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Abstract

The Busemann-Petty problem asks the following: if K, L C R™ are origin-

symmetric convex bodies such that

vol,_ (K NER) <wvol,_(LNEY)  VEe s,

is it necessary that vol,(K) < vol,(L)? This problem received a lot of atten-
tion, and many analogues have been considered. For origin-symmetric convex
bodies K and L in hyperbolic space H", we find a suitable condition which
guarantees vol,, (K) < vol,(L).

Origin-symmetry is important in many problems in convex geometry. By
Brunn’s Theorem, each central hyperplane section of an origin-symmetric con-
vex body K C R™ has maximal volume amongst all parallel sections of K.
Makai, Martini and Odor proved the converse of this statement for star bod-

ies. Again working in H", we prove an analogue of this result.
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Chapter 1

Introduction

1.A Background

The Busemann-Petty problem (BP), first posed in [4] in 1956, asks the follow-

ing: for origin-symmetric convex bodies K and L in R" such that
vol,_1 (K N&X) < vol,_1 (L NEY) vVeEe s (1.1)

where &+ is the central hyperplane in R™ orthogonal to &, is it necessary that
vol, (K) < vol,(L)? This problem is trivially true for n = 2, but otherwise it
remained largely open for many years. Larman and Rogers proved in [15] that
the answer is negative for n > 12. Ball [2] verified that the volume of every
central hyperplane section of the unit cube is bounded above by v/2. Using this
bound, he then showed that appropriate dilations of the n-dimensional cube
and ball provide a counterexample to BP for n > 10. Giannopoulos [10] and
Bourgain [3] constructed counterexamples for n > 7. Subsequently, Gardner

[7] and Zhang [22] showed BP is negative for n > 5. Finally, Gardner [5] and



Zhang [22] proved that BP is affirmative for n = 3 and n = 4, respectively.
Independently, Gardner, Koldobsky, and Schlumprecht gave a unified solution
to BP in [8]: it is true for n < 4, and false for n > 5.

The section function of a convex body K C R" is defined by
Sk(€) =vol, ((KNED) e sm

It is then extended to R™\ {0} as a homogeneous function of degree n — 1. Let
A denote the Laplacian operator in R™. For o € R and a function f on R",

define the fractional power (—A)%/2 by
1 AN
. a/2 - _ - Iy

with the Fourier transform taken in the sense of distributions. It is proven

in [14] that if K, L C R" are origin-symmetric convex bodies such that
(=2)"78k(§) < (-A)25,(€) Ve e s (1.2)

for some @ € R with n —4 < o < n — 1, then vol,(K) < vol,(L). For
0 < a < n—4, there are origin-symmetric convex bodies K, L C R" such that
equation (1.2) holds, but vol,,(K) > vol,(L). Observe that a« = 0 corresponds
to the classic BP.

Variations of BP have also been studied in non-Euclidean spaces. In [21],
Yaskin completely solved BP in the spherical (S™) and hyperbolic (H") spaces.
The solution to the BP problem in S™ is exactly the same as in Euclidean

space, but it is different in hyperbolic space. For n > 3, Yaskin constructed



origin-symmetric convex bodies K, L C H" so that

vol,_1(K N H) < vol,_1(L N H) (1.3)

for every central totally-geodesic hyperplane H in H", but vol,, (K) > vol,(L).
BP is trivially true in H?2.

Using the idea from [14], we prove a modified version of BP in hyperbolic
space. Let K,L C H" be convex bodies. The section function Sk (&) for
K is defined as before, with &+ denoting the totally-geodesic hyperplane in
H" passing through O (a fixed origin) and perpendicular to & € S™! in the
tangent space to H" at O. We show that equation (1.2), interpreted in the
setting of hyperbolic space, ensures vol, (K) < vol,(L) whenn—2 < a < n—1.
For 0 < a < n — 2, we find counterexamples. Our proof is based on the study

of the Fourier transform of the distribution

ElrlEd s
_(zl2 o
1= (o)

For £ € 5" let
AKf(t) = VOln_l(K N (fl + tf)), t eR,

be the parallel section function of a convex body K C R"™. Brunn’s theorem
(See Theorem 2.A.1) implies that if K is origin-symmetric and convex then
max Age(t) = Ake(0). A natural question is whether the converse is true
and it was affirmatively answered by Makai, Martini and Odor [16]: If K is
a convex body in R” such that A ¢(0) = max Age(t) for all £ € S™1, then

K is origin-symmetric. Ryabogin and Yaskin gave an alternative proof of this
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result using Fourier transform techniques. In fact they prove the result not
for convex bodies, but for star bodies. Of course, for star bodies there is no
analogue of Brunn’s theorem, so they use the assumption that Ax¢(¢) has a
critical point at ¢t = 0 for every £ € S"~!. Using similar techniques, we prove

the corresponding result in H".



Chapter 2

Preliminaries

2.A Some Definitions from Geometry

We give some definitions and theorems as defined in [13].

Definition 2.A.1 (Minkowski Functional):
A set K in R™ s called a body if it is compact and equal to the closure of

its interior. The Minkowski functional of the body K is defined by
|z|| k= min{a > 0: x € aK}.

Definition 2.A.2 (Star body):
A body K in R™ is called a star body if for every x € K, the interval [0, x)
1s in the interior of K, and the Minkowski functional of K is continuous on

R™.



Definition 2.A.3 (Radial Function):

The radial function of a star body K is defined by

pr(z) =max{a >0:2a € K}, z¢cR"\{0}.

Remark: We observe that

pr(@) = |zl =€ RM\{0}.

If £ € S"7, then pg(€) gives the distance from the origin to the boundary

of K in the direction of &.

Figure 2.1: Radius of K in the direction of £ € S™ 1.

We say that the body K is C*-smooth if pr(z) € C*(R™\ {0}).

If we have a star body K in R?, we can think of px as a function of the

polar angle, i.e a function on [0, 27]. The curvature of the boundary curve is



given by [see [6]]

2(px)” — prpic + Pk
3/2
()2 + %)

(2.1)

Definition 2.A.4 (Convex bodies):
A set K C R™ is called convex if (1 — N)x + Ay € K whenever z,y € K and

0 <A< 1. A convex body is a body which is also convez.

Definition 2.A.5 (Origin-symmetric):

A body K s origin-symmetric if K = —K.

Remark: The Minkowski functional becomes a norm on R” if the body K is

convex and origin-symmetric.

Definition 2.A.6 (Parallel section function):

For & € 8", the parallel section function Ak ¢(t) is defined by
Age(t) = vol,_1(K N (X +18)), teER,

where & = {x € R : (z,&) = 0}.

We will often use the following formula in polar coordinates:

— - n—1
- f(x)dx—/snl/o " f(r0)drdo.

Then we have

At) = [ (el
(z,6)=t



Figure 2.2: Parallel section function Ak ¢(t)

Here x is the characteristic function of [0, 1]. Thus,

Ake®) = vl (K€ = [ (el

:f (/ r"_Zx('r'”H“K)dfr)dﬁ
Sn—lngJ_ 1]
el
:f (/ T“_2dr)d9
Sn—lngJ_ 1]

1 / B
= = (0)do.
n — ]_ Sn—lngl pK ( )

Theorem 2.A.1 (Brunn’s Theorem):

Let K be a convex body in R™. Then for a fized direction & € S™1:

1
1. The function A}‘{_g is concave on its support.

2. If K is origin-symmetric, then
max Agcg(t) = Arg(0)-

3. If K is origin-symmetric and 2-smooth, then A% .(0) < 0.
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Proof. See [13, Theorem 2.3]. O

2.B Gamma function, Fourier transform of dis-
tributions and Fractional derivatives

Definition 2.B.1 (Gamma function):

For z € C with positive real part, the gamma function I' is defined by :
['(z) = /000 = te~tdt. (2.2)
Integrating equation (2.2) by parts, we get
[(z+41) = 2I'(2). (2.3)

This shows that I' generalizes the factorial function.

Gamma function is analytic in the domain {z € C: Re(z) > 0}. Using the

formula (2.3) we can extend the gamma function in to an analytic function in

the domain C\ (—=N U {0}).

Definition 2.B.2 (Space of test functions):
We consider test functions from the Schwartz space S = S(R™) of rapidly

decreasing, infinitely differentiable functions.

Definition 2.B.3 (Fourier transform):



The Fourier transform of a function ¢ € S is defined by

Foly) = &(y) = . gb(x)efi(x,y)dx’ y € R".

Remark: The map F : § — S is a bijection.

A distribution is an element of the continuous dual S’ of S. The action of a
distribution f on a test function ¢ is denoted by (f, #). The Fourier transform

of a distribution f is the distribution f defined by

(f,0) =(f.0), VoS

For ¢ € §, we have the identity

If ¢ is even, then

~

(9)" = (2m)"¢ and (f,4) = (27)"(f,¢).

A distribution f is called even homogeneous of degree p € R if for every

test function ¢

(f(x),d(z/a)) = la[""(f,¢), o €R\{0}.

We say that a distribution f is positive definite if its Fourier transform is a

positive distribution; that is <f, ¢) > 0 whenever ¢ € S is such that ¢ > 0.

10



Lemma 2.B.1: Let f be an even homogeneous functions of degree —n +1 on
R™, continuous on the sphere S"'. Then the Fourier transform of f is an
even homogenous of degree —1, continuous on R™\ {0} function such that,

for every & € S™7L,

/ f6yde = Lfe).
Sn—lngl T

As an application we get Theorem 2.B.2.

Theorem 2.B.2: Let K be origin-symmetric star body in R™. The Fourier
transform of the function ||z|| "™ is a homogeneous of degree —1 on R",

continuous on R™ \ {0} and such that,

Ael0) = vol, 1 (K 1€5) = ————(I-1z*) (0,

Definition 2.B.4 (Fractional derivatives):
Fractional derivatives generalize derivatives to non-integer orders. Let ¢ be a
continuous, integrable function on R which is m-smooth in a neighbourhood
of 0, and let ¢ € C, —1 < Re(q) < m,q # 0,1,....m — 1. The fractional

derivative of ¢ of order q at 0 is defined by

690 = o [ 77060600 — .- o O T Y

()
kN(k—q)

e 1
r(—q>/1 W F

Moreover, if ¢ is a non negative integer, one can observe that the fractional

£
I

0

derivative of integer orders coincide with usual derivatives up to a sign (as a

11



limit of the latter expression as ¢ — k).

dk
¢ (0) = (—1)kﬁ¢(t)|t:0> ke NU{0}.
Theorem 2.B.3: Let D be an infinitely smooth origin-symmetric convex body
in R", £ € S""1. Then for every q € (—1,00), ¢ # n — 1, the fractional
deriwative of the order q of the parallel section function at zero can be ex-

pressed in the form

cos(mq/2)

ABeO) = g 1)

(-1 H ).
Moreover, if k >0, k #n — 1, is an even integer, then
_n k
(M€ = (—=1)M2m(n — k — 1) AS(0)
and if k > 1, k #n — 1, is an odd integer, then

(")

= (~1)*22(n — 1~ k)l
o [ hod) Ao MO0 - A Oy
0

dz.
s

Proof. [13, Theorem 3.18] O

We will often use the following version of Parseval’s formula :

Let f,g € C>(S" 1) and 0 < p < n. Then

/Snl <f(|%|)!:c|p)A(0). <g(;—’)|xyn+p>A(9)de = @) [ 1000

12



See [13, Lemma 3.22] or [17]

2.C Hyperbolic and Spherical Geometry

We recall some facts on spherical and hyperbolic geometry, as given in [1]
and [21].

Let S™ be the unit sphere in R"*!. Using the stereographic projection (from
the north pole onto the hyperplane P = {(x1,2s, ..., Zn11) € R" |z, = 0})

we can think of S™ as R™ with the metric:

da? + ... + da?

ds* =4 :
° 1+ (22 + ... +a2)?

(2.4)

To define convexity in spherical space, we need the the geodesic joining any
two points to be unique. However, this is not true on the full sphere. Thus,
we will work within the open hemisphere, where geodesics are unique. Note
that under the stereographic projection, the south hemisphere gets mapped
onto the open unit ball B™ in R"™.

We will identify the hemisphere with B equipped with the metric (2.4).
Hyperbolic space can also be identified with the open ball B™ equipped with

the metric :

do? + ...+ da?

ds* =4 .
TN @t a2

(2.5)

In this metric, geodesic segments are in fact arcs of the circles orthogonal to
the boundary of the ball B™. If a segment passes through the origin, then the
segment becomes a straight line.

We will treat spherical, hyperbolic and Euclidean cases simultaneously by

13



considering B™ with the metric :

dz? + ...+ dz?

ds® =
TNt ra2)?

(2.6)

where 4 = 1,—1,0 correspond to spherical, hyperbolic and Euclidean cases

respectively.

To distinguish between different types of convexity, we will adopt the fol-
lowing notation. Let K be a body in the open unit ball B®. The body K is
s - convex (+1 - convex) if the body K is convex under the spherical metric
defined in the ball B™. Similarly, h - convexity (-1 - convexity) and e - convex-
ity (0 - convexity) are defined with respect to the hyperbolic and Euclidean

metrics, respectively .

Hyperbolic Euclidean Spherical

Figure 2.3: Convex hulls in different metrics

Some examples for convex hulls of four points are shown in the figure (2.3)

for different metrics.

14



Clearly any e-convex body containing the origin is a h-convex body. Also any
s-convex body containing the origin is e-convex.

A submanifold F in a Riemannian space R is called totally geodesic, if
every geodesic in F is also a geodesic in R. In the Euclidean space and spherical
space these totally geodesic submanifolds are represented by Euclidean planes
and great subspheres respectively. In the Poincaré model of the hyperbolic
space these submanifolds are spheres orthogonal to the boundary of the unit
ball B™ and Euclidean planes through the origin.

For the purposes of our calculations in the following chapters, we find the

volume element dy,, corresponding to the metric

Since the metric is diagonal,

dzy...dx, dx

dyi, = 2" __on .
(1—(9:%+...—|—$%)> (1 —[zf5)"

The volume of a body K is then given by

dx
IL(K) = di, = 2" -
voln(K) /K g /K<1—|x|%>n

In polar coordinates we have,

Lr—
mMMzT/ / S——")
sn—1Jo (1—r2)m

15



Similarly, the volume element of the hypersurface ¢+ is,

dz

d#n_ — 21’1—]—
T AR

and the (n — 1)-volume of the section of K will be

dr
Sg:/ dn_:2“‘1/ =
x(©) KN(z,6)=0 fin1 Kn(zg)—o (1 — [z[3)"?

Poincaré disk model Beltrami-Klein model

Figure 2.4: Disk models

In Chapter 3 we will be working with a different model called the Beltrami -
Klein model. Euclidean geodesics and hyperbolic geodesics are the same in this
hyperbolic model. In a certain way, this is an advantage for calculations. There
is an isomorphism between the Poincaré and Beltrami - Klein models. The
mapping between these models can be described as two projections, illustrated

in Figure 2.5.

16



Figure 2.5: An isomorphism between Klein and Poincaré model
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Chapter 3

Modified BP problem in

Hyperbolic Space

In this chapter we will show that, for an origin-symmetric convex bodies K, L

in hyperbolic space H", if the distribution

EPE o
ETATTRY :
1= ()

is positive definite, then it follows that vol, (K) < vol,(L) whenever,

(—A)*2SK(€) < (—A)*2S,(6)  vEe s

Therefore, the problem is reduced to finding a € R such that the distribution

in (3.1) is positive definite.

The following lemma is an analogue of Theorem 2.B.2 in non-Euclidean

settings.

18



Lemma 3.1: Let K be an origin symmetric h-convex body in B™. Let £+ be
the totally geodesic hyperplane through the origin perpendicular to € € S™ 1.

Then the volume of the section of the body K by the hyperplane £+ will be :

s = 2l [ Y @ e

and

[zl2 _
rh 2

(’x|2n+1+a/0|1|1( (1 - T2)n_1d7’) (5)’ 56 Snfll

(3.3)

2n—l

(—A)25k(€) =

K is assumed to be smooth enough. So that the latter is a continuous

function on S™~ L.

Proof. We give the proof as in [21, Lemma 2.2].

Using polar coordinates we obtain:

516 =2 [ 3ol o

el m-2g
— o= 1/ / .
Sn— 1Q§L ]__T n—

Since |0],= 1 for § € S, then :

ol g,
S = 2n_1/ 0 _n+1/ ——d#.
K(g) Sn—1ﬁ£L| |2 0 (1 — 7“2)n_1

Then using Lemma 2.B.1 :

gn—1 . H‘;TE{ n—2 A
Sk(§) = — (|$|2 H/O Wdﬁ (&)

19




Now we prove (3.3). This result follows immediately from (3.2).

By definition :

— 2”*1 | |—n+1+a/z|K Tn72 d A(é—) 56 Sn—l
-\t 0 (1 —r2)n-t " ’ '

Note that (—A)*/2S(€) is a homogeneous function of degree —1 —a on R™\

{0} O

Theorem 3.1: Let K and L be two h-convex origin symmetric bodies in B™

||~ |||
INEEIPRY
1=(ar)

and suppose s a positive definite distribution. If

(—A)* 25k (€) < (—A)*25.(9),

for every £ € S™71, then

vol, (K) < vol,(L).

Proof. First we prove the following inequality [21].
For a,b € (0,1)

b n—2 b n—1
a T T
dr < —dr.
ey e e

Observe that — is increasing in the interval (0,1). Therefore,




(Note that a < b is not necessary)

We let a = ||z||" and b = ||z||;* . Then

-1 el ! llll?
/ %/ DEs 1drdx < / / ) ndrdx.
Sgn—1 1 - HiIZ‘HK [ -1 (1 — T Sgn—1 |IH7 ]_ —T

I”K

If the left hand side of the inequality is non negative it follows that,

/ /II%I;?1 yn—1 i / (B yn—1
————drdr < / ———drdx
sn—1 Jo (1 — T’Z)n sn—1 Jo (1 — 712)n

vol,,(K) < wvol,(L).

That is,

Therefore to complete the proof we only need to show the following in-

equality

-1
ol R

/_ . — 1= 2)n_ldrdm
st 1= lzllx” Jo r

-1
bl o
g/ Wk — drdr.
s T ol o A=

To prove the inequality we use Parseval’s formula, the equation (3.3) and

our assumption (—A)*2Sk(€) < (=A)*2S.(€). Note that if K is sufficiently

—« —1 A
<|x|2 ||x||K>
AL IRY ’
1= (7z)

restricted to the sphere is a continuous function. Moreover if K is not smooth,

smooth, then

then the latter Fourier transform may not be a function, but still there is a

positive measure v on S~ !, that corresponds to the restriction of this Fourier

21



transform to the sphere. See [13, Corollary 2.26]. Thus :

|zl [T e
s L= (g o (L)
lz|2
n B e Cpiige [T R
:(271') / 27‘2]{2 . |.’1§"2 1+ ﬁdr d&?
st \ 1 — (o) 0 (1—r2)

i '
= yrtte [ | (0)dy(6
/S”—l <|l’|2 /0 (1 —7“2)”_1 T) ( ) 7( )

= [ = arEsken )
< [ A S 0)

mn 1
|z]2

_ Cntita [T
B /Snl (\x|2 /0 (1 _r2)n1dr> (0)d~(0)
[z|2
_ n ||zl Cpitaa [T 2
—ar [ (—1_ A ) (e [ g o

llll

|z]2

-1 p n—2
_ (2n)" [Edl% Tl 7 i
oo T (o T

[l

[]

Theorem 3.2: Let L be a h-convex infinitely smooth origin-symmetric body in

— —1
|z~ |zl

_(1zl2 \2
1= (71

exists an h-convex body K in B™ such that

B" and suppose 1s not a positive definite distribution. Then there

(—A)*285c(€) < (=A)*25,(€),
for every € € S™71, but

vol,(K') > vol,(L).

_zl2 \2
1= (qa1y)

A
—a —1
Proof. By continuity of (%) there is a neighbourhood of £ where

22



this function is negative.

L (el
Q= 565"1:<—ML2> (§)<0}
{ L= ()

Choose a non positive infinitely smooth even function v supported on U

{—Q}. Now we extend v to a homogeneous function r~*~*v(6) of degree—1—«
on R™. By [13, Lemma 3.16], the Fourier transform of r~'~*v(0) is equal to
r= e g(0) for some infinitely differentiable function g on S™~1.

Then we construct a body K such that,

lolx' pn-2 ; [P ] )
A e = A e LA

For some small ¢ > 0 (to make sure the body K is still convex). Now define

a(f) such that

[l yn—2 IO +eae(0)  n—2
——d 0) = ——d
/0 (1 —r2)n-1 r+eg(0) /0 (1 —r2)n-1 "

It follows that :
1011 = 1101l -+ (6).

Therefore :

—n+1+a ﬁ Tn72 "
|5 ; Wdr (&)
n—2

(|x\2”“+aeg<e>)A<s>

23



On the other hand,

[E2D)

e Bl /lan pn—2
) Jzly |z R
(2m) /gnl (1 — |z]2 2 ) Jo 1- fr2>n_1drdx

llzllz

|z|g
PR )52 i [T e
= (2) /S - (1_ '55‘2 |3 /0 —(1_T2)n_1dr dx
_ |a:|2a|rqu ol & pn-2 N AWQ
\xlz Tl 0 (1 —r2)n-1

||xHL
%%l' rn—2 :
—n+1+a #lL
( B /0 —(1_T2)n_1dr> (0)do

_ / ) <|x|2a||zs|l|L
o <%> G >(e|:c12"+1+ag<x/|x|2>)A<e>

llllz

“L- (1—(“2 >2) v (' | (1_T2)n_1dr) 0)i0

ll=ll

+ (2m)" /5 (%) A(e) (e|x|2_1_av(0)) df

Izl

i L P S AL A
> (2m)" / 12y N2l / L " _rde.
gn-1 \ 1 — ( [z]2 )2 0 (1 —r )

llzllz

As in the proof of Theorem 3.1, this means vol, (K) > vol,(L).

24



In order to find « such that the distribution

;|||
_( lzl2 2
1= (faic)

is positive definite we use ellipsoids. With the help of ellipsoids proof follows

from defining a body which is obtained by perturbing the Euclidean ball.

For small € > 0 and k& > 2 define a body K such that
|2l = lzly ' =" ll2lE', Vo € R™\{0},
with the ellipsoid E and the norm
2 2 2 xy 2

Theorem 3.3: The body K is well defined and convex for small €.

Proof. See [20]. This is a standard perturbation argument. We do a similar
proof in Theorem 3.8.

]

Lemma 3.2: Let e, be the standard n'* coordinate vector. If 0 < a < n — 4,
then

(I2llz" [25%)" (en) ~ CeTmro72,

where C' is a positive constant and the notation a(e) ~ b(€), means

lima(e)/b(e) =1

e—0

Proof. When « is an integer, it follows from part (iii) of [20, Lemma 3.3].

25



We will give the proof when « is not an integer.

If k > "%"_2 by [20, Lemma 3.1], we get

(Ielle1%)" (en) = Clkscin) [ [, )Pt A (a5 oly*) do,

where A is the Laplace operator on R", and

(~1)¢in
I'(2k —n+a+2)sin(r(2k —n+a+1)/2)

C(k =
( ) Oé’ n) 2
Now use the following formula (see [12, p.9])

f((z,0))do = ysﬂ\/_tu — B2 f)dt, e S"TL (3.5)

Sn—1

Then it follows

(lll5'rl2)" (en) ~

1
C/x?“““ﬂ—ﬁffNWMEMf) da,,.
0

afttal_=1-a

Now we introduce a variable z where x,, = ¢ - z. Then

(Ilzll5'12)" (en)

1/e
~ C€2kn+a+2/ 22k7n+a+1‘(1_€2Z2)"T*3A1§(’x‘51Hx|
0

) dz,
x24ta? =1—€222 3=z
1 n—1 n

where E* is the ellipsoid given by

2 2)1/2

||l pe= (24 + a2l +a2) 7, (3.6)
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and
0? 0? 1 02

A= 4. -9
oz? ot ox?_, T Dz

The largest term is obtained when we apply }2% to |x|; ' successively k

times.

(Ilzll5"12)" (en)

1/e s 02K
~ Cefn+a+2 / 22k7n+a+1.(1_6222>7
0

aka

n

dz.

24 42 —1—e252 _
i+ +:pn71—1 €2% xn=2

(lzly")

It is enough to show that

n3 a2k

1/e
2k—n+a+1 2.2 -1
(1 — 2 — d
/D < ( €z ) ax%kﬂ‘rb ) <

20002  —1—¢222 p, —
1+ ‘an—l_l €2, xn==2

has a finite nonzero limit as e — 0.

Observe

1/e s O2k
2k—n+a+1 2.2\ 2= -1
/ z -(1—62)2a%(|:1:]2)2 , - dz
0 .ﬁL’n ri+txn _=l—e?2% p=2
2k
e 2k—n+a+1 2, 2\n=3 2m 2.2 2y =1=2k=2m
= z (1—€"2%)2 E bpz™(1— €2+ 2°)" 2|
0 m=0

where b,,, is a constant.

We will show that

—1-2k—2m

fo(z) = 2Tt (1= 222" 2 (1= @22 4 2%) T2 x0,1/)(2)

is bounded by an integrable function.

We split the integral in to [0,1] and [1,1/€]. In [0,1] :
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—1-2k—2m

|f€(Z)| S ZZk—n+a+122m(O‘5+22)72 — g(z)

and ¢(z) is integrable.
In [1,1/€] :

fe(2)x[1, /€] (2) = 227mrort2mmIm2m2my 1, 00) (2) = 27X (L, 00) (2)

and —n + o < —4.

Therefore from Dominated Convergence Theorem one can see that

1/e s a?k
: 2k—n+a+1 2 _2\"= -1
lim z (=27 T (|2l )] , dz
=0t Jo Gxn itz =1-e222 xp=2

2k—n+a+1 o 2\—1/2
—MNTo . 1 — d .
= /0 z —sz( + 2%) z

To finish the proof, we need to show that the latter integral is not equal
to zero. Let P(2%) = co + c12% + -+ + ¢,_12%*72 be the Taylor polynomial of

(1 + 2%)~Y2 at zero of order 2k — 2. Then clearly,

oo azk [e8) an
/ Z2k—n+a+1_ (1+Z2)_1/2d2 _ / ZQk—n-&-oH—l.
0 0

D=2k o (1+2°) 7172 = P(2%) d=.

After integration by parts 2k times and the change of the variable t = 22 the

integral becomes

=2k—n+a+1)..(—n+a+2) /00 2 (14 272 P(z%)) dz

_@k-n+atl)(-nta+?) /wt"z““ (L+6)72 = P(t)) dt.

2
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Using integration by parts in the opposite order and observing that P(t) is

the Taylor polynomial of (1 +¢)~'/2, we get

@2k -n+a+l).(-—nt+a+2)
CO2(REe k). (AR 4 2) (=R 4 1)
i ak
T2 R (14 4)7Y2 — P(t)) dt.
« | o (07— P(r)
 2k-n+a+l)..(-—n+a+2)
(ke k) (e 4 2) (=t 4 1)

) otk '

The latter is clearly a nonzero constant.

[]

Rest of the chapter consists with few theorems which will be proved for

Euclidean space. Those results will play an important role in determining the

(% )?

AN
—a —1
sign of the distribution (%) for an h-convex body K; see Theorem

3.6.

Theorem 3.4: Letn—4 < o < n—2. Then there exists an origin-symmetric
body L in R", n > 4, such that |z|;%7>||z||, is not a positive definite distri-

bution.

Proof. For small € > 0 let L be an ellipsoid with the norm
2 2 x 2
(B $1+"'+xn71+€_2 .

Now, we define a star body K C R" :

1

pr(0) =p; " (0), OeS"
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Then, we observe

—a—2 1 —a—1

T4 R S «
2z 2lzl= (2l el ) T = llzl, @ e R\ {0}

Using [19, Theorem 2.2] with ¢ =n — a — 2 € (0,2) we have

m(a+1)

(HajHI_( )N = ['(—n 4+ a + 2) cos

m(n—a—2) / t_n+a+1(AK7§ (t)_AKf(O))dt?
——Jo
case n — o — 2 can be obtained from the part (c) of [19, Theorem 2.2].

m(n—a—2)

Since, for o € (n —4,n —2) , I'(—n+ a4+ 2) cos ==

< 0, we only need

to prove that for some &

/Oo t—n—i—a—i—l (AK@(t) — AKf(O))dt > 0. (37)

Note that case @« = n — 3 can be obtained by the limits.
Let £ be the direction of the x,-axis. Let [—to, o] be the support of Ak ¢(1),

then

/0 T A () — Age(0))dt

to 00
= / tT O (A e (t) — Ak e(0))dt — / Ot Ay o (1) dt
0

to
Ak ¢(0)

— (3.7)

to
— / t—n-i—oz-i—l(AK7£ (t) _ A[gg(O))de _ tan+a+2
0
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Introducing new coordinates on the sphere S"~! we get

=cos¢-n+sing-& He S

(—7/2<¢<7m/2 and neS"INEH)

Since we are interested in sections of K perpendicular to &, its axis of
revolution, we denote px(¢) as the radial function of those § € S™~! that

makes an angle ¢ with the plane &+ and therefore

o N ol
sin 22

(@) = (‘o7 + 22)
Observe that t = sin¢ - pg(¢) is an increasing function of the angle ¢ €
(0,7/2), therefore all the sections of K by hyperplane orthogonal to £ are
(n — 1)-dimensional disks. Also, tq = ¢ T goes to infinity as € tends to

zero. Hence, last term in (3.7) approaches to zero as € goes to zero.

Now, we have

AK,S(t(gb)) = Wn_1<COS(;5 . pK(¢>>n—1

) n—1
sin 22
= w,_jcos"! ¢<0082 ¢+ — ¢>
€

where, w,,_; is the volume of the unit (n — 1)-dimensional Euclidean ball.
1
. pEeY
Introduce a new variable ¢t = sin¢(0082 o+ si‘#) .

Thus,
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to
/ O (A e(t) — Ak e(0))dt
0

—n+a+1

w/2
= Wp—1 / (Sin gb) —ntotl (COS2 o+ €2 sin? gb) 2420
0

X <cos"_1 P(cos? ¢ + € ? sin? (;5)21;2L — 1>
€2 -1

1+«

X (cos? ¢ + € % sin® ¢)ﬁ_1 (C083 o+e?+ ( ) cos ¢ sin® ¢> de.

(3.7)
Now, we will find the intervals where the integrand is positive and negative.
This depends on the sign of the equation
(COS”*1 P(cos? ¢ + €2 sin® gzﬁ)% — 1> = 0.

In fact we need to solve

f(¢) = (cos @) 4 € %(cos $)*T**sin* ¢ = 1 (3.8)

Left hand side of this equation first increases and then decreases to zero.
Therefore the equation has two roots, namely ¢; and ¢o. Observe that ¢; = 0.

One can show that if € is small, the maximum of the function f(¢) roughly

attained at ¢ = arccos,/1 — 2J+a From (3.8) and ¢ 2 arccosy/1 — 2J+a we

get

€ 2(cos )2 < Cla) and ¢y =m/2 — o(eT)

Now, we see that integrand is positive in the interval (0,7 /2 — o(eﬂ%)) and
negative in the interval (7/2 — 0(62%&), 7/2). Splitting the integral into two

according to these intervals we see that, in the negative interval absolute value
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of the integral is bounded above by

n—a—2

Ce Tra |

which approaches to zero as € approaches to zero.

To estimate the positive part of the integral it is sufficient to consider the

interval [r/4,7/3]. For small €, the integral has order

Ce !,

which approaches infinity as e gets smaller. Thus we have (3.7).

Corollary 3.4.1: Suppose ¢ < 2k, k € NU{0}.

1. If f € C?*(S™1), then the Fourier transform (f(0)r="+%"1)" is a homo-

geneous of degree —1 — ¢ continuous function on R™ \ {0}.

2. If fo,f € C*(S"1) and f,, converges to f in C*(S"1), then the
Fourier transform (f,,(6)r="" )" converges to (f(0)r~"T )" in the

space C'(S™71).

Proof. See [13, Corollary 3.17] O
In [14] following theorem has been proved.

Theorem 3.5: Let K be an origin-symmetric convexr body in R™. If a €

[n—4,n —1), then ||z|||z|5* is a positive definite distribution.
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However in the sense of hyperbolic space we have a different answer as

below.
Theorem 3.6:

1. Let K be an origin-symmetric h-convex body in B". If o € [n —2,n — 1),

then
[E i
T oB
1= 1o

s a positive definite distribution.

2. For o € [n—4,n—2), there exists an origin-symmetric h-convex body K in

B™ such that

[
T eB
1= 1o

18 not a positive definite distribution.
Proof.

1. For any h - convex body K in B" define a star body L as follows :

a2l el
)zt ~= R (3.9)

_ =3
2
X

We use Theorem 2.B.3. Then,

for ¢ € (—1,0), cos & and I'(—q) are positive, which gives,

1 o
AP(0) = ﬂ/ [t~ A(t)dt > 0,

o0

for g =0 ,cos &+ = 1.



N
-1 —a
Therefore, <M> = ([J=||;' )" is positive for all £ € S™L.
1

|2

T3,

2. Let K be defined as follows:
]| ' = |zl =€z,

where E' is the ellipsoid

2 2 xi V2
||$HE: x1+"'+xn71+€_2 .

The radius of K is less than 1, and so K lies in B™. Also one can check
that K is e-convex, and therefore it is h-convex.

We need to show that the distribution

[l ]l

1—[af3]lo]l

is not positive definite.

We have

ezl ~3|g)79-2| 1 — Eafy)z]|5'
e A IHE-2_3 =
3]l SRy
6_3 ’x‘fafl
= el e (310)
2 2(2 — éalz]lz]| 5"

It is not hard to see that the last fraction of (3.10) is close to 1/4|z|;* "

in C?(S™1) and its Fourier transform is a constant on the sphere. Therefore,

for sufficiently small € > 0 the term %]m\;a’QHxHE is dominating. So from

part (1) of Corollary 3.4.1 we can just look at the distribution |z|;* ||z g,

but it is not positive definite from Theorem 3.4 for o € (n — 4,n — 2).
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For a = n — 4 we define a body M such that |z|/;7 "= |z|3* ?||z||z. Then

using a similar proof as in [19, Lemma 3.2], we get
(I2llyf )" (€) = —m(n — 3)A32¢(0) < 0.

]

In the previous Theorem we covered the case where a € [n —4,n — 2).
To cover the remaining case where o € [0,n — 4) we need some results in

Euclidean space.

Theorem 3.7: For 0 < o < n — 4 there exists an infinitely smooth origin-

symmetric convex body K with positive curvature, so that
il

s not a positive definite distribution.

Proof. If a < n — 4, then for some small § > 0 we also have &« < n —4 —¢.

Now define K

o' = o' ="z, @ € R\ {0},

where F is the ellipsoid with the norm

2

1/2
_ .2 2 Ly /
|lz||lg= (] + -+, + 2 )
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Writing the equality using Fourier transforms :

(lll%"z2%)"(€) = (23" (&) — e (Il=ll5"|=[2*)" (),

(el 12l )" (€) = Cla+1,0) — 220 (]l 5|2, *)NE), €€ 5™
(3.11)

The latter comes from the Fourier transform of |x|;*~!, [9, p. 363].

ForO<k<n

(lz35) (&) = Crnléls™*

Where,

2n—krn/20((n — k) /2)
Ckn =

’ I'(k/2)

Using Lemma 3.2, for direction e, we get,

_ —a\ N _
(lllg' ;)" (en) ~ Cemmre™,

where C' is a positive constant.

Therefore,

— —a —l-a n—a—2— - —a\ A
(el le2) " (en) = (122"7)" (en) = €227 (llall |2157) " (en)
~ C(Oé, n) . C€n7a727667n+a+2

= C(a,n) —Ce™® <0,

for small enough e. O
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To construct a counter example for those values of « in h-space we use the

previous result.

Theorem 3.8: For 0 < a < n — 4 there exists an infinitely smooth origin-

symmetric, h-convex body L in B", so that

[ st
=3
1 -z

s not a positive definite distribution.

Proof. Let us define a body L implicitly by the formula :

[l
_ 3
EH

and let K be the body defined by,

Izl =

ol = laly! ="zl Vo € R"™\{0},

With the ellipsoid E and the norm,
22\ V2
|zl p= (az%+x§~l—...+xi_1+€—g> .

By Theorem 3.3 K is e-convex. From the previous Theorem 3.7 we have

—1 —a

X |l . o) . . . . .

% is not a positive definite distribution.
_ 2
2

So it remains to prove that the body L is e-convex, and therefore h-convex.

Since K and L are bodies of revolution, we will only look at their generating

curves.
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Passing it on to polar coordinates we get:

.92 -1/2
sin“t
pg =1 — o270 ( cos? t + = ) :

which implies,

n—a—2-6 /q SiIth —3/2
p/KZET(—Z—l)(COS2t+ 5 ) sin 2t
€ €

and

" 6n—a—2—5 1
== -1
. 9N\ —3/2 024\ —5/2
t 3/1 t
x |2cos2t| cos®t + St — (= —1)sin?2t( cos®t + S
€2 2\ €2 €2
nma=2=0 /] 9 sin2 ¢\ ~3/2
S ) (ot )

3/1 in2¢) !
x [2cos2t — = = — 1) sin?2t( cos®t + St
2\ €2 €2

Using the formula

we get

Therefore:

and,
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!/
1 1 / 1 "o 9(y )2
P/L/:%[<—+1> p§(+<_ +1>'0KPK 3 (pK)]
1+4p% Pk 14 4p% P

Now, for small € > 0,

) —-1/2
st
pg =1 — o270 ( cos® t + >

€2

gives

Also we have,

n—a—2—4 .2 —3/2
1 t
P,K = GT (—2 - 1) (0082 t+ Sm2 ) sin 2t
€ €

, 6717047276 1
o < (2

and

6n—a—2—5 1 Sil’th —3/2
"o 2
pKT<€—2—1)<COS t+ 2 )
3/1 in2¢\ !
X |2cos2t — = = — 1) sin?2¢t| cos®t + S
2\ €2 €2

€n7a7275 1 31 1 —1 7 s
el < T(‘) “5:2(:2) =
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Since, px is close to 1, we have

(=1++/5)
2

n—a—2—9

lpL — |<e

Using those bounds we can again bound p’ and p/ as below.

) (—1+\/1+4p%()
/ /
PL =175 Pk
2 pRV 1+ 40k

"| < Dye" 4% where D is a constant.
PL 1 ) 1

r !
oMoy e o e — 200k
P2l Vi P V1 +4p2 3

PK
2
- pKC’2€n—a—4—6 + 9 (Clen—a—él—é) ]

oh] < 5| D" 4 Dy ;
P

6717017476 |:D2 + D4:| _ D5€nia74767

IN
N~ DN~

Where C4, Cs, Dy, D3, Dy and Dy are constants.

From the curvature formula we observe the body L is e-convex for small € > 0.

Hence the result follows from Theorem 3.7.
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Chapter 4

Converse of Brunn’s Theorem

Theorem 4.1: Let K be a C' star body in H". If for every & € S™ ! the

function Ak ¢(t) has a critical point at t =0, then K is origin symmetric.

This theorem has been proved in [16] for Euclidean space; see also [18].
To prove the theorem in hyperbolic space H" we will use the Beltrami- Klein
model as it looks more natural. This model can be identified with the interior

of the unit ball in R™ with the metric

|dx |3 (x - dx)?

ds* =4 .
(I—lzf3)  (1—[z[3)?

(4.1)

In order to compute the volume element of this metric, we write
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ds?

(v1dxy + 2odTy + -+ - + 2pdy)?

dz? + dx3 +

=4

(1—(a:%+:c§+-~+xg))

=4

+4

(1—(:1:%+3:§+---+:c%))

(v1dzy + vody + - - - + Tpdxy,)? + (1 — (i + xi)) (da? + dx +

o da?)

Z rida? + 2 Z xiwjdrdr; + Z dx? — Z xfdx? — Z ridr?
i ij i ij i

—4 i#)

2
(1—(x%+x§+---+m%)>

7]

2
(1— (:U%—l—x%—l—jo?l))
(1-— Z r3)dx? 4 (1 — Z ) das 4+ -+ (1 — Z o) dx? + 2 inxjdxida:j

i£1
=4

i#2

= Z gl]dﬁzdl’J
6J

2
(1—(x%+x§+“~+x%)>

We let G be the determinant of the matrix [g;;]7,_; -

below.

4n

(1= 2f3

)2n

)

i

2
1-— T;  TiT2  Ti1T3 ...
1

T1x9 1 — E xlz ToXs3 ...

i
i£2

Tndq TnTo TnTs ...

43

Then we compute G as

T1Tn

Toln

1—Zx-

A




1— E IL‘?
i
7
z? 1
=Y a2
= rirs. .. x? 2
2\2 ' n
(1 — [af3)>
1 1
Ri<—=Ri1—R,
Ro<—Ro—R,
Rn71<:>‘Rn71—Rn
—%
1—|zf?
-0 00
1— 2
0 b
3
4n
2.2 2
= TiToy...T
2\2 142 n
(1= |zf3)>
1 1 1

44

=Y

7

n

A




1—|z*> 0 0 ...—(1— |z
0 T—|f 0 ... —(1—|z?)
(1 — Jaf3)* ‘
z? - | —fo
1 00... -1
010... —1
4n

= W(l — [z)"”

2.2 .2 2
x1x2$3...1—g x;

%

Cr=Cn 4+ C;
-\

100...0
4n 010...0

- (A=)
~——

Lower triangular matrix
Which implies

471
(1 = fz[3)"+

G:

Now, we consider the volume element with respect to the metric (4.1).

2n
Volume element = d(vol) = VGdridz, ... dx, = ————————drdzy ... dzy,.

(1= |=[3)"=

45



Proof of Theorem 4.1.  For —1 < Re(q) < 0,

1

—F(—q) /0 z’l’qAK@(z)dz

1 —1— —1-
= — 2T 2 sgn 2) Ag (2)dz
s L g1 2)Axce(2)

1

— —1—q —1—q
(=g /R(z + 2z sgn z)

(w,6)=2 (1 - Il“l )z

ADe(0) =

L2 (@O (0, g (0,6))
I, (0= [2B)% -

Passing to polar coordinates we obtain :

n—2
AL = 5= [ 1<<9 670+ (0,6 sgn {1, €))
ol
x/o D) drd&
writing

175 n—q—2
/ r—n dr
0 (1 — 7"2)5

as a sum of its odd and even parts we get :
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AP (0)

on—3 o' n—g—2 =0kl ,n—q—2
_ / <9,5>1q< / T ey / A dr)de
['(—q) Jgn— 0 (1-— r2)5 0 (1— T2)§

2n—3 g
o [ 00 s (a)

16k~ r—q—2 |I—0x]| 1 yn—a—2
X </ nd?“—/ B EE— dr>d9.
o 0-mE"T L oot

Next we will use the following formula from [11, Theorem 3.1].

+

If 0 < Re(p) < 1, then the Fourier transform of f, is a homogeneous

function of degree —p on R™ \ {0} given by

£, = T(p) cos(pm/2) / (2.0) £(0)d0

Sn—1

_ iT(p) sin(pr/2) / (2., 0 sgn(x - 0) £ (6)dD.

Sn—1

Where, f, is a homogeneous degree —n+p extension of f € C'(S"1) to R"\ {0}
with,
fo =1l f(z/ |

Hence,

n—2 _=zlo n—q—2
(a) 2 cos(qm/2) Cniisg [T T
Al =T T e
E2D)

. T=lr 12 "
el [T ) (6

1—12)
[z]2

2n—2gj 2 ED] n—q-2
_Z T snlan/ )(leg"””q/ K—(T - dr
0

T 1—1r2)2
E2D)

. Tl =42 "
el [T ) g6

1—1r?)
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Using the fact V& € S"~', A% ((0) = 0 we get,

E2D) £
Tl n—q—2 =zl n—q—2 A
e A il ) RO R
0 (1—7"2)2 0 (1_T2)2
Thus,
[E2D) D)
Telx 77972 Tl n—q—2
/ K —T — dr :/ ® —T = d?",
o (1—r2)t o (=122
which means ||z||x= ||—z||x Vz € R"\{0}.

Therefore, K is origin symmetric.
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