0

bmz
2m(1− ε2z2 + z2)

−1−2k−2m
2 ,

where bm is a constant.

We will show that

fε(z) = z2k−n+α+1 · (1− ε2z2)
n−3
2 z2m(1− ε2z2 + z2)

−1−2k−2m
2 χ[0, 1/ε](z)

is bounded by an integrable function.

We split the integral in to [0, 1] and [1, 1/ε]. In [0, 1] :
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|fε(z)| ≤ z2k−n+α+1z2m(0.5 + z2)
−1−2k−2m

2 = g(z)

and g(z) is integrable.

In [1, 1/ε] :

fε(z)χ[1, 1/ε](z) = z2k−n+α+1z2mz−1−2k−2mχ[1,∞)(z) = z−n+αχ[1,∞)(z)

and −n+ α < −4.

Therefore from Dominated Convergence Theorem one can see that

lim
ε→0+

∫ 1/ε

0

z2k−n+α+1 · (1− ε2z2)
n−3
2
∂2k

∂x2kn
(|x|−12 )

∣∣∣
x21+···+x2n−1=1−ε2z2,xn=z

dz

=

∫ ∞
0

z2k−n+α+1 · ∂
2k

∂z2k
(1 + z2)−1/2dz.

To finish the proof, we need to show that the latter integral is not equal

to zero. Let P (z2) = c0 + c1z
2 + · · · + ck−1z

2k−2 be the Taylor polynomial of

(1 + z2)−1/2 at zero of order 2k − 2. Then clearly,

∫ ∞
0

z2k−n+α+1· ∂
2k

∂z2k
(1+z2)−1/2dz =

∫ ∞
0

z2k−n+α+1· ∂
2k

∂z2k
(
(1 + z2)−1/2 − P (z2)

)
dz.

After integration by parts 2k times and the change of the variable t = z2 the

integral becomes

= (2k − n+ α + 1)...(−n+ α + 2)

∫ ∞
0

z−n+α+1
(
(1 + z2)−1/2 − P (z2)

)
dz

=
(2k − n+ α + 1)...(−n+ α + 2)

2

∫ ∞
0

t
−n+α

2

(
(1 + t)−1/2 − P (t)

)
dt.
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Using integration by parts in the opposite order and observing that P (t) is

the Taylor polynomial of (1 + t)−1/2, we get

=
(2k − n+ α + 1)...(−n+ α + 2)

2(−n+α
2

+ k)...(−n+α
2

+ 2)(−n+α
2

+ 1)

×
∫ ∞
0

t
−n+α

2
+k ∂

k

∂tk
(
(1 + t)−1/2 − P (t)

)
dt.

=
(2k − n+ α + 1)...(−n+ α + 2)

2(−n+α
2

+ k)...(−n+α
2

+ 2)(−n+α
2

+ 1)

×
∫ ∞
0

t
−n+α

2
+k ∂

k

∂tk
(1 + t)−1/2dt.

The latter is clearly a nonzero constant.

Rest of the chapter consists with few theorems which will be proved for

Euclidean space. Those results will play an important role in determining the

sign of the distribution

(
|x|−α2 ‖x‖

−1
K

1−( |x|2‖x‖K
)2

)∧
for an h-convex body K; see Theorem

3.6.

Theorem 3.4: Let n− 4 < α < n− 2. Then there exists an origin-symmetric

body L in Rn, n ≥ 4, such that |x|−α−22 ‖x‖L is not a positive definite distri-

bution.

Proof. For small ε > 0 let L be an ellipsoid with the norm

‖x‖L=

(
x21 + · · ·+ x2n−1 +

x2n
ε2

)1/2

.

Now, we define a star body K ⊂ Rn :

ρK(θ) = ρ
1

−1−α
L (θ), θ ∈ Sn−1.
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Then, we observe

|x|−α−22 ‖x‖L=
(
|x|
−α−2
−1−α
2 ‖x‖

1
−1−α
L

)−α−1
= ‖x‖−1−αK , x ∈ Rn \ {0}

Using [19, Theorem 2.2] with q = n− α− 2 ∈ (0, 2) we have

(‖x‖−1−αK )∧(ξ) =
π(α + 1)

Γ(−n+ α + 2) cos π(n−α−2)
2

∫ ∞
0

t−n+α+1(AK,ξ(t)−AK,ξ(0))dt,

case n− α− 2 can be obtained from the part (c) of [19, Theorem 2.2].

Since, for α ∈ (n− 4, n− 2) , Γ(−n+α+ 2) cos π(n−α−2)
2

≤ 0, we only need

to prove that for some ξ

∫ ∞
0

t−n+α+1(AK,ξ(t)− AK,ξ(0))dt > 0. (3.7)

Note that case α = n− 3 can be obtained by the limits.

Let ξ be the direction of the xn-axis. Let [−t0, t0] be the support of AK,ξ(t),

then∫ ∞
0

t−n+α+1(AK,ξ(t)− AK,ξ(0))dt

=

∫ t0

0

t−n+α+1(AK,ξ(t)− AK,ξ(0))dt−
∫ ∞
t0

t−n+α+1AK,ξ(t)dt

=

∫ t0

0

t−n+α+1(AK,ξ(t)− AK,ξ(0))dt− t−n+α+2
0

AK,ξ(0)

n− α− 2
(3.7)
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Introducing new coordinates on the sphere Sn−1 we get

θ = cosφ · η + sinφ · ξ, θ ∈ Sn−1

(−π/2 ≤ φ ≤ π/2 and η ∈ Sn−1 ∩ ξ⊥)

Since we are interested in sections of K perpendicular to ξ, its axis of

revolution, we denote ρK(φ) as the radial function of those θ ∈ Sn−1 that

makes an angle φ with the plane ξ⊥ and therefore

ρK(φ) =

(
cos2 φ+

sin2 φ

ε2

) 1
2+2α

Observe that t = sinφ · ρK(φ) is an increasing function of the angle φ ∈

(0, π/2), therefore all the sections of K by hyperplane orthogonal to ξ are

(n − 1)-dimensional disks. Also, t0 = ε−
1

4(1+α) goes to infinity as ε tends to

zero. Hence, last term in (3.7) approaches to zero as ε goes to zero.

Now, we have

AK,ξ(t(φ)) = ωn−1(cosφ · ρK(φ))n−1

= ωn−1 cosn−1 φ

(
cos2 φ+

sin2 φ

ε2

) n−1
2+2α

where, ωn−1 is the volume of the unit (n− 1)-dimensional Euclidean ball.

Introduce a new variable t = sinφ

(
cos2 φ+ sin2 φ

ε2

) 1
2+2α

.

Thus,
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∫ t0

0

t−n+α+1(AK,ξ(t)− AK,ξ(0))dt

= ωn−1

∫ π/2

0

(sinφ)−n+α+1 · (cos2 φ+ ε−2 sin2 φ)
−n+α+1

2+2α

×
(

cosn−1 φ(cos2 φ+ ε−2 sin2 φ)
n−1
2+2α − 1

)
× (cos2 φ+ ε−2 sin2 φ)

1
2+2α

−1
(

cos3 φ+ ε−2 +
(ε−2 − 1

1 + α

)
cosφ sin2 φ

)
dφ.

(3.7)

Now, we will find the intervals where the integrand is positive and negative.

This depends on the sign of the equation(
cosn−1 φ(cos2 φ+ ε−2 sin2 φ)

n−1
2+2α − 1

)
= 0.

In fact we need to solve

f(φ) = (cosφ)4+2α + ε−2(cosφ)2+2α sin2 φ = 1 (3.8)

Left hand side of this equation first increases and then decreases to zero.

Therefore the equation has two roots, namely φ1 and φ2. Observe that φ1 = 0.

One can show that if ε is small, the maximum of the function f(φ) roughly

attained at φ = arccos
√

1− 1
2+α

. From (3.8) and φ2 & arccos
√

1− 1
2+α

we

get

ε−2(cosφ)2+2α ≤ C(α) and φ2 = π/2− o(ε
2

2+α )

Now, we see that integrand is positive in the interval (0, π/2−o(ε
2

2+α )) and

negative in the interval (π/2 − o(ε
2

2+α ), π/2). Splitting the integral into two

according to these intervals we see that, in the negative interval absolute value
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of the integral is bounded above by

Cε
n−α−2
1+α ,

which approaches to zero as ε approaches to zero.

To estimate the positive part of the integral it is sufficient to consider the

interval [π/4, π/3]. For small ε, the integral has order

Cε−1,

which approaches infinity as ε gets smaller. Thus we have (3.7).

Corollary 3.4.1: Suppose q ≤ 2k, k ∈ N ∪ {0}.

1. If f ∈ C2k(Sn−1), then the Fourier transform (f(θ)r−n+q+1)∧ is a homo-

geneous of degree −1− q continuous function on Rn \ {0}.

2. If fm, f ∈ C2k(Sn−1) and fm converges to f in C2k(Sn−1), then the

Fourier transform (fm(θ)r−n+q+1)∧ converges to (f(θ)r−n+q+1)∧ in the

space C(Sn−1).

Proof. See [13, Corollary 3.17]

In [14] following theorem has been proved.

Theorem 3.5: Let K be an origin-symmetric convex body in Rn. If α ∈

[n− 4, n− 1), then ‖x‖−1K ·|x|
−α
2 is a positive definite distribution.
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However in the sense of hyperbolic space we have a different answer as

below.

Theorem 3.6:

1. Let K be an origin-symmetric h-convex body in Bn. If α ∈ [n − 2, n − 1),

then

‖x‖−1K ·|x|
−α
2

1− |x|22
‖x‖2K

is a positive definite distribution.

2. For α ∈ [n− 4, n− 2), there exists an origin-symmetric h-convex body K in

Bn such that

‖x‖−1K ·|x|
−α
2

1− |x|22
‖x‖2K

is not a positive definite distribution.

Proof.

1. For any h - convex body K in Bn define a star body L as follows :

‖x‖−1−αL =
‖x‖−1K ·|x|

−α
2

1− |x|22
‖x‖2K

. (3.9)

We use Theorem 2.B.3. Then,

for q ∈ (−1, 0), cos qπ
2

and Γ(−q) are positive, which gives,

A
(q)
L,ξ(0) =

1

Γ(−q)

∫ ∞
∞
|t|−q−1A(t)dt ≥ 0,

for q = 0 ,cos qπ
2

= 1.

A
(0)
L,ξ(0) = (−1)0AL,ξ(0) ≥ 0.

34



Therefore,

(
‖x‖−1

K ·|x|
−α
2

1−
|x|22
‖x‖2

K

)∧
= (‖x‖−1−αL )∧ is positive for all ξ ∈ Sn−1.

2. Let K be defined as follows:

‖x‖−1K = |x|−12 −ε3‖x‖−1E ,

where E is the ellipsoid

‖x‖E=

(
x21 + · · ·+ x2n−1 +

x2n
ε2

)1/2

.

The radius of K is less than 1, and so K lies in Bn. Also one can check

that K is e-convex, and therefore it is h-convex.

We need to show that the distribution

|x|−α2 ‖x‖−1K
1− |x|22‖x‖−2K

is not positive definite.

We have

|x|−α2 ‖x‖−1K
1− |x|22‖x‖−2K

= ε−3|x|−α−22 ‖x‖E·
1− ε3|x|2‖x‖−1E
2− ε3|x|2‖x‖−1E

=
ε−3

2
|x|−α−22 ‖x‖E−

|x|−α−12

2(2− ε3|x|2‖x‖−1E )
(3.10)

It is not hard to see that the last fraction of (3.10) is close to 1/4|x|−α−12

in C2(Sn−1) and its Fourier transform is a constant on the sphere. Therefore,

for sufficiently small ε > 0 the term ε−3

2
|x|−α−22 ‖x‖E is dominating. So from

part (ii) of Corollary 3.4.1 we can just look at the distribution |x|−α−22 ‖x‖E,

but it is not positive definite from Theorem 3.4 for α ∈ (n− 4, n− 2).
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For α = n− 4 we define a body M such that |x‖−α−1M = |x|−α−22 ‖x‖E. Then

using a similar proof as in [19, Lemma 3.2], we get

(|x‖−α−1M )∧(ξ) = −π(n− 3)A
(2)
M,ξ(0) < 0.

In the previous Theorem we covered the case where α ∈ [n − 4, n − 2).

To cover the remaining case where α ∈ [0, n − 4) we need some results in

Euclidean space.

Theorem 3.7: For 0 ≤ α < n − 4 there exists an infinitely smooth origin-

symmetric convex body K with positive curvature, so that

‖x‖−1K ·|x|
−α
2

is not a positive definite distribution.

Proof. If α < n − 4, then for some small δ > 0 we also have α < n − 4 − δ.

Now define K

‖x‖−1K = |x|−12 −εn−α−2−δ‖x‖−1E , x ∈ Rn \ {0},

where E is the ellipsoid with the norm

‖x‖E=

(
x21 + · · ·+ x2n−1 +

x2n
ε2

)1/2

.
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Writing the equality using Fourier transforms :

(‖x‖−1K ·|x|
−α
2 )∧(ξ) = (|x|−α−12 )∧(ξ)− εn−α−2−δ(‖x‖−1E ·|x|

−α
2 )∧(ξ),

(‖x‖−1K ·|x|
−α
2 )∧(ξ) = C(α + 1, n)− εn−α−2−δ(‖x‖−1E ·|x|

−α
2 )∧(ξ), ξ ∈ Sn−1.

(3.11)

The latter comes from the Fourier transform of |x|−α−12 , [9, p. 363].

For 0 < k < n

(|x|−k2 )∧(ξ) = Ck,n|ξ|−n+k2

Where,

Ck,n =
2n−kπn/2Γ((n− k)/2)

Γ(k/2)

Using Lemma 3.2, for direction en we get,

(
‖x‖−1E |x|

−α
2

)∧
(en) ∼ Cε−n+α+2,

where C is a positive constant.

Therefore,

(
‖x‖−1K |x|

−α
2

)∧
(en) =

(
|x|−1−α2

)∧
(en)− εn−α−2−δ

(
‖x‖−1E |x|

−α
2

)∧
(en)

∼ C(α, n)− Cεn−α−2−δε−n+α+2

= C(α, n)− Cε−δ < 0,

for small enough ε.
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To construct a counter example for those values of α in h-space we use the

previous result.

Theorem 3.8: For 0 ≤ α < n − 4 there exists an infinitely smooth origin-

symmetric, h-convex body L in Bn, so that

‖x‖−1L ·|x|
−α
2

1− |x|22
‖x‖2L

is not a positive definite distribution.

Proof. Let us define a body L implicitly by the formula :

‖x‖−1K =
‖x‖−1L

1− |x|22
‖x‖2L

and let K be the body defined by,

‖x‖−1K = |x|−12 −εn−α−2−δ‖x‖−1E ,∀x ∈ Rn\{0},

With the ellipsoid E and the norm,

‖x‖E=

(
x21 + x22 + ...+ x2n−1 +

x2n
ε2

)1/2

.

By Theorem 3.3 K is e-convex. From the previous Theorem 3.7 we have

‖x‖−1
L ·|x|

−α
2

1−
|x|22
‖x‖2

L

is not a positive definite distribution.

So it remains to prove that the body L is e-convex, and therefore h-convex.

Since K and L are bodies of revolution, we will only look at their generating

curves.
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Passing it on to polar coordinates we get:

ρK = 1− εn−α−2−δ
(

cos2 t+
sin2 t

ε2

)−1/2
,

which implies,

ρ′K =
εn−α−2−δ

2

(
1

ε2
− 1

)(
cos2 t+

sin2 t

ε2

)−3/2
sin 2t

and

ρ′′K =
εn−α−2−δ

2

(
1

ε2
− 1

)
×

[
2 cos 2t

(
cos2 t+

sin2 t

ε2

)−3/2
− 3

2

(
1

ε2
− 1

)
sin2 2t

(
cos2 t+

sin2 t

ε2

)−5/2]

=
εn−α−2−δ

2

(
1

ε2
− 1

)(
cos2 t+

sin2 t

ε2

)−3/2
×

[
2 cos 2t− 3

2

(
1

ε2
− 1

)
sin2 2t

(
cos2 t+

sin2 t

ε2

)−1]

Using the formula

ρK =
ρL

1− ρ2L

we get

ρL =
−1 +

√
1 + 4ρ2K

2ρK
.

Therefore:

ρ′L =
1

2

(
− 1 +

√
1 + 4ρ2K

)
ρ2K
√

1 + 4ρ2K
ρ′K

and,
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ρ′′L =
1

2δ

[(
− 1√

1 + 4ρ2K

+ 1

)′
ρ′K
ρ2K

+

(
− 1√

1 + 4ρ2K

+ 1

)
ρKρ

′′
K − 2(ρ′K)2

ρ3K

]

Now, for small ε > 0 ,

ρK = 1− εn−α−2−δ
(

cos2 t+
sin2 t

ε2

)−1/2
gives

|ρK − 1|≤ εn−α−2−δ.

Also we have,

ρ′K =
εn−α−2−δ

2

(
1

ε2
− 1

)(
cos2 t+

sin2 t

ε2

)−3/2
sin 2t

|ρ′K | ≤
εn−α−2−δ

2

(
1

ε2

)
=
εn−α−4−δ

2
,

and

ρ′′K =
εn−α−2−δ

2

(
1

ε2
− 1

)(
cos2 t+

sin2 t

ε2

)−3/2
×

[
2 cos 2t− 3

2

(
1

ε2
− 1

)
sin2 2t

(
cos2 t+

sin2 t

ε2

)−1]

|ρ′′K | ≤
εn−α−2−δ

2

(
1

ε2

)[
2 +

3

2

1

ε2

(
1

ε2

)−1]
=

7

4
εn−α−4−δ.
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Since, ρK is close to 1, we have

|ρL −
(−1 +

√
5)

2
|< εn−α−2−δ.

Using those bounds we can again bound ρ′L and ρ′′L as below.

ρ′L =
1

2

(
− 1 +

√
1 + 4ρ2K

)
ρ2K
√

1 + 4ρ2K
ρ′K

|ρ′L| ≤ D1ε
n−α−4−δ, where D1 is a constant.

ρ′′L =
1

2

[(
− 1√

1 + 4ρ2K
+ 1

)′
ρ′K
ρ2K

+

(
− 1√

1 + 4ρ2K
+ 1

)
ρKρ

′′
K − 2(ρ′K)2

ρ3K

]

|ρ′′L| ≤
1

2

[
D2ε

n−α−4−δ +D3

ρKC2ε
n−α−4−δ + 2

(
C1ε

n−α−4−δ
)2

ρ3K

]

≤ 1

2
εn−α−4−δ

[
D2 +D4

]
= D5ε

n−α−4−δ,

Where C1, C2, D2, D3, D4 and D5 are constants.

From the curvature formula we observe the body L is e-convex for small ε > 0.

Hence the result follows from Theorem 3.7.
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Chapter 4

Converse of Brunn’s Theorem

Theorem 4.1: Let K be a C1 star body in Hn. If for every ξ ∈ Sn−1 the

function AK,ξ(t) has a critical point at t = 0, then K is origin symmetric.

This theorem has been proved in [16] for Euclidean space; see also [18].

To prove the theorem in hyperbolic space Hn we will use the Beltrami- Klein

model as it looks more natural. This model can be identified with the interior

of the unit ball in Rn with the metric

ds2 = 4
|dx|22

(1− |x|22)
+ 4

(x · dx)2

(1− |x|22)2
. (4.1)

In order to compute the volume element of this metric, we write
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ds2

= 4
(x1dx1 + x2dx2 + · · ·+ xndxn)2(

1− (x21 + x22 + · · ·+ x2n)
)2 + 4

dx21 + dx22 + · · ·+ dx2n(
1− (x21 + x22 + · · ·+ x2n)

)
= 4

(x1dx1 + x2dx2 + · · ·+ xndxn)2 +
(

1− (x21 + x22 + · · ·+ x2n)
)

(dx21 + dx22 + · · ·+ dx2n)(
1− (x21 + x22 + · · ·+ x2n)

)2

= 4

∑
i

x2i dx
2
i + 2

∑
i,j
i6=j

xixjdxidxj +
∑
i

dx2i −
∑
i,j
i6=j

x2i dx
2
j −

∑
i

x2i dx
2
i

(
1− (x21 + x22 + · · ·+ x2n)

)2

= 4

(1−
∑
i6=1

x2i )dx
2
1 + (1−

∑
i6=2

x2i )dx
2
2 + · · ·+ (1−

∑
i6=n

x2i )dx
2
n + 2

∑
i,j
i6=j

xixjdxidxj

(
1− (x21 + x22 + · · ·+ x2n)

)2
=
∑
i,j

gijdxidxj

We let G be the determinant of the matrix [gij]
n
i,j=1. Then we compute G as

below.

G =
4n

(1− |x|22)2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−
∑
i
i6=1

x2i x1x2 x1x3 . . . x1xn

x1x2 1−
∑
i
i6=2

x2i x2x3 . . . x2xn

...
...

...
. . .

...

xnx1 xnx2 xnx3 . . . 1−
∑
i

i6=n

x2i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
4n

(1− |x|22)2n
x21x

2
2 . . . x

2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−
∑
i
i6=1

x2i

x21
1 1 . . . 1

1

1−
∑
i
i6=2

x2i

x22
1 . . . 1

...
...

...
. . .

...

1 1 1 . . .

1−
∑
i

i6=n

x2i

x2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
R1⇐⇒R1−Rn
R2⇐⇒R2−Rn

...
Rn−1⇐⇒Rn−1−Rn−−−−−−−−−−→

=
4n

(1− |x|22)2n
x21x

2
2 . . . x

2
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−|x|2
x21

0 0 . . . −1−|x|2
x21

0 1−|x|2
x22

0 . . . −1−|x|2
x21

...
...

...
. . .

...

1 1 1 . . .

1−
∑
i

i6=n

x2i

x2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

44



=
4n

(1− |x|22)2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− |x|2 0 0 . . . −(1− |x|2)

0 1− |x|2 0 . . . −(1− |x|2)
...

...
...

. . .
...

x21 x22 x23 . . . 1−
∑
i

i6=n

x2i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
4n

(1− |x|22)2n
(1− |x|2)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . −1

0 1 0 . . . −1

...
...

...
. . .

...

x21 x
2
2 x

2
3 . . . 1−

∑
i

i6=n

x2i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Cn⇐⇒Cn+

∑n−1
i=1 Ci−−−−−−−−−−−→

=
4n

(1− |x|22)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0

0 1 0 . . . 0

...
...

...
. . .

...

x21 x
2
2 x

2
3 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
Lower triangular matrix

Which implies

G =
4n

(1− |x|22)n+1

Now, we consider the volume element with respect to the metric (4.1).

Volume element = d(vol) =
√
Gdx1dx1 . . . dxn =

2n

(1− |x|22)
n+1
2

dx1dx1 . . . dxn.
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Proof of Theorem 4.1. For −1 < Re(q) < 0,

A
(q)
K,ξ(0) =

1

Γ(−q)

∫ ∞
0

z−1−qAK,ξ(z)dz

=
1

2Γ(−q)

∫
R
(z−1−q + z−1−qsgn z)AK,ξ(z)dz

=
1

2Γ(−q)

∫
R
(z−1−q + z−1−qsgn z)

×
∫
〈x,ξ〉=z

2n−1
χ(‖x‖K)

(1− |x|22)
n
2

dxdz

=
2n−2

Γ(−q)

∫
K

(〈x, ξ〉−1−q + 〈x, ξ〉−1−qsgn 〈x, ξ〉)
(1− |x|22)

n
2

dx.

Passing to polar coordinates we obtain :

A
(q)
K,ξ(0) =

2n−2

Γ(−q)

∫
Sn−1

(〈θ, ξ〉−1−q + 〈θ, ξ〉−1−qsgn 〈x, ξ〉)

×
∫ ‖θK‖−1

0

rn−q−2

(1− r2)n2
drdθ.

writing ∫ ‖θK‖−1

0

rn−q−2

(1− r2)n2
dr

as a sum of its odd and even parts we get :
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A
(q)
K,ξ(0)

=
2n−3

Γ(−q)

∫
Sn−1

〈θ, ξ〉−1−q
(∫ ‖θ‖−1

K

0

rn−q−2

(1− r2)
n
2

dr +

∫ ‖−θK‖−1

0

rn−q−2

(1− r2)
n
2

dr

)
dθ

+
2n−3

Γ(−q)

∫
Sn−1

〈θ, ξ〉−1−qsgn 〈x, ξ〉

×
(∫ ‖θK‖−1

0

rn−q−2

(1− r2)
n
2

dr −
∫ ‖−θK‖−1

0

rn−q−2

(1− r2)
n
2

dr

)
dθ.

Next we will use the following formula from [11, Theorem 3.1].

If 0 < Re(p) < 1, then the Fourier transform of fp is a homogeneous

function of degree −p on Rn \ {0} given by

f̂p = Γ(p) cos(pπ/2)

∫
Sn−1

〈x, θ〉−pf(θ)dθ

− iΓ(p) sin(pπ/2)

∫
Sn−1

〈x, θ〉sgn(x · θ)f(θ)dθ.

Where, fp is a homogeneous degree −n+p extension of f ∈ C(Sn−1) to Rn\{0}

with,

fp = |x|−n+p2 f(x/|x|).

Hence,

A
(q)
K,ξ(0) =

2n−2 cos(qπ/2)

π

(
|x|−n+1+q

2

∫ |x|2
‖x‖K

0

rn−q−2

(1− r2)n2
dr

+ |x|−n+1+q
2

∫ |x|2
‖−x‖K

0

rn−q−2

(1− r2)n2
dr

)∧
(ξ)

− i2
n−2 sin(qπ/2)

π

(
|x|−n+1+q

2

∫ |x|2
‖x‖K

0

rn−q−2

(1− r2)n2
dr

− |x|−n+1+q
2

∫ |x|2
‖−x‖K

0

rn−q−2

(1− r2)n2
dr

)∧
(ξ).
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Using the fact ∀ξ ∈ Sn−1, A′K,ξ(0) = 0 we get,

(
|x|−n+1+q

2

∫ |x|2
‖x‖K

0

rn−q−2

(1− r2)
n
2

dr − |x|−n+1+q
2

∫ |x|2
‖−x‖K

0

rn−q−2

(1− r2)
n
2

dr

)∧
(ξ) = 0.

Thus, ∫ |x|2
‖x‖K

0

rn−q−2

(1− r2)n2
dr =

∫ |x|2
‖−x‖K

0

rn−q−2

(1− r2)n2
dr,

which means ‖x‖K= ‖−x‖K ∀x ∈ Rn\{0}.

Therefore, K is origin symmetric.
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