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Abstract

A common goal of Geometric Tomography is to find criteria for uniquely

determining a convex body. The “solid” and “hollow” n-dimensional cones

with central angle α ∈ (0, π
2
), central axis given by the unit vector ξ, and

vertex at the origin, are defined, respectively, as follows:

Cα,ξ := {x ∈ R
n : 〈 x

|x|2 , ξ〉 ≥ cos(α)},

C̃α,ξ := {x ∈ R
n : 〈 x

|x|2 , ξ〉 = cos(α)}.

I will examine two problems:

1. Given two convex bodiesK and L, and an angle, α ∈ (0, π
2
), suppose that

V oln(K ∩ Cα,ξ) = V oln(L ∩ Cα,ξ) ∀ξ ∈ Sn−1.

Does this imply K = L?

2. Given two convex bodiesK and L, and an angle, α ∈ (0, π
2
), suppose that

V oln−1(K ∩ C̃α,ξ) = V oln−1(L ∩ C̃α,ξ) ∀ξ ∈ Sn−1.

Does this imply K = L?

For each problem, I will use methods involving spherical harmonics and or-

thogonal polynomials to provide sufficient conditions for the affirmative answer

and a partial answer to the negative answer.
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n Dimension (n ≥ 2)

ϑ The number n−3
2

N0 The non-negative integers N ∪ {0}

S The Schwartz space of rapidly decreasing infinitely differentiable functions

〈x, y〉 The inner product of x, y ∈ R
n

Sn−1 The unit sphere in R
n

| · |2 The Euclidean norm on R
n

‖ · ‖K The Minkowski functional of K
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n
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|Sn−1| The surface area of Sn−1

ξ⊥ The hyperplane {〈x, ξ〉 = 0} := {x ∈ R
n : 〈x, ξ〉 = 0}

K|ξ⊥ The orthogonal projection of the body K onto ξ⊥



Chapter 1

Convex Bodies

In this preliminary section, we introduce necessary concepts from convex ge-

ometry and Fourier Analysis. These topics are specific to the problem of cal-

culating volume for n-dimensional bodies and their sections, which is largely

what this thesis involves. Most if not all of the results in this section can be

found in the book by Koldobsky [5] so they will be stated without proofs. I

will sketch the proofs of some results just to illustrate the use of certain Fourier

analytic techniques.

1.A Star Bodies

A compact subset of R
n with non-empty interior, K, is called a star body if

for every x ∈ K each point of the interval [0,x) is an interior point of K and

the boundary of K is continuous in the sense that the Minkowski functional

of K defined by

‖x‖K := min{a ≥ 0 : x ∈ aK}

1



is a continuous function on R
n. A compact set with non-empty interior K is

called a convex body if for every λ ∈ [0, 1] and every x, y ∈ K

λx+ (1− λ)y ∈ K.

In this thesis, it will be assumed that every convex body contains 0 as an

interior point. The Minkowski functional is homogeneous of degree 1 on R
n

and clearly x ∈ K if and only if ‖x‖K ≤ 1. We define the radial function of a

star body K as the reciprocal of the Minkowski functional:

ρK(x) := ‖x‖−1.

Sn−1 will denote the unit sphere in R
n (those points in R

n of Euclidean distance

1 from the origin). If x ∈ Sn−1 then ρK(x) is the Euclidean distance from

the origin to the boundary of K, in the direction of x. A body K is called

origin-symmetric if K = −K (or x ∈ K if and only if −x ∈ K). The set of

origin-symmetric convex bodies will endowed with the radial metric defined

as

ρ(K,L) = maxx∈Sn−1 |ρK(x)− ρL(x)|.

Finally, a body is called k-smooth if the restriction of its Minkowski functional

to Sn−1 is k times continuously differentiable. A body is called infinitely

smooth if it is k-smooth for each k ∈ N. Often a convex body will be assumed

to be infinitely smooth since any convex body can be approximated, in the

radial metric, by an infinitely smooth convex body, (see [5], Thm 2.10).

Many results involve integrating powers of the radial function, and thus we

require the following.
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Lemma 1.1: (5, p.14). Let K ⊂ R
n be an origin-symmetric star body. For

0 < p < n, the function, ‖ · ‖−p
K is locally integrable on R

n. Also, if f is

bounded and integrable on R
n, then ‖ · ‖−p

K f(·) is integrable on R
n.

This work is largely concerned with the study of volume, both of convex

bodies and their sections. V oln(S) will denote the Lebesgue measure of an

n-dimensional set S. Occasionally we will write “volume” in place of V oln(·)

when it is clear what is actually meant. For ξ ∈ Sn−1 the parallel section

function will be defined on R as follows

AK,ξ(t) := V oln−1(K ∩ {ξ⊥ + tξ}),

where {ξ⊥ + tξ} is the hyperplane {x ∈ R
n : 〈x, ξ〉 = t}. We are mostly

concerned with the central hyperplane sections of an origin-symmetric body

K. An expression for the volume of these sections can be found using n-

dimensional polar cordinates where x := rθ and the Jacobian is given by rn−1.

Taking χ to be the indicator function of the interval [-1,1], then χ(‖ · ‖K) is

the indicator function of K and we have the following.

AK,ξ(0) = V oln−1(K ∩ ξ⊥) =
∫

〈x,ξ〉=0

χ(‖x‖K)dx

=

∫

Sn−1∩ξ⊥





∞
∫

0

rn−2χ(r‖θ‖K)dr



 dθ =

∫

Sn−1∩ξ⊥





1/‖θ‖K
∫

0

rn−2dr



 dθ

=
1

n− 1

∫

Sn−1∩ξ⊥
‖θ‖−n+1

K dθ =
1

n− 1

∫

Sn−1∩ξ⊥
ρn−1

K (θ)dθ,

where the term rn−2 was used as the Jacobian in the second line since the

integral is over the (n − 1)-dimensional hyperplane, ξ⊥. Note that the map
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R : C(Sn−1)→ C(Sn−1) defined by

Rf(ξ) :=

∫

Sn−1∩ξ⊥
f(x)dx

is called the spherical Radon transform of f ∈ C(Sn−1) (where C(K) is the

standard notation for the space of continuous real valued functions on a com-

pact set K). Thus, the above result can be reformulated as

AK,ξ(0) =
1

n− 1
R(‖ · ‖−n+1

K )(ξ)

for every n ≥ 2.

1.B The Gamma Function and Fourier Trans-

form

For z ∈ C, Re(z) > 0, the Γ function is defined by

Γ(z) :=

∞
∫

0

tz−1e−tdt.

Since Γ(1) = 1 and, for all z in the above range, Γ(z + 1) = zΓ(z), we have

that

Γ(n+ 1) = n!

for all n ∈ N.

Differentiating under the integral shows that the Γ function is analytic in the

domain {z ∈ C : Re(z) > 0}. Using Γ(z + 1) = zΓ(z), the Γ function can

be extended to an analytic function on the complex plane without the points
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−N0 := {0,−1,−2, ...}.

Fourier analytic tools play a large part in what is to follow. We begin by

defining the Fourier transform of a function φ ∈ L1(R
n)

φ̂(ξ) :=

∫

Rn

φ(x) exp(−i〈x, ξ〉)dx,

where L1(K) is the space of measurable functions on K with the property
∫

K
|f |dx <∞. S := S(Rn) will denote the Schwartz space of rapidly decreas-

ing, infinitely differentiable functions on R
n. Namely, φ ∈ S if and only if φ is

C∞ and φ, as well as all of its partial derivatives, converge to zero at infinity

faster than any negative power of the Euclidean norm | · |2. Elements of S

will be called test functions and if φ is a test function, then so is φ̂. By S ′

we denote the space of linear continuous functionals (or distributions) on S.

We say that a function f has power growth at infinity if there exists a number

γ > 0 such that

lim
|x|→∞

f(x)

|x|γ2
= 0.

If f ∈ S ′ is a locally integrable function with power growth at infinity, then

its action on a test function is defined by

〈f, φ〉 :=
∫

Rn

f(x)φ(x)dx.

Note that this integral converges. The Fourier transform of such a function f

can be also defined by an action on arbitrary test functions,

〈f̂ , φ〉 := 〈f, φ̂〉 =
∫

Rn

f(x)φ̂(x)dx.
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The Fourier transform is invertible on S and its inverse is given by

Ψφ(ξ) = (2π)−n

∫

Rn

φ(x) exp(i〈x, ξ〉)dx.

It follows that for every φ ∈ S,
ˆ̂
φ(ξ) = (2π)nφ(−ξ). If φ is even then so is φ̂

and

〈f̂ , φ̂〉 = 〈f, ˆ̂φ〉 = (2π)n〈f, φ〉.

Unless otherwise stated, all test functions from now on will be even and real

valued. A distribution f is called even homogeneous of degree p ∈ R if

〈f(x), φ( x
α
)〉 = |α|n+p〈f, φ〉

for every test function φ and every nonzero α ∈ R.

Lemma 1.2: (5, p.35). The Fourier transform of an even homogeneous dis-

tribution of degree p is an even homogeneous distribution of degree −n− p.

Finally, we will say that a distribution f is positive definite if its Fourier

transform is a positive distribution. That is, 〈f̂ , φ〉 ≥ 0 for every non-negative

test function φ. Positive definite distributions are of great importance in the

study of intersection bodies, a topic related to the study of volume but not

covered in this thesis.

1.C A First Look at Volume

At the end of Section 1.1, we saw an explicit formula for the volume of (n−1)-

dimensional central hyperplane sections of a body K. Repeating this deriva-

tion with “Rn” in place of “〈x, ξ〉 = 0” gives us a formula for the volume of
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any star body:

V oln(K) =
1

n

∫

Sn−1

ρn
K(θ)dθ.

Using some properties of the Γ function as well as the equation for AK,ξ men-

tioned in the first section, we can establish the following result for the unit

ball in the lp norm.

Lemma 1.3: (5, p.32).

V oln(B
n
p ) =

2n
(

Γ(1 + 1/p)
)n

Γ(1 + n/p)
,

where Bn
p ⊂ R

n is the unit ball wi1th respect to the norm ‖x‖p := (
∑n

i=1 |xi|p)1/p.

Everything that follows involves the study of volume using the Fourier

transform. The next result is the most important in this section.

Theorem 1.1: (5, p.54). Let K be an origin-symmetric star body in R
n. The

Fourier transform of the function ‖ · ‖n−1
K is a homogeneous of degree −1

function on R
n, continuous on R

n\{0} and such that

AK,ξ(0) = V oln−1(K ∩ ξ⊥) = 1

π(n− 1)
(‖ · ‖−n+1

K )∧(ξ) ∀ξ ∈ Sn−1.

In particular this gives a relationship between the Fourier transform and the

spherical Radon transform. If f is an even function that is continuous and

homogeneous of degree −n+ 1 then

Rf(ξ) =
1

π
f̂(ξ).

Since
(

‖ · ‖−n+1
K

)∧
(ξ) is homogeneous, its values on all of R

n are determined

by those on Sn−1. Consider origin-symmetric star bodies K and L with the
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property that AK,ξ(0) = AL,ξ(0) for all ξ ∈ Sn−1. By the above result, we

have that
(

‖ · ‖−n+1
K

)∧
(ξ) =

(

‖ · ‖−n+1
L

)∧
(ξ) for all ξ ∈ Sn−1. By homogeneity,

we can extend this equality to R
n and applying the inverse Fourier transform

yields ‖x‖K = ‖x‖L for all x ∈ R
n.

Corollary 1.1.1: An origin-symmetric star body in R
n is uniquely determined

by the (n− 1)-dimensional volume of its central hyperplane sections.

In a similar way, one can prove a more general result.

Corollary 1.1.2: (5, p.55). Let 1 ≤ m < n and let f, g ∈ C(Sn−1) be two

even functions so that for any m-dimensional subspace H of R
n

∫

Sn−1∩H

f(θ)dθ =

∫

Sn−1∩H

g(θ)dθ.

Then f = g.

This last result can also be used to uniquely determine origin-symmetric

bodies by their m-dimensional central sections since in this case, ‖ · ‖K and

‖ · ‖L are even.

Determining a bodyK uniquely usually involves finding a quantity that is pro-

portional to its radial function. If two bodies share this quantity, they have the

same radial function and are thus equal. If K is origin-symmetric then we can

also study the Fourier transform of powers of ‖ · ‖K and then proceed as in the

argument before Corollary 1.1.1. Later, we will use a different Fourier analytic

tool, spherical harmonics, to uniquely determine a convex body by its volume

of intersection with a fixed cone. For now, we will discuss the derivatives of

AK,ξ.
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Let m ∈ N0 and h be a continuous integrable function on R, m times

continuously differentiable in some neighborhood of zero. Let q ∈ C, −1 <

Re(q) < m, q 6= 0, 1, ...,m− 1. The fractional derivative of the order q of the

function h at zero is defined as follows:

h(q)(0) :=
1

Γ(−q)

1
∫

0

t−1−q
(

h(t)− h(0)− h′(0)
t

1!
− ...− h(m−1)(0)

tm−1

(m− 1)!

)

dt

+
1

Γ(−q)

∞
∫

1

t−1−qh(t)dt+
1

Γ(−q)

m−1
∑

k=0

h(k)(0)

k!(k − q)
.

The next result gives us the fractional derivatives of AK,ξ(t) at t = 0.

Theorem 1.2: (5, p.60). Let D be an infinitely smooth origin-symmetric

convex body in R
n, and ξ ∈ Sn−1. Then for every q ∈ (−1,∞), q 6= n − 1,

the fractional derivative of the order q of the parallel section funtion at zero

is given by

A
(q)
D,ξ(0) =

cos(πq/2)

π(n− q − 1)
(‖ · ‖−n+q+1

D )∧(ξ).

9



Chapter 2

Spherical Harmonics

Functions of the form cos(αx) and sin(βx), α, β ∈ N, form a basis for the

Hilbert space C[−π, π] (the space of real valued continuous functions on [−π, π]

equiped with the inner product 〈f, g〉 :=
π
∫

−π

f(x)g(x)dx). If f ∈ C[−π, π], then

f has a Fourier series expansion with respect to this basis. In a similar way

we can define a Fourier series for a square integrable function on Sn−1. The

elements of the corresponding basis for L2(S
n−1) are referred to as Spherical

Harmonics.

2.A Definition and Properties

Recall that the Laplacian of a twice differentiable function f(x1, x2, . . . , xk) is

defined as

∆f :=
k

∑

i=1

∂2f

∂x2
i

.

f is harmonic if ∆f = 0. A spherical harmonic of dimension n and degree

m is the restriction of a homogeneous of degree m harmonic polynomial to

Sn−1. The motivation for such a definition is clear if we consider the two-
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dimensional case. A function f = f(x1, x2) restricted to S
1 can be written in

the form a sin(mθ)+b cos(mθ) if and only if f is harmonic and homogeneous of

degree m (see [4], Prop 3.1.1). If f is a series of harmonic homogeneous poly-

nomials, then its restriction to S1 is a series of trigonometric terms like those

above. Hence, this definition generalizes the classical Fourier series to multi-

variable functions defined on the sphere. Define the following vector spaces

over R.

Hn
m: The space of spherical harmonics that are obtained by restricting a har-

monic, homogenous of degree m, polynomial in n variables to Sn−1.

Hn: The space of all finite sums of spherical harmonics of dimension n.

Both of the above spaces will be equiped with the inner product

〈H,G〉 :=
∫

Sn−1

G(ξ)H(ξ)dξ.

The dimension of Hn
m, denoted N(n,m), is finite and equals

N(n,m) =
2m+ n− 2

m+ n− 2

(

m+ n− 2

n− 2

)

(see [4], Thm 3.1.4).

Examples

1. Constant functions on Sn−1 are spherical harmonics of degree 0.

2. f(x1, x2, ..., xn) = c1x1 + c2x2 + ...+ cnxn is a harmonic of degree 1 once

11



restricted to Sn−1.

3. As mentioned above, all spherical harmonics of dimension 2 are of the

form a sin(mθ) + b cos(mθ).

4. Let f(x, y, z) be a harmonic function that is homogeneous of degree m.

Using these well known parametric equations to restrict f to S2

x = sin(φ) cos(θ), y = sin(φ)sin(θ), z = cos(φ)

produces a spherical harmonic of dimension 3 which is now written as a

trigonometric function of the variable ξ = (θ, φ) ∈ S2.

Theorem 2.1: (4, p.68). If G ∈ Hn
j , H ∈ Hn

k with j 6= k then G and H are

orthogonal. In particular, since G = 1 is a spherical harmonic of degree 0,

for every H ∈ Hn
k , k 6= 0, we have

∫

Sn−1

H(ξ)dξ = 0.

A finite set of linearly independent harmonics of the same dimension, need

not be mutually orthogonal. However, the Gram-Schmidt orthogonalization

procedure can be used to produce a mutually orthogonal sequence with the

same number of elements. Such a sequence is called a standard sequence of

spherical harmonics. While spherical harmonics form a rather specific class

of functions on the sphere, they can be used to approximate any continuous

function on Sn−1.

Proposition 2.1: (4, p.70). Let f be a continuous function on Sn−1. For

every ǫ > 0 there exist spherical harmonics H0, H1, . . . , Hk such that Hi ∈

12



Hn
i and for every ξ ∈ Sn−1

|f(ξ)−
k

∑

i=0

Hi(ξ)| < ǫ.

For instance, if L is a star body, ‖ · ‖−n
L is continuous on Sn−1 and can be

expanded as a series of spherical harmonics (much like a square integrable

function on [−π, π] can be written as a Fourier series).

‖ξ‖−n
L ∼

∞
∑

m=0

λmHm(ξ),

where {H0, H1, ...} is a standard sequence of spherical harmonics with Hm ∈

Hn
m ∀m ∈ N. As is always the case with a Fourier series on a Hilbert space, if

f =
∑

m≥0 λmHm then these coefficients are given by

λm =
〈f,Hm〉
‖Hm‖

,

where ‖·‖ denotes the norm ‖f‖ := 〈f, f〉1/2. Multiplying a spherical harmonic

by a non-zero scalar does not change its degree or dimension. Given the above

expression for f we will often denote λmHm by Hm as this still has degree m.

We may also collect terms of the same order in the aforementioned series to

produce the condensed expansion of f :

f ∼
∞
∑

m=0

Qm.

Unless otherwise stated, the harmonic expansion of f will refer to the con-

densed harmonic expansion of f . We will conclude this section with one more

familiar result about Fourier series which also holds in our current setting.

13



Proposition 2.2: (4, p.73). Let F,G ∈ L2(S
n−1) with harmonic expansions

F ∼
∞
∑

m=0

Qm, G ∼
∞
∑

m=0

Rm.

Then

〈F,G〉 =
∞
∑

m=0

〈Qm, Rm〉 .

2.B Orthogonal Polynomials

Let ζ(x) be a real, non-decreasing, bounded function taking infinitely many

values. Assume also that ζ is differentiable almost everywhere. We call ζ

a distribution function with momenta or an m-distribution if the improper

integral
∞
∫

−∞

xnζ ′(x)dx

exists for all n ∈ N0.

In most cases, ζ will have compact support [a, b] and will be differentiable on

(a, b). The interval [a, b] is referred to as the interval of orthogonality and
∞
∫

−∞

in the definition above can be replaced with
b
∫

a

.

The term ζ ′(x) is referred to as a weight factor and we denote

dζ(x) := ζ ′(x)dx

and for a polynomial p(x)

∞
∫

−∞

p(x)dζ(x) :=

∞
∫

−∞

p(x)ζ ′(x)dx.

The term dζ will also be referred to as an m-distribution.

14



Theorem 2.2: (2, p.13). For any m-distribution dζ there exists a sequence

of polynomials {pn(x)}n≥0 with the following properties.

a) pn(x) has degree n.

b) The leading coefficient of pn is positive.

c) ∀n, k ∈ N we have
∞
∫

−∞
pn(x)pk(x)dζ(x) = 0 if and only if k 6= n.

This sequence of polynomials is unique up to scalar multiplication. That is,

if {pn(x)}n≥0 and {qn(x)}n≥0 satisfy the above conditions, then there exists a

non-zero sequence of scalars {λn}n≥0, such that pn(x) = λnqn(x) for all n ∈ N0.

For an appropriate choice of scalars, condition c) can be replaced with a more

specific condition.

c*) ∀n, k ∈ N one has

∞
∫

−∞

pn(x)pk(x)dζ(x) =

{

1 for n = k

0 for n 6= k.

There exists a unique family of polynomials satisfying a), b), and c*) which

will be denoted pn(dζ, x), “the family of orthogonal polynomials induced by dζ”.

We will make use of some important results involving the roots of pn(dζ, x)

(see Theorem 2.3 and 2.4). Since the roots of a polynomial are not effected by

scalling, these results hold for any family of polynomials satisfying a), b), and

c), but not necessarily c*).

Examples

1. The Chebyshev polynomials (of the first kind) are given explicitly by the

formula pn(x) := cos(n arccos(x)) for all n ∈ N0

{p0(x), p1(x), p2(x), ....} = {1, x, 2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1, ....}.
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This family is orthogonal on the interval [-1,1] with weight factor 1√
1−x2 .

Hence, ζ(x) = arcsin(x) is the m-distribution associated to this family

of polynomials (see [2], p.34).

2. The classical Legendre Polynomials can be defined by the relation

Pn(x) :=
1

2nn!

dn

dxn
[(x2 − 1)n]

These polynomials are also orthogonal on the interval [-1,1] with a weight

factor of 1 (see [2], p.35,36).

To be consistant with the definition at the beginning of this section, the m-

distribution associated to each of the examples above is extended to R by defin-

ing them to be zero outside of the interval [-1,1]. Thus, these m-distributions

are differentiable on R except ±1. I will conclude this section with two deep

results that will play an important role in the next chapter.

Theorem 2.3: (2, p.17). The roots of pn(dζ, x) are simple and are contained

in the interval of orthogonality.

Theorem 2.4: (2, p.130). Suppose the roots of pn(dζ, x) lie in the interval

[−1, 1] and that ζ(x) is differentiable on (−1, 1). Let N(θ1, θ2, n) denote the

number of roots of pn(x) in the interval [cos(θ2), cos(θ1)]. Then

lim
n→∞

1

n
N(θ1, θ2, n) =

θ2 − θ1

π
.

In particular, this result implies that if a family of orthogonal polynomials is

supported in [-1,1] its roots form a dense subset of [-1,1].
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2.C Legendre Polynomials

In this section, we generalize the definition of the Legendre Polynomials given

above and state some necessary properties of these polynomials as well as the

well known Funk-Hecke Theorem.

Theorem 2.5: (4, p.80). Let n ≥ 2 and m ≥ 0. There exists a unique poly-

nomial P n
m with the following property. If {H1, ...HN} is any orthonormal

basis of Hn
m then

N
∑

i=1

Hi(u)Hi(v) =
N

|Sn−1|P
n
m(u · v)

for all u, v ∈ Sn−1, where |Sn−1| refers to the (n − 1)-dimensional surface

area of Sn−1. Furthermore, for every fixed v ∈ Sn−1, P n
m(u · v) is an n-

dimensional spherical harmonic of degree m.

P n
m is called the Legendre polynomial of dimension n and degree m and has

a much more explicit definition.

Proposition 2.3: (4, p.84). The Legendre polynomials have the property that

P n
m(t) =

(−1)m
2m(ϑ+ 1)(ϑ+ 2) · · · (ϑ+m)

(1− t2)−ϑ d
m

dtm
(

(1− t2)ϑ+m
)

,

where ϑ := n−3
2

and the coefficient of (1− t2)−ϑ is assumed to be 1 if m = 0.

The Chebyshev and classical Legendre polynomials discussed in the last

section are special cases of the above formula corresponding to n = 2 and

n = 3 respectively. Also note that the above formula is defined at t = ±1,

since the term (1− t2)−ϑ is multiplied by the mth derivative of (1− t2)ϑ+m; an
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expression containing the factor (1− t2)ϑ. In fact, the next lemma completely

characterizes these polynomials at 0 and 1.

Lemma 2.1: (4, p.82,85). For all n ∈ N, the Legendre polynomials have the

following properties:

a)P n
m(1) = 1 where 0 ≤ m ≤ N(n,m).

b) If m is odd, then P n
m(0) = 0, and if m 6= 0 is even, then

P n
m(0) = (−1)m/2 1 · 3 · · · (m− 1)

(n− 1)(n+ 1) · · · (n+m− 3)
,

where P n
0 = 1.

The most important property of the Legendre polynomials is that they are

orthogonal on [-1,1] with a weight factor of (1− t2)ϑ. Specifically:

[P n
j , P

n
k ] :=

1
∫

−1

P n
j (t)P

n
k (t)(1− t2)ϑdt = δj,k

|Sn−1|
|Sn−2|N(n, k)

(see [4], Prop 3.3.6).

Once again, we don’t require [P n
j , P

n
j ] = 1 only that [P n

j , P
n
j ] 6= 0 for all

j ∈ N0, n ∈ N. By the remarks following Theorem 2.2, this latter condition

implies that P n
k (t) is, up to a non-zero constant, “the” family of orthogonal

polynomials corresponding to the weight factor (1− t2)ϑ.

As we have seen, the Legendre polynomials of dimension 2 and 3 are well

known and are usually simplier to work with. Hence, the following result is of

use to us as it shows that any Legendre polynomial can be reduced to one of

dimension 2 or 3 by passing to derivatives.

18



Lemma 2.2: (4, p.87). If j ≥ 0 and m ≥ −1, then

dj

dtj
P n

m+j(t) = cn,m,jP
n+2j
m (t),

where

cn,m,j =
N(n+2j,m)
N(n,m+j)

n(n+ 2) · · · (n+ 2j − 2) (cn,−1,j = 0, cn,m,0 = 1).

Now to state the most important result in this chapter.

Theorem 2.6: (Funk-Hecke)[4, p.98]. Let Φ be an integrable function on [-

1,1] and H ∈ Hn
m. For every fixed u ∈ Sn−1, Φ(〈u, v〉) is an integrable

function of v on Sn−1 and

∫

Sn−1

Φ(〈u, v〉)H(v)dv = βn,m(Φ)H(u)

with

βn,m(Φ) := |Sn−2|
1

∫

−1

Φ(t)P n
m(t)(1− t2)ϑdt.

The proof given in [4] also assumes that Φ is bounded, a condition that

can be relaxed in certain cases. For instance, if Φ is the pointwise limit of

an increasing sequence of bounded, non-negative functions, then Theorem 2.6

follows from the Monotone Convergence Theorem.

Notice that if we set Φ(t) = 1, then βn,m(Φ) = 0 for all m ≥ 1 since {P n
m}m≥0

are mutually orthogonal on [-1,1] with a weight factor of (1 − t2)ϑ. This is

consistent with the second part of Theorem 2.1. Suppose now that we only

wish to integrate a harmonic H over a portion of Sn−1. We could choose Φ as
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follows. For some c ∈ (−1, 1)

Φ(t) :=

{

1 for t ≥ c,

0 for t < c.

Then
∫

Sn−1 Φ(〈u, v〉)H(v)dv is the integral of H over the spherical cap {v ∈

Sn−1 : 〈u, v〉 ≥ c}. By Funk-Hecke, this otherwise difficult surface integral is

nothing more than H(u) multiplied by the much simpler integral

|Sn−2|
1

∫

−1

Φ(t)P n
m(t)(1− t2)ϑdt = |Sn−2|

1
∫

c

P n
m(t)(1− t2)ϑdt.

This formula will be used in the next chapter.
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Chapter 3

The Volume Problem

A common goal of Geometric Tomography is to find conditions which uniquely

determine a convex body. That is, if K and L are convex bodies satisfying a

certain condition, then K = L. Clearly, a body is uniquely determined by its

radial function, and if the body is origin-symmetric, it is uniquely determined

by the Fourier transform of its radial function. By Corollary 1.1, an origin-

symmetric convex body is also uniquely determined by the (n−1)-dimensional

volume of its central hyperplane sections. In the next two chapters, we will

provide sufficient conditions, involving a cone, for uniquely determining a con-

vex body. For similar results see [8] and [9].

3.A Statement of the Problem

Let α ∈ (0, π/2). The “solid” n-dimensional cone with central angle α, central

axis given by the unit vector ξ, and vertex at the origin is defined as follows:

Cα,ξ = {x ∈ R
n :

〈

x
|x|2 , ξ

〉

≥ cos(α)}.
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Notice that this is not a truncated cone: it is unbounded and has infinite

“height” and volume. However, we are interested in the volume of intersection

of Cα,ξ and a convex body K (recall that K is assumed to contain the origin as

an interior point). Clearly this volume is finite. The answer to the following

question, which we will simply refer to as the Volume Problem, is the goal of

this chapter.

The Volume Problem.

Given two convex bodies K and L, and an angle α ∈ (0, π
2
), suppose that

V oln(K ∩ Cα,ξ) = V oln(L ∩ Cα,ξ) ∀ξ ∈ Sn−1.

Does this imply K = L?

In the above problem, ξ varies but α is fixed. Also note that we are com-

paring the volume of n-dimensional subsets of K and L as opposed to (n− 1)-

dimensional hyperplane sections which are mentioned throughout Chapter 1.

To produce a counterexample to the volume problem, we will use a standard

argument (see [5], p.96 and Lemma 5.16). Suppose K is a 2-smooth convex

body whose boundary has strictly positive curvature, and f is a twice contin-

uously differentiable function on Sn−1. Let p ∈ R\{0}. Given ǫ > 0 we define

a new body L by its Minkowski functional

‖x‖p
L := ‖x‖p

K + ǫf(x/|x|2)|x|p2.
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Choosing ǫ so that L also has strictly positive curvature will imply that L is

convex.

If K ⊂ R
2 is a body whose boundary is the parametric curve r = r(t), a ≤

t ≤ b, then its curvature is given by the well known formula

κ(t) =
|r′(t)× r′′(t)|

|r′(t)|3 .

It is more convenient to work with polar curves so proceed as follows. If

the boundary curve mentioned above is instead defined by the polar equation

r = ρ(θ) then it has parametric equations

r(θ) := 〈x(θ), y(θ), z(θ)〉 = 〈ρ(θ) cos(θ), ρ(θ) sin(θ), 0〉.

Using these equations in the curvature formula produces the polar equation

for curvature of a plane curve

κ(θ) =
ρ2 + 2(ρ′)2 − ρρ′′

[(ρ′)2 + ρ2]3/2

(see [3], p.25).

Lemmas 3.1 and 4.1 deal with bodies in R
2. Abusing notation slightly, ρK(θ)

will refer to the polar equation of the boundary of K. Also, the direction ξ

will refer to an angle in [0, 2π) for these two lemmas only.

Lemma 3.1: The answer to the volume problem in R
2 is negative if α is a

rational multiple of π and affirmative if α is an irrational multiple of π.1

Proof. If α is a rational divisor of π, that is, α = j
k
π for some integers j and

k (k 6= 0), we may produce a counterexample as follows. Let K be the unit
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disk, ρK(θ) = 1 and define the body L by

ρL(θ) :=
√

1 + ǫ cos(kθ).

Using the equation for the area inside a polar curve (A = 1
2

∫ θ2

θ1
r2(θ)dθ), we

have

V oln(L ∩ Cα,ξ) =
1

2

∫ ξ+α

ξ−α

(

√

1 + ǫ cos(kθ)
)2

dθ

=
1

2

(∫ ξ+α

ξ−α

dθ +

∫ ξ+α

ξ−α

ǫ cos(kθ)dθ

)

=
1

2

∫ ξ+α

ξ−α

dθ + 0 = V oln(K ∩ Cα,ξ)

for all ξ ∈ [0, 2π). Choosing ǫ < 1
2k2 , the curvature formula proceeding this

lemma shows that the boundaries of L and K have strictly positive curvature.

Thus, L and K are convex.

Now suppose that α is not a rational divisor of π. The conditions of the

Volume Problem imply the existence of θ0 ∈ [0, 2π) such that ρK(θ0) = ρL(θ0).

Indeed, by the continuity of ρK and ρL, if such an angle did not exist then either

ρK > ρL or ρL > ρK . Either of these conditions contradict V oln(K ∩ Cα,ξ) =

V oln(L∩Cα,ξ). Differentiating
∫ a+2α

a
ρ2

K(θ)dθ =
∫ a+2α

a
ρ2

L(θ)dθ with respect to

a gives

ρ2
L(θ + 2α)− ρ2

L(θ) = ρ2
K(θ + 2α)− ρ2

K(θ) ∀θ ∈ [0, 2π)

and, in particular, ρK(θ0+2α) = ρL(θ0+2α). Since α is not a rational divisor

of π,

{2mα + θ0 : m ∈ Z}
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is an infinite (and dense) subset of S1 on which ρK = ρL. By continuity,

ρk = ρL on all of Sn−1 and we have that K = L. �

3.B The Affirmative Answer

Now we pass to the n-dimensional case. We begin by deriving an expression

for V oln(Cα,ξ ∩ K). Fix ξ ∈ Sn−1. For x ∈ R
n\ξ⊥, x ∈ Cα,ξ if and only if

〈x, ξ〉 ≥ |x|2 cos(α) ≥ 0 which is equivalent to 1 ≥ |x|2 cos(α)
〈x,ξ〉 ≥ 0. Let ψ be the

indicator function of the interval [0,1]. Then

V oln(Cα,ξ ∩K) =
∫

K

ψ

( |x|2 cos(α)
〈x, ξ〉

)

dx

=

∫

Rn

ψ

( |x|2 cos(α)
〈x, ξ〉

)

χ(‖x‖K)dx

=

∫

Sn−1

∫ ∞

0

rn−1ψ

(

r cos(α)

r〈θ, ξ〉

)

χ(r‖θ‖K)drdθ

=

∫

Sn−1

ψ

(

cos(α)

〈θ, ξ〉

)∫ 1
‖θ‖K

0

rn−1drdθ

=
1

n

∫

Sn−1

ψ

(

cos(α)

〈θ, ξ〉

)

‖θ‖−n
K dθ

=
1

n

∫

Sn−1

Φ(〈θ, ξ〉)ρn
K(θ)dθ,

where Φ(t) = ψ
(

cos(α)
t

)

=

{

1 for t ≥ cos(α)
0 for t < cos(α)

.

Since ρn
K(θ) is continuous on S

n−1 we can expand it as a series of spherical

harmonics

ρn
K(θ) ∼

∑

m≥0

Hm,

where m is the degree of the harmonic. Applying this to the integral above
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yields
∫

Sn−1

Φ(〈θ, ξ〉)ρn
K(θ)dθ ∼

∑

m≥0

∫

Sn−1

Φ(〈θ, ξ〉)Hm(θ)dθ.

Applying the Funk-Hecke Theorem to each integral on the right hand side, we

obtain

∫

Sn−1

Φ(〈θ, ξ〉)ρn
K(θ)dθ ∼

∑

m≥0

βn,m(Φ)Hm(ξ),

where

βn,m(Φ) = |Sn−2|
1

∫

−1

Φ(x)P n
m(x)(1− x2)ϑds = |Sn−2|

1
∫

cos(α)

P n
m(x)(1− x2)ϑdx

and as before, P n
m(x) is the Legendre Polynomial of degree m and dimension

n. This provides the following,

nV oln(Cα,ξ ∩K) ∼
∑

m≥0

βn,m(Φ)Hm(ξ).

Thus, if L is another convex body satisfying the condition

V oln(Cξ,α ∩K) = V oln(Cξ,α ∩ L) ∀ξ ∈ Sn−1

and if we write ρn
L(θ) as its harmonic expansion, ρ

n
L(θ) ∼

∑

m≥0Gm, then

∑

m≥0

βn,m(Φ)Hm(ξ) =
∑

m≥0

βn,m(Φ)Gm(ξ) ∀ξ ∈ Sn−1.

By the independence of spherical harmonics of different degrees, we have that

βn,m(Φ)Hm(ξ) = βn,m(Φ)Gm(ξ) for all ξ ∈ Sn−1 and m ∈ N0. If βn,m 6= 0
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∀m ∈ N0 then

ρn
K(θ) ∼

∑

m≥0

Hm ∼
∑

m≥0

Gm ∼ ρn
L(θ) ⇒ K = L.

On the other hand, if βn,k = 0 for some k ∈ N0, then the condition βn,k(Φ)Hk(ξ) =

βn,k(Φ)Gk(ξ) does not imply Hk(ξ) = Gk(ξ). In fact, if Hk(ξ) 6= Gk(ξ) we have

∑

m≥0

βn,m(Φ)Hm(ξ) 6=
∑

m≥0

βn,m(Φ)Gm(ξ) ⇒ ρn
K(θ) 6= ρn

L(θ)⇒ K 6= L.

In particular, we may take K to be the unit sphere (so that ρK = 1) and define

ρL := (1 + ǫHn
k )

1/n. By the argument prior to Lemma 3.1, L is convex if ǫ is

sufficiently small. ρn
K(θ) is constant so its spherical harmonic expansion only

involves the constant term Hn
0 = 1 while ρn

L(θ) = 1+ ǫHn
k = Hn

0 + ǫH
n
k . Using

the expression for V oln(Cα,ξ ∩ L) above, we observe

nV oln(Cα,ξ ∩ L) ∼
∑

m≥0

βn,m(Φ)Hm(ξ)

= βn,0(Φ)H
n
0 (ξ) + βn,k(Φ)H

n
k (ξ)

= βn,0(Φ)H
n
0 (ξ) + 0

∼ nV oln(Cα,ξ ∩K).

This gives us our main result.

Theorem 3.1: The answer to the volume problem in R
n is affirmative if and

only if

βn,m(Φ) =

1
∫

cos(α)

P n
m(x)(1− x2)ϑdx

is non-zero for all m ∈ N0.
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Since P n
0 (x) = 1, it is clear from the integral above that βn,0 > 0 for all n ∈ N.

Thus, “N0” in the final line of the theorem may be replaced with “N”. Also

notice that this theorem is consistent with the two dimensional result we had

before (Lemma 3.1).

Corollary 3.1.1: The answer to the volume problem in R
2 is affirmative if

and only if α is an irrational multiple of π.

Proof. P 2
m(x) is the class of Chebyshev Polynomials defined by P 2

m(x) :=

cos(m arccos(x)). Using the substitution t := arccos(x) to compute the terms

β2,m(Φ) with m ∈ N, we observe

β2,m(Φ) =

1
∫

cos(α)

P 2
m(x)(1− x2)ϑdx =

1
∫

cos(α)

cos(m arccos(x))
1√

1− x2
dx

=
1

m
sin(mα).

If α is an irrational multiple of π, this is clearly non-zero for all m ∈ N. If

α = p
q
π for integers p and q, q 6= 0, then sin(mα) = 0 when m = q. �

Theorem 3.1 provides us with some insight behind the proof of Lemma 3.1.

As mentioned in the previous chapter, every spherical harmonic of degree m

in R
2 is of the form a cos(mθ) + b sin(mθ). In Lemma 3.1, the term cos(kθ) is

a spherical harmonic such that β2,k(Φ) = 0 and the proof of the negative part

of Lemma 3.1 is essentially the same as the argument preceding Theorem 3.2.

By Proposition 2.3, the Legendre polynomials can be written as

P n
m(x) =

(−1)m
2m(ϑ+ 1)(ϑ+ 2) · · · (ϑ+m)

(1− x2)−ϑ d
m

dxm

(

(1− x2)ϑ+m
)

,
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where ϑ = n−3
2
. Using this in our expression for βn,m

βn,m(Φ) = |Sn−2|
1

∫

cos(α)

P n
m(x)(1− x2)ϑdx

=
(−1)m|Sn−2|

2n(ϑ+ 1)(ϑ+ 2) · · · ·(ϑ+m)

1
∫

cos(α)

dm

dsm
(1− x2)ϑ+mdx

=
(−1)m|Sn−2|

2m(ϑ+ 1)(ϑ+ 2) · · · ·(ϑ+m)

dm−1

dxn−1
(1− x2)ϑ+m

∣

∣

x=1
x=cos(α).

With the following lemma, it is only necessary to evaluate this function at the

left endpoint.

Lemma 3.2:

dm−1

dxm−1
(1− x2)ϑ+m |x=±1 = 0.

Proof. Using the binomial derivative formula (fg)(m) =
∑m

l=0

(

m
l

)

f (m−l)g(l)

with f(x) = (1− x)m+ϑ, g(x) = (1 + x)m+ϑ

[(1− x2)m+ϑ](m−1) = [(1− x)m+ϑ(1 + x)m+ϑ](m−1)

=
m−1
∑

l=0

(

m− 1

l

)

[(1− x)m+ϑ](m−l−1)[(1 + x)m+ϑ](l).

Since both l and m − l − 1 are less than ϑ +m each term in this expansion

contains the factor (1 + x)(1− x). Thus each term in this expansion vanishes

at x = ±1. �
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Hence the answer to the Volume Problem is affirmative if and only if

dm−1

dxm−1
(1− x2)ϑ+m

∣

∣

x=cos(α) 6= 0

∀m ∈ N. Recall that a complex number is called algebraic if it is the root of

a polynomial having rational coefficients. A number which is not algebraic is

called transcendental. It is known from analysis that if α is a nonzero algebraic

number then cos(α) is transcendental (see, e.g. [1], Thm 1.4).

Theorem 3.2: If α is a nonzero algebraic number, than the answer to the

volume problem is affirmative.

Proof. If n is odd then ϑ = n−3
2

∈ N0 and
dm−1

dxm−1 (1− x2)ϑ+m is a polynomial

with integer coefficients so the result follows from the fact mentioned above.

Suppose n is even. Refering to the binomial derivative formula in Lemma 3.2,

we get

[(1− x2)m+ϑ](m−1) =
m−1
∑

l=0

(

m− 1

l

)

[(1− x)m+ϑ](m−l−1)[(1 + x)m+ϑ](l).

Every term in this expansion contains the factor (1−x) j

2 (1+x)
k
2 for some odd

numbers j and k. We can thus remove the factor (1− x)
1
2 (1 + x)

1
2 producing

[(1− x2)m+ϑ](m−1) = (1− x)
1
2 (1 + x)

1
2Q(x),

where Q(x) is some polynomial with integer coefficients. Since cosα 6= ±1,

and cos(α) is not a root of Q(x), [(1− x2)n+ϑ](n−1)|x=cos α 6= 0. �

The condition in Theorem 3.2 is sufficient but not necessary. If a particu-

lar value of α provides a negative answer to the Volume Problem, then cos(α)
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must be an algebraic number. This means there are only countably many

possibilities for the value of α. The set of α ∈ (0, π
2
) providing an affirma-

tive answer to the volume problem is thus an uncountable set, containing the

algebraic numbers as a proper subset.

3.C The Negative Answer

By the comments following Lemma 3.2, the answer to the volume problem is

negative if and only if there exists some m ∈ N such that

dm−1

dxm−1
(1− x2)ϑ+m

∣

∣

x=cos(α) = 0.

In this case, K and L could be different bodies whose radial functions differ

by a spherical harmonic of degree m and these bodies would still satisfy

V oln(K ∩ Cα,ξ) = V oln(L ∩ Cα,ξ) ∀ξ ∈ Sn−1.

To fully answer the negative part of the volume problem would involve finding

all roots of the family of polynomials listed above. Since the degree of these

polynomials becomes arbitrarily large as m increases, this is not possible in

general. Even the classic Legendre polynomials (which are a special case of P n
m

with n = 3) do not have easily determined roots. The Chebyshev polynomials

(P n
m with n = 2) have roots given by the expression

xk,n = cos

(

2k − 1

2n
π

)

k = 1, 2, ..., n
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(see [7], Section 2.2). Thus, it was possible to completely solve the volume

problem in R
2. If a particular value of α ∈ (0, π

2
) produces a negative answer

to the volume problem, it must be a root of one of the countably many polyno-

mials given above. Thus, there are at most a countable number of α for which

this is the case. It will be shown in this section that the set of α corresponding

to a negative answer of the volume problem is a countable dense subset of the

interval (0, π
2
).

Proposition 3.1: If qm(x) :=
dm−1

dxm−1 (1 − x2)ϑ+m, then {qm(x)}m≥0 is orthog-

onal with a weight factor of (1− x2)−(ϑ+1).

Proof. Recall that {P n
m(x)}m≥0 is orthogonal on [−1, 1] with weight factor

(1− x2)ϑ for all n ∈ N (see the comment after Lemma 2.1). So if j 6= k

0 =

1
∫

−1

P n
j (x)P

n
k (x)(1− x2)ϑdx

= c(j)c(k)

1
∫

−1

(1− x2)−ϑ

(

dj

dxj
(1− x2)ϑ+j

)(

dk

dxk
(1− x2)ϑ+k

)

dx,

where c(k) := (−1)k

2k(ϑ+1)(ϑ+2)···(ϑ+k)
.

Since this holds ∀n ∈ N, we may replace n with n + 2 (i.e. ϑ with ϑ + 1)

getting

0 =

1
∫

−1

(1− x2)−(ϑ+1)

(

dj

dxj
(1− x2)ϑ+j+1

)(

dk

dxk
(1− x2)ϑ+k+1

)

dx

=

1
∫

−1

(1− x2)−(ϑ+1)qj+1(x)qk+1(x)dx.
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This proves that ql(x) and qm(x) are orthogonal if l 6= m and l,m ≥ 2. It

still remains to show that q1(x) (which equals (1−x2)ϑ+1) is orthogonal to qm

when m 6= 1. Using the same reasoning as in Lemma 3.2 (since m−2 < ϑ+m)

1
∫

−1

q1(x)qm(x)(1− x2)−(ϑ+1)dx =

1
∫

−1

qm(x)dx

=

1
∫

−1

dm−1

dxm−1
(1− x2)ϑ+mdx

=
dm−2

dxm−2
(1− x2)ϑ+m|x=1

x=−1 = 0.

Finally
1
∫

−1

(1 − x2)−(ϑ+1)qk(x)qk(x)dx 6= 0 ∀n ∈ N, since the integrand is non-

negative. This completes the proof. �

To be consistent with the given definition of orthogonal polynomials, (1−

x2)−(ϑ+1) must be the derivative of an m-distribution. For every n ∈ N, let

ζn(x) be an antiderivative of (1 − x2)−(ϑ+1). ζn is non-decreasing and has

infinite range, since its derivative, (1 − x2)−(ϑ+1), is strictly positive on the

interval (−1, 1). So {qm(x)}m≥0 satisfy all the criteria needed to be called an

orthogonal family of polynomials and we now apply the main result of Section

2.2.

Theorem 3.3: The set of all α ∈ (0, π
2
) for which the answer to the volume

problem is negative is dense in (0, π
2
).

Proof. We have established that {qm(x)}m≥0 is orthogonal on [−1, 1] which,

by Theorem 2.3, implies that the roots of these polynomials lie in the same

interval. We thus have the required conditions to use Theorem 2.4. For an

arbitrary subinterval [cos(θ2), cos(θ1)], there exists m ∈ N sufficiently large so
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that N(θ1, θ2,m) ≥ 1. Hence, the roots of {qm(x)}m≥0 are dense in [−1, 1] and

the result follows from the continuity of the arccos function. �
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Chapter 4

The Surface Area Problem

In this chapter we consider a problem similar to the one in the previous chapter,

but involving surface area instead of volume. The strategy to solving this

problem will be the same. Derive a formula for the quantity that two bodies,

K and L, are assumed to share, express this quantity in terms of the integral

over Sn−1, then use the Funk-Hecke Theorem and proceed as before.

4.A Statement of the Problem

The “hollow” cone is the (n−1) dimensional surface of the solid cone described

before. Specifically, if it has its vertex at the origin, a central axis in the

direction ξ ∈ Sn−1, and a central angle of α it is defined as follows:

C̃α,ξ = {x ∈ R
n :

〈

x

|x|2
, ξ

〉

= cos(α)}.

We may ask an analogous question to the one stated at the begining of Chapter

3.
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The Surface Area Problem.

Given two convex bodies K and L, and an angle α ∈ (0, π
2
), suppose that

V oln−1(K ∩ C̃α,ξ) = V oln−1(L ∩ C̃α,ξ) ∀ξ ∈ Sn−1.

Does this imply K = L?

As is the case with most of the results in Chapter 1, the problem aims to

uniquely determine a body by subsets of dimension n − 1. However, C̃α,ξ

is not a “flat” hyperplane section like those we dealt with before. A proof

very similar to that of Lemma 3.1 shows that the Volume and Surface Area

Problems have the same answer in R
2.

Lemma 4.1: The answer to the surface area problem in R
2 is affirmative if

and only if α is an irrational multiple of π.

Proof. Let ρ(θ) denote the polar equation for the boundary of a body in R
2.

The conditions of the Surface Area Problem imply that

ρK(θ) + ρK(θ + 2α) = ρL(θ) + ρL(θ + 2α)

for all θ ∈ [0, 2π). This implies that there exists θ0 ∈ [0, 2π) such that

ρK(θ0) = ρL(θ0). Indeed, if such a θ0 did not exist, then by the continuity

of the radial functions, either ρL > ρK or ρL < ρK . Either of these relations

contradict the assumed equation above. The above equation then also estab-

lishes ρK(θ0+2nα) = ρL(θ0+2nα) for all n ∈ N. If α is an irrational multiple

of π then, as was the case in the proof of Lemma 3.1, the previous relation pro-

duces an infinite set of angles, dense in the interval [0, 2π), for which ρK and

ρL are equal. By continuity of these radial functions, we have that ρK = ρL
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on [0, 2π) and K = L.

If α = m
n
π for some n,m ∈ Z, n 6= 0 then we can produce a counterexample

as follows. Take K to be the unit disk and L to be the body whose boundary

is the polar curve

ρL(θ) := 1 + ǫ cos
( n

2m
θ
)

.

Then for every θ ∈ [0, 2π)

V oln−1(L ∩ C̃α,θ) = ρL(θ − α) + ρL(θ + α)

= 1 + ǫ cos
( n

2m
θ
)

+ 1 + ǫ cos

(

n

2m

(

θ +
2m

n
π

))

= 1 + ǫ cos
( n

2m
θ
)

+ 1− ǫ cos
( n

2m
θ
)

= 1 + 1

= ρK(θ) + ρK(θ + 2α)

= V oln−1(K ∩ C̃α,θ).

K is convex, and by the argument preceding Lemma 3.1, L is convex for

sufficiently small ǫ. �

4.B The Affirmative Answer

In this section, we consider the higher dimensional case n ≥ 3 (so ϑ ≥ 0). For

a convex body K deriving an expression for V oln−1(K ∩ C̃α,ξ) is more difficult

than it was for V oln(K ∩ Cα,ξ). By projecting this surface onto the central

hyperplane ξ⊥, we are able to work with quantities involving the central hy-

perplane sections of K. Also, the following result shows that this quantity
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differs from V oln−1(K ∩ C̃α,ξ) by a factor of sin(α).

Define the surface area measure, S(K, ·), of the convex body K as follows.

For every Borel set E ⊂ Sn−1, S(K,E) is the Lebesgue measure of the part of

the boundary of K, where normal vectors belong to E.

Theorem 4.1: (Cauchy Projection Formula)[3, p.361]. For ξ ∈ Sn−1, let

K|ξ⊥ denote the orthogonal projection of the n-dimensional convex body K

onto the hyperplane ξ⊥. Then for every ξ ∈ Sn−1,

V oln−1

(

K|ξ⊥
)

=
1

2

∫

Sn−1

|〈ξ, θ〉|dS(K, θ).

The factor of 1
2
is in place because each point of the projection K|ξ⊥ is

covered twice by K. By definition, if θ ∈ Sn−1 ∩ C̃α,ξ, then 〈θ, ξ〉 = cos(α).

So, if x is a unit normal vector to C̃α,ξ then

|〈x, ξ〉| = sin(α).

Since C̃α,ξ is an “uncapped” cone, the factor of
1
2
in Theorem 4.1 is unnec-

essary. This gives us the following

V oln−1

(

(K ∩ C̃α,ξ)|ξ⊥
)

= sin(α)

∫

Sn−1

dS(C̃α,ξ, θ) = sin(α)V oln−1

(

K ∩ C̃α,ξ).

That is, V oln−1(K∩ C̃α,ξ) equals the area of the projection of this surface onto

ξ⊥, divided by the constant sin(α). If θ ∈ Sn−1∩ C̃α,ξ, then ρK(θ) is the radius

of K in the direction of θ ∈ C̃α,ξ. That is, the radius of K along the boundary

of the cone. Projecting C̃α,ξ onto the central hyperplane ξ
⊥, the projection has
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a radius of sin(α)ρK(θ) (once again, θ ∈ Sn−1 ∩ C̃α,ξ). Since θ ∈ Sn−1 ∩ C̃α,ξ,

it can be written as

θ = ξ cos(α) + η sin(α)

for some η ∈ Sn−1 ∩ ξ⊥. The formula for surface area can now be written as

an integral over a central hyperplane section:

sin(α)V oln−1

(

K ∩ C̃α,ξ) =
(sin(α))n−1

n− 1

∫

Sn−1∩ξ⊥
ρn−1

K (ξ cos(α) + η sin(α))dη.

Finally, since this is the area of the projection, we can recover the area of the

cone by dividing this expression by sin(α).

V oln−1(K ∩ C̃α,ξ) =
(sin(α))n−2

n− 1

∫

Sn−1∩ξ⊥
ρn−1

K (ξ cos(α) + η sin(α))dη.

Instead of finding the spherical harmonic expansion for the above function of

ξ, we consider related functions, and then use a limiting argument. We will

first need two lemmas. The proof of this first lemma is similar to that of [4],

Lemma 1.3.1. Also see [7], p.1.

Lemma 4.2: Let f(θ) be continuous on Sn−1 and Φ(x) integrable on [-1,1].

Then
∫

Sn−1

Φ(〈θ, ξ〉)f(θ)dθ =
1

∫

−1

Φ(x)Fξ(x)dx,

where

Fξ(x) := (1− x2)ϑ
∫

Sn−1∩ξ⊥
f(xξ +

√
1− x2θ)dθ.
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Lemma 4.3: Let f be continuous on R with compact support. Then

lim
q→0−

1

Γ(−q)

∞
∫

0

t−1−qf(t)dt = f(0).

Proof. Let c > 0 be such that f(x) = 0 on (c,∞) and let ǫ > 0. Since f is

continuous, there exists δ > 0 such that

sup
x∈(0,δ)

| f(x)− f(0) |< ǫ.

The integral can be broken up as follows:

lim
q→0−

1

Γ(−q)

(

δ
∫

0

t−1−qf(t)dt+

c
∫

δ

t−1−qf(t)dt

)

.

The limit of the second integral is zero because the integrand is bounded on

the interval (δ, c) and 1
Γ(−q)

approaches zero as q → 0−. Using (−q)Γ(−q) =

Γ(1− q), it’s easy to check that

lim
q→0−

1

Γ(−q)

δ
∫

0

t−1−qdt = 1.

Observe that

lim
q→0−

∣

∣

∣

∣

∣

∣

1

Γ(−q)

δ
∫

0

t−1−qf(t)dt− f(0)

∣

∣

∣

∣

∣

∣

= lim
q→0−

∣

∣

∣

∣

∣

∣

1

Γ(−q)

δ
∫

0

t−1−q
(

f(t)− f(0)
)

dt

∣

∣

∣

∣

∣

∣

≤ lim
q→0−

1

Γ(−q)

δ
∫

0

t−1−q|f(t)− f(0)|dt
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≤ ǫ lim
q→0−

1

Γ(−q)

δ
∫

0

t−1−qdt

= ǫ.

Since ǫ was arbitrary, this completes the proof. �

This lemma can be generalized in several ways. Clearly f need not have a

compact support if the integral was over the interval [0, c] for some c > 0. A

similar proof would be used if the integral was over [−c, 0]. Also

lim
q→0−

1

Γ(−q)

1
∫

−1

t−1−qf(t)dt = 2f(0)

because the integral can be divided into
0
∫

−1

· · ·+
1
∫

0

· · · and the above argument

applies to each integral. A simple substitution also yields

lim
q→0−

1

Γ(−q)

1
∫

−1

(t− c)−1−qf(t)dt = 2f(c)

for all c ∈ (0, 1).

Our goal is to write V oln−1(K ∩ C̃α,ξ) as a series of spherical harmonics. We

may then proceed in a way similar to the solution of the Volume Problem. Let

{Gmj} m≥0
1≤j≤N(n,m)

be an orthonormal basis of spherical harmonics for L2(S
n−1).

Denote

f(ξ) :=

∫

Sn−1∩ξ⊥
ρn−1

K (ξ cos(α) + θ sin(α))dθ,

so that f(ξ) only differs from V oln−1(K∩ C̃α,ξ) by a constant. Expressing f(ξ)
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as a harmonic expansion with respect to the basis above, we have

f(ξ) ∼
∑

m≥0

N(n,m)
∑

j=1

γmjGmj,

where γmj are the Fourier coefficients of this expansion, given explicitly as

γmj := 〈f,Gmj〉 =
∫

Sn−1

f(ξ)Gmj(ξ)dξ.

As was the case in the solution to the Volume Problem, we are interested

only in which harmonic coefficients γmj equal zero. Once again, f(ξ) and

V oln−1(K ∩ C̃α,ξ) differ by a non-zero constant, so it will suffice to consider

the harmonic expansion of f(ξ). Fix m and j, and simplify the expression for

γmj as follows.

γmj =

∫

Sn−1

f(ξ)Gmj(ξ)dξ

=

∫

Sn−1

Gmj

(∫

Sn−1∩ξ⊥
ρn−1

K (ξ cos(α) + θ sin(α))dθ

)

dξ

=
1

(sin(α))n−3

∫

Sn−1

Gmj(ξ)Fξ(cos(α))dξ,

where Fξ is defined in Lemma 4.2 as

Fξ(x) := (1− x2)ϑ
∫

Sn−1∩ξ⊥
ρn−1

K (xξ +
√
1− x2θ)dθ.

Define Φq(x) :=
1

|x−cos(α)|q+1 (which is integrable on [−1, 1] for all q < 0). Using
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Lemmas 4.3, 4.2, and Fubini’s theorem,

γmj =
1

2 (sin(α))n−3 lim
q→0−

1

Γ(−q)

∫

Sn−1

Gmj(ξ)

(∫ 1

−1

Φq(x)Fξ(x)dx

)

dξ

=
1

2 (sin(α))n−3 lim
q→0−

1

Γ(−q)

∫

Sn−1

Gmj(ξ)

(∫

Sn−1

Φq (〈θ, ξ〉) ρn−1
K (θ)dθ

)

dξ

=
1

2 (sin(α))n−3 lim
q→0−

1

Γ(−q)

∫

Sn−1

ρn−1
K (θ)

(∫

Sn−1

Φq (〈θ, ξ〉)Gmj(ξ)dξ

)

dθ.

Now applying the Funk-Hecke Theorem and Lemma 4.3 once more,

γmj =
|Sn−2|

2 (sin(α))n−3

(

lim
q→0−

1

Γ(−q)

∫ 1

−1

Φq(x)P
n
m(x)(1− x2)ϑdx

)∫

Sn−1

ρn−1
K (θ)Gmj(θ)dθ

=
|Sn−2|

2 (sin(α))n−3 (2P
n
m(cos(α))) (1− cos2(α))ϑλmj(ρ

n−1
K )

= |Sn−2| (P n
m(cos(α)))λmj(ρ

n−1
K ),

where

λmj(ρ
n−1
K ) := 〈ρn−1

k , Gmj〉 =
∫

Sn−1

ρn−1
K (x)Gmj(x)dx.

It follows that γmj = 0 whenever cos(α) is a root of P n
m. We will denote

Hm :=

N(n,m)
∑

j=1

λmj

(

ρn−1
K

)

Gmj

which is a spherical harmonic of degree m, so the harmonic expansion for ρn−1
K

can be written as

ρn−1
K ∼

∑

m≥0

N(n,m)
∑

j=1

〈ρn−1
k , Gmj〉Gmj ∼

∑

m≥0

Hm.

Returning to V oln−1(K ∩ C̃α,ξ), this quantity can now be expressed in terms

of the basis {Hm}m≥0:
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V oln−1(K ∩ C̃α,ξ) =
(sin(α))n−2

n− 1
f(ξ)

∼ (sin(α))n−2

n− 1

∑

m≥0

N(n,m)
∑

j=1

γmjGmj

∼ |Sn−2|(sin(α))n−2

n− 1

∑

m≥0

N(n,m)
∑

j=1

λmj(ρ
n−1
K )GmjP

n
m(cos(α))

∼ |Sn−2| sinn−2(α)

(n− 1)

∑

m≥0

Hm(ξ)P
n
m(cos(α)).

The argument preceding Theorem 3.1 applies here as well. If P n
m(cos(α)) 6= 0

for all m ∈ N and if L is another convex body (with harmonic expansion

ρn−1
L ∼ ∑

m≥0 Fm), satisfying the conditions of the Surface Area Problem,

then

∑

m≥0

Hm(ξ)P
n
m(cos(α)) =

∑

m≥0

Fm(ξ)P
n
m(cos(α)) ∀ξ ∈ Sn−1 (⋆)

which, by the independence of spherical harmonics of different degrees, implies

that Hm = Fm for all m ∈ N. Since ρn−1
K ∼

∑

m≥0Hm and ρn−1
L ∼

∑

m≥0 Fm

we conclude that ρn−1
K (ξ) = ρn−1

L (ξ) for all ξ ∈ Sn−1 and therefore K = L.

On the other hand, if P n
k (cos(α)) = 0 for some k ∈ N then (⋆) does not imply

Hk = Fk. A counterexample can be constructed as it was in Chapter 3. Let

K be the unit ball, ρK(θ) := 1, and L be the body given by

ρL(θ) := (1 + ǫHk)
1

n−1 .

ρn−1
K (θ) and ρn−1

L (θ) are continuous on Sn−1 and have finite harmonic expan-
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sions 1 and (1 + ǫHk) respectively. Hence,

V ol(L ∩ C̃α,ξ) ∼
|Sn−2| sinn−2(α)

(n− 1)

∑

m≥0

Hm(ξ)P
n
k (cos(α))

=
|Sn−2| sinn−2(α)

(n− 1)
(H0(ξ)P

n
0 (α) + ǫHk(ξ)P

n
k (cos(α))

=
|Sn−2| sinn−2(α)

(n− 1)
(1)P n

0 (cos(α)) + ǫHk(ξ)(0)

=
|Sn−2| sinn−2(α)

(n− 1)
P n

0 (cos(α))

= V ol(K ∩ C̃α,ξ).

By choosing ǫ sufficiently small, L is convex.

Theorem 4.2: The answer to the Surface Area Problem in R
n is affirmative

if and only if P n
m(cos(α)) 6= 0 for all m ∈ N.

By Proposition 2.3, the family of polynomials {P n
m}m≥0 has rational coef-

ficients. Once again, if α is a non-zero algebraic number, cos(α) is a transcen-

dental number meaning that it is not the root of any polynomial with rational

coefficients.

Theorem 4.3: If α is a non-zero algebraic number, then the answer to the

Surface Area Problem is affirmative.

As before, the condition in Theorem 4.3 is sufficient but not necessary.

There are only countably many algebraic numbers, so there are only countably

many values of α for which cos(α) is a root of P n
m(x) for some m ∈ N. Thus,

there are uncountably many values of α ∈ (0, π
2
) producing an affirmative

answer to the Surface Area Problem. On the other hand, only countably

many such α are given by Theorem 4.3.
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4.C The Negative Answer

Since {P n
m}m≥0 is orthogonal on [−1, 1], the same density argument as was

used at the end of Chapter 3 applies here.

Theorem 4.4: The set of all α ∈ (0, π
2
) for which the answer to the Surface

Area Problem is negative is dense in (0, π
2
).

Proof. By the comments following Lemma 2.1, {P n
m}m≥0 is orthogonal on

[−1, 1], which, by Theorem 2.3, implies that the roots of {P n
m}m≥0 lie in this

interval. Now applying Theorem 2.4, if [cos(θ2), cos(θ1)] ⊂ [−1, 1] is an ar-

bitrary subinterval, then for m sufficiently large, P n
m(x) has a root in this

interval. Hence, there exists α ∈ [θ1, θ2], such that the answer to the Surface

Area Problem is negative. �
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Chapter 5

Remarks

We have provided sufficient conditions for the affirmative answer to the Volume

Problem but we have not provided a complete solution. To determine exactly

when the answer to the Volume Problem is negative, it is necessary to find the

roots of the family {qm(x)}m≥0 defined in Chapter 3. Obviously the roots of

high-degree polynomials cannot be found in general. Also, in light of Theorem

3.3, there is no value in estimating values of α for which cos(α) is a root

of some qm(x). Similar difficulties arise in finding a complete answer to the

Surface Area Problem so we cannot expect a complete answer to either of

these problems in higher dimensions. However, complete solutions to these

problems are possible in some lower dimensional cases. The following result

answers the Volume Problem in R
4.

Lemma 5.1: The answer to the volume problem in R
4 is affirmative if and

only if

sin(mα)

sin
(

(m+ 2)α
) 6= m

m+ 2

for all m ≥ 1.
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Note that the solutions to the Volume Problem in R
2 and R

4 are different.

In particular, the values α = π/6, π/4 or π/3 produce an affirmative answer

to the Volume Problem in R
4, but a negative answer to the Volume Problem

in R
2.

Proof. By Theorem 3.1, the answer is affirmative if and only if

β4,m(Φ) =

1
∫

cos(α)

P 4
m(x)(1− x2)ϑdx

is non-zero for all m ∈ N. Using Lemma 2.2 (where n = 4 implies ϑ = 1/2),

1
∫

cos(α)

P 4
m(x)(1− x2)1/2dx =

1

c2,m,1

1
∫

cos(α)

d

dx

(

P 2
m+1(x)

)

(1− x2)1/2dx

=
m+ 1

c2,m,1

1
∫

cos(α)

sin((m+ 1) arccosx))dx,

where we also used P 2
m(x) := cos(m arccos(x)). Applying the substitution

x := cos(t) and the well known identity for sin(jx) sin(kx), the above integral

becomes

m+ 1

c2,m,1

α
∫

0

sin
(

(m+ 1)(t)) sin(t)dt

=
m+ 1

2c2,m,1

α
∫

0

(

cos(mt)− cos
(

(m+ 2)t
)

dt

=
m+ 1

2c2,m,1

(

sin(mα)

m
− sin((m+ 2)α)

m+ 2

)

.
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Since the coefficient c2,m,1 is non-zero, the previous expression is zero if and

only if the two sine terms are equal. �
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