This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 3Learning theory
- 2Machine learning
- 1Constrained Markov Decision Process
- 1Independent component analysis
- 1Online learning
- 1Online linear optimization
-
Spring 2017
Optimizing an objective function over convex sets is a key problem in many different machine learning models. One of the various kinds of well studied objective functions is the convex function, where any local minimum must be the global mini- mum over the domain. To find the optimal point that...
-
Fall 2017
On the one hand, theoretical analyses of machine learning algorithms are typically performed based on various probabilistic assumptions about the data. While these probabilistic assumptions are important in the analyses, it is debatable whether such assumptions actually hold in practice. Another...
-
Fall 2023
Many real-world tasks in fields such as robotics and control can be formulated as constrained Markov decision processes (CMDPs). In CMDPs, the objective is usually to optimize the return while ensuring some constraints being satisfied at the same time. The primal-dual approach is a common...