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Abstract

On the one hand, theoretical analyses of machine learning algorithms are typically performed

based on various probabilistic assumptions about the data. While these probabilistic as-

sumptions are important in the analyses, it is debatable whether such assumptions actually

hold in practice. Another question is whether these probabilistic assumptions really catch

the essence of ”learning” as is implicitly assumed since the introduction of PAC models in

learning theory. On the other hand, when avoiding making assumptions about the data,

typical analyses tend to follow a worst-case minimax approach, e.g. in the adversarial on-

line learning framework. Oftentimes the results obtained will fail to catch and exploit the

‘niceness’ of the data that may help speeding up the learning. It is also debatable whether

the data encountered in typical learning scenarios would ever be truly adversarial.

Motivated by the above issues, this thesis suggests to perform instance-dependent anal-

ysis of learning algorithms to improve our understanding of learning. Special emphasis is

put on characterizing the ‘niceness’ of data from the perspective of learning. In this thesis,

we demonstrate this approach in three settings:

• In the unsupervised learning setting, we redefine the problem of independent compo-

nent analysis (ICA) to avoid any kind of stochastic assumptions and develop (for the

first time) a provably polynomial-time learning algorithm based on our deterministic

analysis.

• In the supervised learning setting, we start with a statistical framework: We analyze

the finite-sample performances of the empirical risk minimization algorithm for a gen-

eralized partially linear model under the random design setting. We detect a potential

deficiency of the ERM algorithm. Further investigation leads to a high probability

instance-dependent generalization bound.

• Finally, in the online learning setting, we take a thorough analysis of the follow the

leader (FTL) algorithm in the online linear prediction problem, and discover a broad
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range of previously unknown favourable conditions of the data under which FTL

achieves a fast learning rate.

Our approach leads to various instance-dependent results that are more general, expressive,

and meaningful, in the sense that these results are able to catch the important factors of

the data on which the performances of the learning algorithms heavily rely.
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Chapter 1

Introduction

Learning theory is studied to better understand the relative strengths and weaknesses of

a learning algorithm under various assumptions. As such, it helps to improve existing

algorithms and to design new ones.

However, most existing theoretical results in the literature tend to flip between two po-

larities: On the one hand, learning theory traditionally has been studied in a statistical

framework, discussed at length, for example, by Kearns and Vazirani [1994], Vapnik [1998],

Shalev-Shwartz and Ben-David [2014]. The data generating mechanism in the statistical

framework is assumed to obey probabilistic assumptions. These strong assumptions make

the analysis of the learning algorithm easier by only considering ’nice’ data for the algo-

rithm. Examples of assumptions imposing niceness include that the individual observations

in the data are independent and follow the same distribution (the so called independent

and identically distributed (i.i.d. ) assumption), various other restrictions in terms of what

dependencies exist between the observed data points, and low noise or variance of the in-

stances, etc. One issue with this approach is that the analysis of the algorithm seems

to critically depend on whether the data generating mechanism indeed satisfies the stated

probabilistic assumptions, which is difficult to argue in practice. In particular, in practice,

it is difficult to argue that the data indeed satisfies these probabilistic assumptions. Does it

mean that one should avoid using the algorithms whose performance is analyzed in the sta-

tistical framework? Perhaps not: Experimentally, it appears that many algorithms achieve

good performance when the stated strong probabilistic assumptions are apparently violated.

Theory that uses the strong assumptions is not suitable to explain these successes. This

observation raises the question of what should be used as the ‘niceness’ of the data for a

particular learning algorithm, going beyond the statistical framework. On the other hand,

existing results in the literature that make the least assumptions on the data generating

mechanism, are usually centered around a worst-case analysis. In the statistical learning

framework, the majority of the results are concerned about the worst-case data under the

assumed probabilistic assumptions. The online learning framework tends to make minimal
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assumptions on the data, but performs the analysis in an ‘adversarial’ environment [Cesa-

Bianchi and Lugosi, 2006] and thus it is also associated with a strong worst-case flavour.

One classical example of what this worst-case approach entails in the online learning frame-

work is as follows: A deterministic strategy can always be exploited by its adversary in the

worst-case, hence achieves only trivial performance guarantee. Such observation inspires

the design of randomized strategies, like the follow the perturbed leader (FTPL) algorithm

[Rakhlin and Sridharan, 2014, van Erven et al., 2014]. But does this result really mean

that one should stay away from deterministic strategies? In fact, under appropriate circum-

stances, the follow the leader algorithm (FTL), which is deterministic, has been proven to

achieve fast learning rates (see, e.g., Merhav and Feder 1992, Gaivoronski and Stella 2000,

Hazan et al. 2007, Kakade and Shalev-Shwartz 2009).

In this thesis, we propose to analyze learning problems and learning algorithms in a

framework that aims to build a bridge between two polarities: the overly conservative worst-

case framework and the overly restrictive statistical framework. More specifically, we start

with minimal statistical assumptions on the observed data, and perform a deterministic

analysis of the learning algorithm. A successful analysis in this way usually leads to a

result that depends on some particular quantities of the data. We call such results instance-

dependent. These particular quantities of the data can usually serve as measures of the

‘niceness’ of the data, which catch the essential features of data on which the performance

of the algorithm heavily relies. Results of this type lead to better understanding of the

successes and failures of various learning algorithms, and also hint at design principles

for new algorithms. Our ‘niceness’ notions apply to a wider range of data including the

classical stochastic data and the worst-case data, showing the strength and universality of

the approach. The idea of the two-step analysis, first developing an instance-dependent

result and then applying this to specific settings, has actually appeared in both batch

learning setting and online learning setting [Vito et al., 2005, Cesa-Bianchi and Lugosi,

2006, Pires and Szepesvári, 2012, Rakhlin and Sridharan, 2014]. Demonstrations can also

be found in the recent NIPS workshops ‘learning faster from easy data’.1 Another interesting

question that we won’t study is how these quantities can be computed in practice. While

in some cases, the niceness measures are computable from the empirical data, there exist

other cases when the ‘niceness’ measure is not available. We also discuss how we could deal

with the latter cases like introducing some form of regularization, or developing an adaptive

algorithm that can achieve fast rates for the ‘nice’ data while still maintains the optimal

minimax learning rate. In this thesis, we present 3 demonstrations in different learning

settings: unsupervised learning, (batch) supervised learning, and online learning. While

in all these settings we emphasized the importance of improving our understanding of the

1http://wouterkoolen.info/easydata2013/ and http://event.cwi.nl/easydata2015/
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behaviour of the learning algorithms, our new analyses also challenge these algorithms, and

lead to the development of new algorithms with improved theoretical guarantees.

1.1 Learning Settings

The purpose of this section is to introduce the 3 types of learning settings used in this

thesis: unsupervised learning, supervised learning, and online learning. Under the setting

of supervised learning, the data space Z = X × Y is a pair of the feature space X and

the response space Y, and the data (X,Y ) is in a input-output pair where X ∈ X and

Y ∈ Y. Assuming there exists an underlying relation between X and Y , the goal is to learn

a mapping f : X → Y such that f is close to this underlying relation. For example, each

pair (X,Y ) can be generated from some distribution over X and Y = ‖X‖2, and ideally

the algorithm will seek the length function to be f . Under the setting of unsupervised

learning, no variable is treated as the response (thus Z = X ), and the goal of learning is

to models general properties of data from the presented data. Lastly under the setting of

online learning, data are presented sequentially and the learning goal is to make prediction

for the current sample based on the history. Supervised learning and unsupervised learning

are instances of batch (off-line) learning: a batch of data forms the basis of learning. We

present a brief introduction in this chapter, and leave the details in the latter corresponding

chapters.

This thesis is organized as follows: In the rest of this chapter we introduce briefly our

results in the above learning settings. In Chapter 2 we present our first demonstration in

the unsupervised learning setting where we consider a deterministic framework for the in-

dependent component analysis model. Chapter 3 is devoted to our results in the supervised

learning setting, where we consider the performance of the empirical risk minimization algo-

rithm (ERM) for the generalized partially linear regression model. The last demonstration

in the online learning setting is presented in Chapter 4. Chapter 5 concludes the thesis and

discusses some potential future works.

1.1.1 Unsupervised learning

In the setting of unsupervised learning, one usually assumes the samples are generated from

a presumed probabilistic model with unknown parameters. Different from the supervised

setting, the goal of unsupervised learning is to estimate these parameters and possibly

perform some inference with the model. Examples of unsupervised learning include latent

variable models and clustering.

Among various latent variable models, independent component analysis (ICA) is ana-

lyzed in this thesis as a typical example. The task of ICA is given in a statistical language:

Given T i.i.d. observed d-dimensional signals x ∈ Rd×T as a data array that is assumed to
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be a linear mixture of d independent hidden source signals, ICA attempts to estimate the

unknown mixing matrix A and the hidden signals s such that x = As [Hyvärinen et al.,

2001]. For simplicity, we assume that A is a non-singular matrix. The key assumption for

the ICA problem to be well defined is that all d source signals are mutually independent,

and observations are i.i.d. samples from the source distributions. However, very commonly

ICA algorithms are applied to data where strong temporal correlations are apparent or even

when the input is deterministic. The success of ICA on such data suggests that the usual

statistical notions may not capture the very essence of the task. This motivates us to re-

define and analyze ICA in a deterministic framework without probabilistic assumptions on

the data.

One approach in unsupervised learning, besides the maximum likelihood estimator, is the

method of moments which estimates the model’s parameters via the estimates of moments

of some specifically designed variables. Recently, the method of moments becomes popular

in the machine learning literature, mainly because it leads algorithms with appealing theo-

retical and computational properties [Arora et al., 2012, Anandkumar et al., 2012c,a, Hsu

and Kakade, 2013]. The essence of the method of moments is that the exact value of the

first or higher moments can be formulated as a tensor whose decomposition can be used to

extract a model’s parameters. While, in general, tensor decomposition is NP-hard [Hillar

and Lim, 2013], it is shown that in a wide range of latent variable models, the resulting

tensor is symmetric and orthogonally decomposable [Zhang and Golub, 2001, Anandkumar

et al., 2012a].

In Chapter 2 we show that the problem of ICA can indeed be interpreted and analyzed

in a non-stochastic manner by assuming the source signals s to be deterministic. Previous

ICA results are extended to more general settings. Such analysis leads to a new provable

polynomial-time ICA algorithm free of unspecified parameters.2 We argue that similar ideas

may also work for other latent variable models in the work of Anandkumar et al. [2012a].

The results in Chapter 2 have been published in our ICML and NIPS workshop papers

[Huang et al., 2015a,b].

1.1.2 Supervised learning

Supervised learning is also referred as predictive learning. Given a training set of n samples

Z1:n = {(X1, Y1), . . . , (Xn, Yn)} generated from some underlying distribution P over Z, a

learning algorithm learns a mapping f : X → Y from a set of functions F such that f(X)

is close to Y for a data pair (X,Y ) generated from P. F is called the hypothesis set. Given

a loss function `(y, y′), the ‘suitability’ of a mapping f ∈ F is defined by its expected

2An algorithm that is free of unspecified parameters is important in the unsupervised learning setting,
especially in the deterministic framework. Because we make no assumptions about the data generating
mechanism, parameter tuning is almost impossible.
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loss L(f) = E [`(Y, f(X))] with respect to P. As the underlying distribution P of the data

(X,Y ) is unknown, it is natural to learn the mapping f by minimizing the empirical loss

Ln(f) = 1
n

∑
i `(f(Xi), Yi) given the samples. Denote the minimizer of Ln by fn. We also

denote {X1, . . . , Xn} by X1:n, and {Y1, . . . , Yn} by Y1:n.

Note that the loss L(fn) depends on both the learning algorithm and the nature of the

problem, i.e. the underlying distribution P in Z. To better describe the performance of the

learning algorithm, we compare the loss L(fn) to the best loss possible over the considered

set of functions F , i.e., to L∗ = inff∈F L(f). A bound on the excess risk L(fn) − L∗ is

called a generalization (error) bound. Several approaches have been proposed to analyze the

excess risk, including the theory of uniform convergence of empirical processes, and stability

analysis etc. [Vapnik, 1995, Bousquet and Elisseeff, 2002].

In the statistical literature, instead of bounding the expected excess risk E [L(fn)− L∗]

as in machine learning, most of the existing results are concerned with the expected ex-

cess risk conditioned on the samples X1:n [van de Geer, 1990, 2000]. With our notations,

this amounts to bounding E [Ln(fn)|X1:n] − inff∈F E [Ln(f)|X1:n]. We call the condition-

ally expected excess risk E [Ln(fn)|X1:n]− inff∈F E [Ln(f)|X1:n] as “in-sample” error, and

E [L(fn)− L∗] as “out-of-sample” error. An intuitive connection between these two different

settings is that a result in the random design setting can be developed from a result in the

fixed design setting that holds uniformly for arbitrary X1:n. In Chapter 3 we surprisingly

detect a potential deficiency of the ERM algorithm on a linear regression problem which

an asymptotic analysis fails to catch. For the first time in the literature, we analyze the

finite-sample performances of the ERM algorithm on a generalized partially linear model.

Our instance-dependent finite-sample bound catches a ’niceness’ measure of the data which

helps partially explain the success of ERM on this model. The results of Chapter 3 have

appeared in our AISTATS and ISAIM papers [Huang and Szepesvári, 2014a,b].

1.1.3 Online Learning

In the last two decades, a fair amount of interest in statistical learning theory has been

devoted to studying online learning. The idea of not making statistical assumptions on

sequential data is not new and goes back to at least Cover [1966]. In fact, the adversarial

setting is one of the two classic settings in online learning, where the input sequence is

assumed to be intentionally generated to maximize the algorithm’s regret and thus it is

non-stochastic.3

A generic online learning framework is as follows: In round t = 1, . . . , n, the algorithm

picks a weight wt ∈ W ⊂ Rd for some W (e.g.W = {w : ‖w‖2 ≤ 1}). Then a convex

loss function `t : Rd → [0, 1] is generated from some unknown system and the algorithm

3The other setting is called stochastic setting where the input sequence are i.i.d. samples generated from
some fixed distribution.
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suffers the loss `t(wt) and learn the loss function `t. The goal of the learning algorithm is

to minimize the regret in n rounds:

Rn =
n∑
t=1

`t(wt)− min
w∈W

n∑
t=1

`t(w).

In this thesis we only consider the “online linear prediction” when the loss is linear,

i.e. `t is linear in w. In fact, the linear case is not only simple, but is also fundamental

since the case of nonlinear loss functions can be reduced to it using a standard linearization

trick: Indeed, even if the losses are nonlinear, defining ft ∈ ∂`t(wt) to be a subgradient4

of `t at wt and letting ˜̀
t(u) = 〈ft, u〉, by the definition of subgradients, `t(wt) − `t(u) ≤

`t(wt)− (`t(wt) + 〈ft, u− wt〉) = ˜̀
t(wt)− ˜̀

t(u), hence for any u ∈ W ,

n∑
t=1

`t(wt)−
n∑
t=1

`t(u) ≤
n∑
t=1

˜̀
t(wt)−

n∑
t=1

˜̀
t(u) .

In particular, if an algorithm keeps the regret small no matter how the linear losses are

selected (even when allowing the environment to pick losses based on the choices of the

learner), the algorithm can also be used to keep the regret small in the nonlinear case.

One of the basic online learning algorithm is the ‘Following The Leader’ algorithm (FTL)

[Cesa-Bianchi and Lugosi, 2006]. In each round t, FTL picks wt such that wt minimizes

the total loss
∑t−1
i=1 `i(w) accumulated beforehand. It has been proved that FTL achieves

optimal constant regret under the stochastic setting. However, it is also shown that FTL may

suffer a linear regret in the adversarial setting [Shalev-Shwartz, 2012, De Rooij et al., 2014].5

This extreme behavior can be avoided by introducing a regularization to the objective

function of FTL. The resulting algorithm, named ‘Follow The Regularized Leader’ (FTRL),

achieves the optimal minimax rate (
√
n in a sequential data of length n) e.g. on the online

linear prediction problem [Abernethy et al., 2008, Shalev-Shwartz, 2012].

In Chapter 4, we take a closer look at the performance of the FTL algorithm on the

online linear prediction problem. Our result essentially suggests that although FTL may

perform extremely bad for the worst-case data, it actually achieves a fast learning rate for

some data. Our analysis also motivates us to develop various new adaptive algorithms for

the online linear prediction problem. The results in Chapter 4 have been published in our

NIPS paper [Huang et al., 2016].

4 We let ∂g(x) denote the subdifferential of a convex function g : dom(g) → R at x, i.e., ∂g(x) ={
θ ∈ Rd | g(x′) ≥ g(x) + 〈θ, x′ − x〉 ∀x′ ∈ dom(g)

}
, where dom(g) ⊂ Rd is the domain of g.

5A linear regret in online learning indicates that the learning algorithm is not doing better than a random
guessing.
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Chapter 2

Independent Component
Analysis

In Chapter 1 we suggest to develop instance-dependent theoretical guarantees to achieve

more expressive results and have a better understanding of the learning algorithm. In this

chapter, we present our first demonstration on the task of Independent Component Analysis

(ICA) in the unsupervised learning setting. We will not make probabilistic assumptions

about the data generating mechanism, and characterize the important features of the data

on which the ICA algorithm is guaranteed to have a good performance. We start with

analyzing an ICA algorithm due to Hsu and Kakade [2013], named as HKICA. A new ICA

algorithm is then proposed to fix a potential deficiency of HKICA. A key feature of our

approach is that no probabilistic assumptions are made on the data1, and the algorithm is

free of hyperparameters.

This chapter is organized as follows: We introduce the classic ICA model in Section

2.1. Previous works are discussed in Section 2.1.1. We then redefine the ICA model in a

deterministic framework and present our main results in Section 2.2. The polynomial-time

algorithms underlying these results are developed through Section 2.3 and 2.4: Section 2.3

is devoted to the analysis of the HKICA algorithm. Our new algorithms are presented and

analyzed from Section 2.4.1 to Section 2.4.3. Then Section 2.4.4 proposes a recursive version

of our algorithm. Lastly, we present some simulation results in Section 2.5 and conclusions

in Section 2.6.

The results in this chapter have appeared in Huang et al. [2015a,b].

2.1 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) attempts to explain an observed x ∈ Rd×T array

by decomposing it into the product As where A ∈ Rd×d is a non-singular matrix and

s ∈ Rd×T is viewed as T d-dimensional vectors such that the components of these T vectors

1In Chapter 3 we still keep the probabilistic assumptions on the noise ε.
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Figure 2.1: Example of ICA: On the left-hand side, the bottom three plots depict the d = 3
components of the observed signal x. This observed data x is generated by mixing the
sources shown by the top three graphs on the left-hand side. The x axis represents time:
The numbers shown are scaled by a factor of 50; thus T = 2500. Reconstruction results by
three algorithms (FastICA, HKICA, and DICA, see Section 2.1.1 and 2.4.1 for details)

are “statistically independent” [Hyvärinen et al., 2001]. The ICA literature is vast in both

practical algorithms and theoretical analyses; we only discuss those closely related to our

work in Section 2.1.1, but refer to the book of Comon and Jutten [2010] for a comprehensive

survey. Oftentimes, ICA is illustrated by data as shown in Figure 2.1. Three hidden source

signals are shown in black, and their linear mixtures as the observations for three different

ICA algorithms are in red. The reconstruction of the source signals by the ICA algorithms

is shown on the right-hand side. As can be seen, up to scaling and the ordering of the

reconstructed components, the reconstruction is quite successful no matter the algorithms.

But are these hidden signals “statistically independent”? Note that the all components

of the source data are periodic functions of time. This is quite obvious for the first two

components, while the third, being generated using a pseudo-random number generator has

a long period and thus “looks random”. Also, as the reader may recall, any two constant

numbers a, b ∈ R are independent of each other when viewed as degenerate random variables.

Thus, for any single t, the three components of the source signals s1(t), s2(t), and s3(t) are

independent! Does the success of the algorithms on this example imply that they will also

work for other mixtures of arbitrary deterministic sources? Of course not. For example, if

one source is a linear function of other sources, then no algorithm will be able to recover

the sources from their mixture. Another question is whether the temporal dependency of

the sources may hamper performance. If s(1) = s(2) = · · · = s(T ) then the algorithms

effectively need to work with a single vector observation and no algorithm will be able to

perform a successful reconstruction.

We attempted to provide some answers to the question in this chapter: to what extent can

ICA algorithms separate the mixture of some sources? In particular, can we extend/redefine

the problem of ICA in a meaningful way so that we can explain the success of the particular

ICA algorithms on the above example? In this chapter, we give a positive answer to this

question. The essence of our approach is to define an empirical measure of the “niceness” of
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data and then postulating the requirement that good algorithms are those that get better

results on ‘nice’ data. The niceness measure will be so that in the classical ICA setting,

the usual statistical results can be recovered from our results. We also propose a provably

polynomial-time algorithm that has no free (unspecified) parameters for the noisy ICA model

and analyze its performance based on the ”niceness” of the observed data. The key feature

of our approach is that no probabilistic assumptions are made on the data (the algorithm

may randomize though), and thus this work can be thought as the natural extension of

online learning where learning algorithms are analyzed without making any probabilistic

assumptions [Cesa-Bianchi and Lugosi, 2006].

2.1.1 Related Works

We explain the difference between our ICA algorithm and the previous methods in this

section. However, as mentioned above, the key feature of our results is the removal of the

probabilistic assumptions on the observed data.

A popular approach to the ICA problem is to find a linear transformation W for X by

optimizing a contrast function that measures dependence or non-gaussianity of the resulting

coordinates of WX. The optimal W then can serve as an estimate of A−1, thereby recov-

ering the mixing matrix A. One of the most popular ICA algorithms, FastICA [Hyvarinen,

1999], follows this approach for a specific contrast function. FastICA has been analyzed

theoretically from many aspects [Tichavsky et al., 2006, Oja and Yuan, 2006, Ollila, 2010,

Dermoune and Wei, 2013, Wei, 2014, Miettinen et al., 2014]. In particular, recently Mi-

ettinen et al. [2014] showed that in the noise-free case (i.e., when X = As), the error of

FastICA (when using a particular fourth-moments-based contrast function) vanishes at a

rate of 1/
√
T where T is the sample size. In addition, several other methods have been

shown to achieve similar error rates in the noise-free setting [e.g., Eriksson and Koivunen,

2003, Samarov and Tsybakov, 2004, Chen and Bickel, 2005, 2006]. However, to our knowl-

edge, no similar finite sample results are available in the noisy case. Algorithms developed

based on the noise-free assumptions are also observed to be sensitive to the noise in practice

[Mollah et al., 2007].

On the other hand, promising algorithms are available in the noisy case that make

significant advances towards provably efficient and effective ICA algorithms, albeit fall short

of providing a complete solution. Using a quasi-whitening procedure, Arora et al. [2012]

reduces the problem to finding all the local optima of a specific function defined using

the fourth order cumulant, and propose a polynomial-time algorithm to find them with

appealing theoretical guarantees. However, the results depend on an unspecified parameter

(β in the original paper) whose proper tuning is essential; note that even an exhaustive

search over β could be problematic, since it is unclear how one can use data to infer the
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range for β.

The exploitation of the special algebraic structure of the fourth moments induced by

independence leads to several other works related to ICA [Hsu and Kakade, 2013, Anand-

kumar et al., 2012a,b]. A similar idea is also discussed earlier as an intuitive argument to

construct a contrast function [Cardoso, 1999]. The first rigorous proofs for this idea are

developed using matrix perturbation tools in a general tensor perspective [Anandkumar

et al., 2012a,b, Goyal et al., 2014]. A common problem faced by these methods is a mini-

mal gap of the eigenvalues, which may result in an exponential dependence of the sample

complexity on the number of source signals d. More precisely, these methods all require

an eigen-decomposition of some flattened tensor where the minimal gap between the eigen-

values plays an essential role. Although the exact size of this gap is not yet understood, a

naive analysis introduces an exponential dependence on the dimension d. Such dependence

is also observed in the literature [Cardoso, 1999, Goyal et al., 2014]. One way to circum-

vent such dependence is to directly decompose a high-order tensor using the power method,

which requires no flattening procedure [Anandkumar et al., 2014]. However, when applied

to the ICA problem, this introduces a bias term and so the error does not approach 0 as the

sample size approaches infinity. Another issue is the well-known fact that the power method

is unstable in practice for high-order tensors. Goyal et al. [2014] proposed another method

by exploring the characteristic function rather than the fourth moments. However, their

guarantees hold only if a parameter of their algorithm (σ in the original paper) happens

to be smaller than some instance-dependent quantity which in general is unknown, making

their guarantee weak. Recently, Vempala and Xiao [2014] proposed an ICA algorithm based

on an elegant, recursive version of the method of Goyal et al. [2014] that avoids dealing with

the aforementioned minimal gap; however, they still need an oracle to set the unspecified

parameter of the algorithm of Goyal et al. [2014].

Our ICA algorithm is a refined version of the ICA method proposed by Hsu and Kakade

[2013] (HKICA). However, we propose two simpler ways, one inspired by the works of Frieze

et al. [1996] and Arora et al. [2012], and another based on Vempala and Xiao [2014], to

deal with the spacing problem of the eigenvalues under similar conditions to those of Goyal

et al. [2014]. Unlike the method proposed by Goyal et al. [2014], our first method can

force the eigenvalues to be well-separated with a gap that is independent of the mixing

matrix A, while our second method, based on the recursive decomposition idea of Vempala

and Xiao [2014], avoids dealing with the minimum gap (at the price of introducing other

complications). We prove that our methods achieve an O(1/
√
T ) error in estimating A

in the classic setting, with high probability, such that both the convergence rate and the

computational complexity scale polynomially with the natural parameters of the problem.

Our method needs no parameter tuning, making it the first method to provably handle noisy
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ICA without relying on a “lucky” parameter choice.

The problem of separating mixture of deterministic signals is also considered in [Kirimoto

et al., 2011] and [Forootan and Kusche, 2013]. However their analysis is restricted to certain

particular signals, while our result is applicable to general ones.

2.1.2 Notation

All vectors, matrices and tensors are real or complex valued, unless otherwise stated. Symbol

K denotes either the set of real or complex numbers. We denote the set of real and natural

numbers by R and N, respectively. A vector v ∈ Kd is assumed to be a column vector.

Let ‖v‖2 denote its L2-norm, and for any matrix Z let ‖Z‖2 = maxv:‖v‖2=1 ‖Zv‖2 denote

the corresponding induced matrix-norm. Denote the maximal and minimal singular value

of Z by σmax(Z) and σmin(Z), respectively. Also, let Zi and Zi: denote the ith column

and, resp., row of Z, and let Z(2,min) = mini ‖Zi‖2, Z(2,max) = maxi ‖Zi‖2 and Zmax =

maxi,j |Zi,j |. Clearly, σmax(Z) = ‖Z‖2 ≥ Z(2,max) ≥ Zmax, and σmin(Z) ≤ Z(2,min). For a

tensor (including vectors and matrices) T , its Frobenious norm (or L2 norm) ‖T‖F is defined

as the square root of the sum of the square of all its entries. For a vector v = (v1, . . . , vd) ∈

Kd, |v| is defined coordinatewise: |v| = (|v1|, . . . , |vd|). Similarly for a matrix M ∈ Kd×d,

|M | is also defined coordinatewise. The transpose of a vector/matrix Z is denoted by Z>,

while the inverse of the transpose is denoted by Z−>. The outer product of two vectors

v, u ∈ Kd is denoted by u⊗v = uv>. The symbol v⊗k denotes the k-fold outer product of v

with itself, that is, v⊗ v⊗ v . . .⊗ v, which is a k-dimensional tensor. Given a 4-dimensional

tensor T , T (η, η, ·, ·) denotes a matrix Z that is generated by marginalizing and scaling

the first two coordinates of T on the direction η: Zi,j =
∑d
k1,k2=1 ηk1

ηk2
Tk1,k2,i,j . (Similar

definitions apply to marginalizing different coordinates of the tensor.) For a real vector v

and some real number C, v ≤ C means that all the entries of v are at most C. The bold

symbol 1 denotes a vector with all its entries equal to one (the dimension of this vector will

always be clear from the context). Finally, Poly (·, · · · , ·) denotes a polynomial function of

its arguments.

2.2 Deterministic ICA

We consider the following non-stochastic version of the ICA model. Assume that we are

given a d× T matrix x. For t ∈ [T ], let x(t) ∈ Rd be the tth column of x. We consider the

problem of reconstructing a d× d non-singular mixing matrix A from x such that

x(t) = As(t) + ε(t), 1 ≤ t ≤ T , (2.1)

and (A, s, ε) is “nice” in a way to be defined shortly. Intuitively, s is the source whose com-

ponents are “independent” while ε is “noise”. We measure how well a matrix Â constructed
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by an algorithm working on data x recovers A by the reconstruction error defined as

d(Â, A) = inf
π∈Perm([d])

c∈Rd

max
k
||ckÂ:π(k) −A:k||2 ,

where A:i stands for the ith column of A and Perm([d]) is the set of all the permutations

on the set [d]. This measure compensates for the inherent indeterminacy in reconstructing

the scale and ordering of sources. In this chapter, without loss of generality (WLOG), we

assume s(t) ∈ [−C,C]d, t ∈ [T ] for some constant C (by scaling A if necessary). Since

σmin(A) and σmin(A) will appear frequently, when A is clear from the context, we use the

shorthands σmin = σmin(A) and σmax = σmax(A).

Let us now develop the “niceness” measure of the tuple (x,A, s, ε). We start with

defining a family of “distances” between distributions (strictly speaking, these are only

pseudo-distances): given two distributions ν1 and ν2 over Rd and an integer k ≥ 1, let

Dk(ν1, ν2) = sup
f∈F

∣∣∣∣∫ f(s)ν1(ds)−
∫
f(s)ν2(ds)

∣∣∣∣ ,
where F = {f : Rd → R : f(s) =

∏k
j=1 sij , 1 ≤ i1, . . . , ik ≤ d} is the set of all monomials up

to degree k. When µ is a product measure, Dk(µ, ν) measures how close the components of

X ∼ ν are to being independent. When ν is a measure of p+q variables (i.e., X ∈ Rp+q), we

also need a measure that quantifies the degree of independence of the vectors (X1, . . . , Xp)

and (Xp+1, . . . , Xp+q). We will denote this measure by D
(p,q)
k (ν) and is defined as

D
(p,q)
k (ν) = Dk(µ1 ⊗ µ2, ν),

where µ1 (respectively, µ2) is the marginal measure of ν on the first p (respectively, last q)

variables, i.e. for a Borel set B ⊂ Rp (respectively, Rq), µ1(B) = ν(B × Rq) (respectively,

µ2(B) = ν(Rp ×B)). We will use D
(p,q)
k (ν) to measure the degree of independence between

the source (s) and the noise (ε).

For a distribution µ over R we let κ(µ) be the (absolute) 4th-order cumulant of µ:

κ(µ) =

∣∣∣∣∫ x4µ(dx)− 3(

∫
x2µ(dx))2

∣∣∣∣ ,
which, for brevity, we also call “kurtosis” (by slightly abusing terminology). For a product

distribution µ = µ1 ⊗ . . . ⊗ µd over Rd, we let κmin(µ) = min1≤i≤d κ(µi) to denote the

minimum kurtosis of the components of µ. We also denote κ(µi) by κi. When µ is a

distribution over Rd, we define the d-dimensional absolute 4th-order cumulant of µ by

Q(µ) = max
‖η‖2≤1

‖
(
EY∼µ[Y ⊗4]− (EY∼µ[Y ⊗2])⊗2

)
(η, η, ·, ·)− 2(EY∼µ[Y ⊗2])⊗2(η, ·, η, ·)‖F .

We will also use N(ν) = ‖
∫
xν(dx)‖F to denote the magnitude of the mean of the

distribution ν. Now, for any t, k ≥ 1 and signal u : [t] → Rk, we introduce the empirical

distribution of u, ν
(u)
t , which assigns the value

ν
(u)
t (B) = 1

t |{τ ∈ [t] : u(τ) ∈ B}|
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to a Borel set B ⊂ Rk. We omit the index t when the time range is T , e.g. denote ν
(ε)
T by

ν(ε). Similarly, for signals u, v : [t]→ Rk and a Borel set B ⊂ R2k, we define

ν
(u,v)
t (B) = 1

t |{τ ∈ [t] : (u(τ), v(τ)) ∈ B}|.

Starting from the classical setting, we will define the tuple (x,A, s, ε) “nice” (or compli-

ant) if the respective empirical distributions approximately satisfy the usual assumptions:

(a) the source (s) components are independent, captured by D4(ν(s), µ);

(b) the noise and source are independent, captured by D
(d,d)
4 (ν(As,ε));

(c) the source (s) have high absolute 4th-order cumulants (kurtosis), captured by combining

D4(ν(s), µ) and the minimal kurtosis of µ, 1/κmin(µ);

(d) the noise (ε) has low absolute 4th-order cross cumulants, captured by Q(ν(ε));

(e) the source (s) have zero mean, captured by N(ν(s));

(f) the noise (ε) has zero mean, captured by N(ν(ε));

Finally, we let

L = max
(
‖
∫

[y⊗2]ν(ε)(dy)‖F , ‖
∫

[y⊗3]ν(ε)(dy)‖F
)
,

which captures the magnitude of second and third moments of the noise, and

Π0 = {µ1 ⊗ µ2 . . .⊗ µd |µi is zero mean over R with nonzero kurtosis, 1 ≤ i ≤ d}

to be the set of zero mean product distributions with components of nonzero kurtosis over

Rd.

Given all the above notations, the goal of learning is to find an algorithm that, for

any tuple (x,A, s, ε), produces Â so that d(A, Â) scales with degree of ICA-compliance

(“niceness”) of (x,A, s, ε).

2.2.1 Main result

Now we are ready to state our main result. The algorithm that achieves this bound will be

described later in the next section.

Theorem 2.2.1. There exists a randomized algorithm such that, for any A ∈ Rd×d, and

x, s, ε : [T ]→ Rd satisfying Equation (2.1), the algorithm returns Â such that with probability

at least 1− δ,

d(Â, A) ≤ inf
µ∈Π0

C(µ) min
(
D4(ν(s), µ) +Q(ν(ε)) +D

(d,d)
4 (ν(As,ε)) +N(ν(ε)) +N(ν(s)),Θ(µ)

)
,

where C(µ) and Θ(µ) are problem dependent constants, polynomial in (σmax(A), 1/σmin(A),

1/κmin(µ), 1/δ, d, L). Further, the computational complexity of the algorithm is O(d3T ) when

used on any data x of dimensions T × d.
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Remark 2.2.1. Our algorithms are randomized algorithms. The high probability event

in the first part of Theorem 2.2.1 comes from the random sampling of the algorithm. The

observations x are deterministic and thus have no randomness.

Remark 2.2.2. The dependence on δ in our result is Poly
(

1
δ

)
, which is weaker than the

usual log( 1
δ ).

2.2.2 Applicability of Theorem 2.2.1

Theorem 2.2.1 can be applied to a variety of different ICA settings, including the classical

stochastic setting and other various ones.

Proposition 2.2.3. Let (s(t))t∈[T ] be an zero-mean i.i.d. sequence bounded by C in `∞

norm, independent of the i.i.d. Gaussian noise N (0,Σ) sequence (ε(t))t∈[T ]. Then for any

δ ∈ (0, 1), with probability at least 1−δ, L = Poly
(
‖Σ‖2, d, 1

δ

)
. Moreover, if µ is the product

measure of the sources (i.e., s(t) ∼ µ), then D4(ν(s), µ), Q(ν(ε)), D
(d,d)
4 (ν(As,ε)), N(ν(ε)),

N(ν(s)) are all of orders O(1/
√
T ).

Note that the above result implies that in the standard stochastic setting with indepen-

dent sources and Gaussian noise, independently generated from the sources, with probability

at least 1− δ,

d(Â, A) ≤ Cmin
(

1√
T
,Θ
)
,

for some problem-dependent constants C and Θ.

Our setting can also cover some other examples excluded by the traditional setting, such

as the example of Figure 2.1 in Section 2.1.

Example 2.2.4. Assume that the unknown sources si (1 ≤ i ≤ d) are deterministic and

periodic. Our observation x = As+ε is a linear mixture of s contaminated by i.i.d. Gaussian

noise for each time step, where A is a non-singular matrix and ε ∼ N (0,Σ) is Gaussian. Even

though ε is i.i.d. for every time step, the observations do not satisfy the i.i.d. assumption,

since the source s is deterministic. However, it can be proved that if the ratio of the periods

of each pair of (si, sj) is irrational, then the reconstruction error would approach 0 for T

large enough.

Remark 2.2.5. To have a concrete (noise-free) example, let s1(t) = 0.5(−1)t, s2(t) = cos(t).

It is easy to see that the limit distribution of source 1 is a Bernoulli distribution µ1 with

µ1({0.5}) = 1/2 and µ1({−0.5}) = 1/2, and the limit distribution of source 2 is a distribution

µ2 with density function p(x) = 1
π
√

1−x2
for −1 ≤ x ≤ 1. Pick µ = µ1 ⊗ µ2. Let T = 2u+ b

as the division with remainder, where u is integer and 0 ≤ b < 2. Moreover, assume b ≤ 1

(similar analysis will go through for the case of b > 1). The induced distribution νs1 of

source 1 is νs1({0.5}) = u+b
T and νs1({−0.5}) = u

T . Thus the total variation distance of µ1
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and νs1 is at most 1/(2T ). Similarly, it can be verified that the total variation distance of

νs2 and µ2 and that of ν and µ also decay as 1/T . Thus, D4 is O(1/T ), since the monomials

f(s) in the definition of D4 are bounded from above by 1, and N(ν(s)) is also O(1/T ).

Therefore, by Theorem 2.2.1 d(Â, A) = O( 1
T ).

Our setting also extends the traditional one to a practically important case, Markovian

sources.

Example 2.2.6. Assume that si is a stationary and ergodic Markovian source, and the

sources are independent of each other for 1 ≤ i ≤ d. Our observations are similar to the

setting in Example 2.2.4. Because of the Markov property, the observations do not satisfy

the i.i.d. assumptions.

In Section 2.4, we will present two algorithms that satisfy Theorem 2.2.1. Our algorithm

builds on the works of Frieze et al. [1996], Hsu and Kakade [2013], Arora et al. [2012].

2.3 Estimating Moments: the HKICA Algorithm

In this section we will introduce the ICA algorithm of Hsu and Kakade [2013] and analyze

its performance. Hsu and Kakade [2013] claimed that HKICA is easy to analyze using

matrix perturbation techniques. While one can indeed use matrix perturbation results, our

computations reveal some unexpected and unpleasant complications. This will motivate us

to refine the algorithm, leading to our algorithm, deterministic ICA (DICA).

2.3.1 The HKICA algorithm

The ICA algorithm of Hsu and Kakade [2013] is based on the well-known excess-kurtosis-like

quantity defined as follows: For any p ≥ 1, η ∈ Rd, and distribution ν over Rd, let

m(ν)
p (η) = EX∼ν [(η>X)p] (2.2)

and let

fν(η) =
1

12

(
m

(ν)
4 (η)− 3m

(ν)
2 (η)2

)
. (2.3)

For µ ∈ Π0, let Aµ stand for ν(As) where s has the product distribution µ. The Hessian of

the function fAµ(η) plays an important role in this chapter because of its following property.

Proposition 2.3.1. Given µ ∈ Π0 and any vector ψ ∈ Rd, ∇2fAµ(ψ) = AKDψA
>, where

K = diag(κ1, . . . , κd) and Dψ = diag((ψ>A1)2, . . . , (ψ>Ad)
2).

Proof. Note that

∇2Es∼µ[(ψ>As)4] = 12Es∼µ[Ass>A>(ψ>As)2] = 12AEs∼µ[s(ψ>As)2s>]A>.
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Let h = A>ψ, consider the position (i, i) of the matrix M1 := 12Es∼µ[s(h>s)2s>],

M1,(i,i) = Es∼µ[s2
i (h
>s)2] = 12h2

iEs∼µ[s4
i ] + 12Es∼µ[s2

i ]
∑
j 6=i

h2
jEs∼µ[s2

j ].

Similarly, for i 6= j,

M1,(i,j) = 24hihjEs∼µ[s2
i ]Es∼µ[s2

j ].

Next consider the second derivative of (Es∼µ[(ψ>As)2])2,

∇2(Es∼µ[(ψ>As)2])2

= 4Es∼µ[(h>s)2]Es∼µ[Ass>A>] + 8Es∼µ[(h>s)As]Es∼µ[(h>s)s>A>]

= A
(
4Es∼µ[(h>s)2]Es∼µ[ss>] + 8Es∼µ[(h>s)s]Es∼µ[(h>s)s>]

)
A>

:= AM2A
>.

Thus,

M2,(i,i) = 12h2
i (Es∼µ[s2

i ])
2 + 4Es∼µ[s2

i ]
∑
j 6=i

h2
jEs∼µ[s2

j ]; M2,(i,j) = 8hihjEs∼µ[s2
i ]Es∼µ[s2

j ].

Hence, we have

M1 − 3M2 = 12Kdiag(h2
1, . . . , h

2
d),

and thus

∇2fAµ(ψ) = AKDψA
>.

Hsu and Kakade [2013]’s algorithm is built around the above algebraic observation con-

cerning ∇2fν(x)(η), the second derivative of the function fν(x) . This observation is the

subject of the next result:

Theorem 2.3.1 (Hsu and Kakade [2013], Theorem 4). Assume A is nonsingular. Let

fAµ : Rd → R be defined by Equation (2.3), and φ, ψ ∈ Rd be vectors from the unit sphere

of Rd. Then, the matrix

M = (∇2fAµ(φ))(∇2fAµ(ψ))−1 (2.4)

can be written in the diagonal form

M = A

 λ1

. . .

λd

A−1, (2.5)

where λi =
(
φ>Ai
ψ>Ai

)2

.
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Consequently, the eigenvectors2 of the matrix M are the rescaled columns of A if φ>Ai
ψ>Ai

are distinct for all i. Thus, to obtain an algorithm, one only needs to estimate ∇2fν(As) at

two appropriate vectors φ, ψ. Since x = As+ ε is available, the idea is to use ν(x) in place of

ν(As). The next result quantifies the error induced on ∇2fν(As) as a function of the “noise”

ε

Note that ε could indeed have limited effect in the estimation procedure, as shown in

Proposition 2.3.2. Similar result is also discussed by Arora et al. [2012] and Belkin et al.

[2013].

Proposition 2.3.2. For any tuple (x,A, s, ε) such that x = As+ ε and any vector η,

‖∇2fν(x)(η)−∇2fν(As)(η)‖F

≤ Poly(L, d, σmax, C)
(
Q(ν(ε))

+N(ν(s)) +N(ν(ε)) +Q
(
N(ν(s))N(ν(ε)) +D

(d,d)
4 (ν(As,ε))

))
‖η‖22, (*)

where Q(x) = x+ x2.

In particular, the difference in the estimation of the Hessian matrix caused by the

“noise” is at most Poly (L, d, σmax, C)
(
Q(ν(ε)) + N(ν(s)) + N(ν(ε)) + N(ν(s))N(ν(ε)) +

D
(d,d)
4 (ν(As,ε))

)
‖η‖2. Note that in the probabilistic setting, this decays at a rate of 1/

√
T .

Denote the quantity on the above RHS of Eq. (*) by P (‖η‖2). As to the computation

of ∇2fν(x) , note that for any ν, ∇2fν(η) can be written as

∇2fν(η) = Gν(η) := G
(ν)
1 (η)−G(ν)

2 (η)− 2G
(ν)
3 (η), (2.6)

where

G
(ν)
1 (η) = EX∼ν [

(
η>X

)2
XX>],

G
(ν)
2 (η) = EX∼ν [

(
η>X

)2
]EX∼ν [XX>],

G
(ν)
3 (η) = EX∼ν [

(
η>X

)
X]EX∼ν [

(
η>X

)
X>].

These quantities can be computed directly when ν = ν(x) using the observed samples. In

what follows, we will use the estimate ∇2f̂ := ∇2fν(x) , ∇2f := ∇2fAµ and, in general, we

will add a “hat” to quantities which are derived from the empirical distribution ν(x).

Putting everything together, we obtain the algorithm HKICA, named after Hsu and

Kakade [2013], which is shown in Algorithm 1,

2Throughout the thesis eigenvectors always mean right eigenvectors, unless specified otherwise.
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Algorithm 1 The HKICA algorithm.

Input: x(t) for 1 ≤ t ≤ T .
Output: An estimate of the mixing matrix A.

1: Sample φ and ψ independently, uniformly from the unit sphere Rd;
2: Evaluate ∇2f̂(φ) and ∇2f̂(ψ);

3: Compute M̂ = (∇2f̂(φ))(∇2f̂(ψ))−1;
4: Compute {µ1, . . . , µd}, all the eigenvectors of M̂ ;
5: Return Â = (µ1, . . . , µd).

Remark 2.3.3. Although in theory, HKICA generates a valid, real output almost surely,

in practice this may not happen always as, due to numerical errors, ∇2f̂(ψ) may become

singular or the ratio (φ>Ai)/(ψ
>Ai) may become the same for multiple indices i. A simple

way to fix this problem is re-sampling φ and ψ until a real eigen-decomposition exists.

2.3.2 Analysis of HKICA

In this section we provide a rigorous analysis of the algorithm.

Definition 2.3.4. Given a vector ψ, a matrix A, and constants 0 ≤ ` ≤ 1, Lhigh ≥
√

2d,

let Llow =
√
π√
2d
`. We use EAψ to denote the event when mini |ψ>Ai| ≥ A(2,min)Llow and

‖ψ‖2 ≤ Lhigh hold simultaneously.

Let

γA = min
i,j:i6=j

∣∣∣∣∣
(
φ>Ai
ψ>Ai

)2

−
(
φ>Aj
ψ>Aj

)2
∣∣∣∣∣ . (2.7)

The performance of the HKICA algorithm will essentially depend on this parameter, as

shown in the following theorem.

Theorem 2.3.2. For any φ, ψ and a nonsingular A such that x = As + ε, on the event

EAψ ∩ EAφ , when HKICA is run on x to get Â, it holds that

d(Â, A) ≤ C(µ) min
( 1

γA
(D4(ν(s), µ) +Q(ν(ε))

+D
(d,d)
4 (ν(As,ε)) +N(ν(ε)) +N(ν(s))),Θ(µ)

)
,

(2.8)

where C(µ) and Θ(µ) are problem dependent constants, polynomial in (σmax(A), 1
σmin(A) ,

1
κmin(µ) , 1/δ, d, L, Lhigh, `).

Remark 2.3.5. (i) Θ(µ) in the result gives a trivial bound for the problem: The result

becomes interesting only when D4(ν(s), µ) + Q(ν(ε)) + D
(d,d)
4 (ν(As,ε)) + N(ν(ε)) + N(ν(s))

is small enough. (ii) Note that the bound in (2.8) approaches zero at an O(1/
√
T ) rate

in the stochastic setting. (iii) Since γA is the minimum spacing of the eigenvalues of

M = ∇2fAµ(φ)(∇2fAµ(ψ))−1, the eigenvalue perturbations imposed by the noise cannot

be too large compared to γA without potentially ruining the eigenvectors of M . Thus, the

dependence on γA seems necessary.
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Despite the important role that γA plays in the efficiency of the HKICA algorithm, it is

not clear whether it is well controllable. To the best of our knowledge, even a polynomial

(in the dimension d) lower bound of γA is not yet available in the literature. The problem of

minimal spacings of random variables has been discussed by Hüsler [1987] and Goyal et al.

[2014], but results there are unfortunately not applicable to our case.

2.3.3 Proof of Theorem 2.3.2

We go over the key steps of proving Theorem 2.3.2 in this section. The omitted details can

be found in Appendix A.3.

Note by Theorem 2.3.1, λi =
(
φ>Ai
ψ>Ai

)2

. WLOG assume that φ>Ai and ψ>Ai are all

positive for i ∈ [d], then λs = λt ⇔ φ>
(
AsA

>
t −AtA>s

)
ψ = 0. So given φ, ψ are sampled

independently from the uniform distribution on the unit sphere of Rd, λs 6= λt holds almost

surely if As is not parallel to At (i.e. A is nonsingular). Thus the eigenvalues of M are all

distinct and the corresponding eigenvectors determine the columns of A up to permutation

and scaling.

Let

ξ = 6C2D2(µ, ν(s)) +D4(µ, ν(s)). (2.9)

We can further prove that ‖M − M̂‖2 is also bounded.

Lemma 2.3.6. Given that ξ ≤ κminA
2
(2,min)σ

2
minL

2
low

4L2
highd

6A2
(2,max)

A2
max

and P (Lhigh) ≤ 1
4κminA

2
(2,min)σ

2
minL

2
low,

on the event EAψ ∩ EAφ ,

‖M − M̂‖2 ≤ Φ(µ)
(
D4(µ, ν(s)) +Q(ν(ε)) +N(ν(s)) +N(ν(ε)) +D

(d,d)
4 (ν(As,ε))

)
,

where Φ(µ) is a problem-dependent constant that is polynomial in Lhigh, d, σmax, 1/σmin,

κmax, 1/κmin, `, L and C.

The following perturbation lemma for diagonalizable matrices shows that a small pertur-

bation of M will only result in a small variation of its eigenvectors, at least under some mild

regularity conditions. Thus, given a good estimate of M , we can reconstruct A accurately.

Lemma 2.3.7. Denote M̂ = M + E where M = PDP−1 and where D is a diago-

nal matrix diag(σ1, . . . , σd). Assume M̂ has distinct eigenvalues. If γD = mini6=j |σi −

σj | > 4σmax(P )
σmin(P ) ‖E‖2, and mini,j:i6=j ‖Pi−Pj‖2 > 8

γD

σ2
max(P )
σmin(P ) ‖E‖2, then there exist constants

{c1, . . . , cd} and a permutation π, such that

max
1≤k≤d

‖ckP̂π(k) − Pk‖2 ≤ 4
σ2

max(P )

γDσmin(P )
‖E‖2 ,

and therefore
d∑
k=1

‖ckP̂π(k) − Pk‖2 ≤ 4d
σ2

max(P )

γDσmin(P )
‖E‖2 ,

where P̂ is the matrix of eigenvectors of M̂ .
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Proof of Theorem 2.3.2. Let

Q̃ = Φ(µ)
(
D4(µ, ν(s)) +Q(ν(ε)) +N(ν(s)) +N(ν(ε)) +D

(d,d)
4 (ν(As,ε))

)
be the RHS in Lemma 2.3.6. Assume that the following conditions hold:

C1: γA > 4σmax

σmin
Q̃

C2: mini,j:i6=j ‖Ai −Aj‖2 > 8
γA

σ2
max

σmin
Q̃;

C3: ξ ≤ κminA
2
(2,min)σ

2
minL

2
low

4L2
highd

5A2
(2,max)

A2
max

;

C4: P (Lhigh) ≤ 1
4κminA

2
(2,min)σ

2
minL

2
low.

Note that if the above conditions are not satisfied, simply picking ci = 0 for all the ci, then

max
1≤k≤d

‖c1Âπ(k) −Ak‖2 ≤ σmax.

Otherwise recall that M = A diag(λ1, . . . , λd)A
−1 where λi = (φ>Ai)

2/(ψ>Ai)
2 ( Theo-

rem 2.3.1). Assuming E = EAφ ∩ EAψ holds. Given conditions C3 and C4 and applying

Lemma 2.3.6, we have ‖M − M̂‖2 ≤ Q. Now given conditions C1 and C2, if M̂ has distinct

eigen-values with probability 1 and by Lemma 2.3.7,

max
1≤k≤d

‖c1Âπ(k) −Ak‖2 ≤ 4
σ2

max

γAσmin
‖M − M̂‖2 ≤ 4

σ2
max

γAσmin
Q̃.

Combining both upper bounds leads to the final conclusion.

2.4 A “Deterministic” ICA Algorithm

In this section, we present our ICA algorithm, named as DICA, together with its analysis.

A recursive version of the algorithm is also proposed.

2.4.1 A Refined HKICA Algorithm

The problems with γA motivate us to refine the HKICA algorithm. The idea is inspired by

the works of Arora et al. [2012] and Frieze et al. [1996]. The idea is to use a ‘quasi-whitening’

procedure:

For a zero mean product distribution µ, denote the kurtosis of its i-th component

by κi. To derive our procedure, first recall that ∇2fAµ(ψ) = AKDψA
>, where K =

diag(κ1, . . . , κd) and

Dψ = diag
(
(ψ>A1)2, · · · , (ψ>Ad)2

)
.

Hence, the square root of ∇2fAµ(ψ) is B = AK1/2D
1/2
ψ R> for some orthonormal matrix R.

Now for i = 1, 2, defining Ti = ∇2fAµ(B−>φi), then Ti = AKDB−>φiA
>. Consider the jth

element on the diagonal of DB−>φi ,

(φ>i B
−1Aj)

2 = (φ>i RD
−1/2
ψ K−1/2A−1Aj)

2 = (φ>i RD
−1/2
ψ K−1/2ej)

2 = (φ>i Rj)
2κ−1
j D−1

ψ,(j,j),
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where ej is the one-hot vector in Rd with 1 for its jth position and 0 for other positions and

Rj denotes the jth column of R. Thus, Ti = AKK−1D−1
ψ ΛiA

> = AD−1
ψ ΛiA

>, where

Λi =

 (φ>i R1)2

. . .

(φ>i Rd)
2

 .

Letting M = T1T
−1
2 , we see that M = AΛA−1 with

Λ = Λ1Λ−1
2 =


(
φ>1 R1

φ>2 R1

)2

. . . (
φ>1 Rd
φ>2 Rd

)2

 .

Thus, Ai are again the eigenvectors of this newly defined matrix M , but now the eigenvalues

of M are defined in terms of the orthogonal matrix R instead of A, and so the resulting

minimum spacing

γR = min
i,j:i6=j

∣∣∣∣∣
(
φ>1 Ri
φ>2 Ri

)2

−
(
φ>1 Rj
φ>2 Rj

)2
∣∣∣∣∣ (2.10)

depends on A only through R. Since R is orthonormal, γR will be shown to be “well-

behaved”.

The resulting algorithm, called Deterministic ICA (DICA), is shown as Algorithm 2.

Algorithm 2 Deterministic ICA (DICA)

Input: x(t) for 1 ≤ t ≤ T .
Output: An estimate of the mixing matrix A.

1: Sample ψ from a d-dimensional standard Gaussian distribution;
2: Evaluate ∇2f̂(ψ),

3: Compute the SVD of ∇2f̂(ψ) = UΣV >, and let B̂ = UΣ1/2.
4: Sample φ1 and φ2 independently from the standard Gaussian distribution;
5: Compute T̂1 = ∇2f̂(B̂−>φ1) and T̂2 = ∇2f̂(B̂−>φ2);

6: Compute all the eigenvectors {µ1, . . . , µd} of M̂ = T̂1

(
T̂2

)−1

;

7: Return Â = (µ1, . . . , µd).

Remark 2.4.1. Similarly to HKICA, in theory DICA fails with probability 0 (giving,

e.g., complex outputs), but this may be experienced due to numerical errors. The same

resampling trick can be applied again, as in Remark 2.3.3.

Similarly to Theorem 2.3.2, one can show that under some technical assumptions, which

hold with probability 1,

d(Â, A) ≤ C(µ) min
( 1

γR
(D4(ν(s), µ) +Q(ν(ε)) +D

(d,d)
4 (ν(As,ε))

+N(ν(ε)) +N(ν(s))),Θ(µ)
)
,

where Â is the output of the DICA algorithm, which is the result stated as Theorem 2.2.1.
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The proof is very similar to the result of Theorem 2.3.2, with γR in place of γA, as

required. Note that the C(µ) here is different from that in Theorem 2.3.2. We will prove

that 1
γR

is polynomial in d and 1
δ in next section, thus prove Theorem 2.2.1. The detailed

proof is postponed to Appendix A.4.

2.4.2 Analysis of γR

We first empirically compare the behavior of 1/γA and 1/γR. In particular, we construct four

kinds of matrices with increasing coherences: A1 = P ; A2 = vb1
>+0.3P ; A3 = vb1

>+0.05P ;

and A4 = vb1
> + 0.005P . Here, the elements of the vector vb and the matrix P are both

generated from the standard Gaussian distribution (with appropriate dimensions). We also

generate an orthonormal mixing matrix R. This matrix is obtained by computing the left-

column space of a non-singular random matrix whose components are also drawn from

standard normal distribution. For each of the matrices, we generate φ and ψ from standard

normal distribution 3 times, pick the minimal values of 1/γ, and plot the average value

over 200 repetitions. Figure 2.2 below shows the behaviour of 1/γA and 1/γR for mixing

matrices, and for some random orthonormal matrix R. As expected, the value of 1/γA

increases with the coherence of the matrix. However, it is similar to that of an orthonormal

matrix 1/γR unless the coherence is really large. Uncovering the dependence of 1/γA on the

properties of A remains an interesting (and challenging) open problem.

Recall that φ1 and φ2 are independently sampled from the standard Gaussian distribu-

tion. Thus, {φ>1 R1, · · · , φ>1 Rd, φ>2 R1, · · · , φ>2 Rd} are 2d independent standard Gaussian

random variables. Let Zi =
φ>1 Ri
φ>2 Ri

. It follows that Zi, 1 ≤ i ≤ d are d independent

Cauchy(0, 1) random variables. Using this observation, we show in the following lemma

that γR is large with probability at least 1 − δ.

Proposition 2.4.2. With probability at least 1− δ,

γR ≥
π2δ2

d3
.

The proof is postponed to Section A.6. For further reference we will denote the event

mentioned in the previous proposition by EZ .

2.4.3 A Modified Version of DICA

In this section, we provide a heuristic modification of DICA (MDICA) that performs better

in the experiments. However, proving performance guarantees for this new algorithm has

so far defied our efforts. As the cases of the previous analyses, the performance of MDICA

depends on the minimal eigenvalue spacings of a specially constructed matrix M . Similar

to γA, we are not able to bound it polynomially in d.
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Figure 2.2: The values of 1/γ for matrices with different coherences

The observation underlying this new algorithm is that errors of the Hessian matrix

estimates computed introduce a large estimation error. Thus we want to reduce the number

of Hessians used in the procedures, while keeping the minimum spacing under control.

Algorithm 3 DICA Modified (MDICA)

Input: x(t) for 1 ≤ t ≤ T .
Output: An estimation of the mixing matrix A.

1: Sample ψ from a d-dimensional standard Gaussian distribution;
2: Evaluate ∇2f̂(ψ),

3: Compute the SVD of ∇2f̂(ψ) = UΣV >, and let B̂ = UΣ1/2.
4: Sample φ from the standard Gaussian distribution;
5: Compute T̂ = ∇2f̂(B̂−>φ);
6: Compute all the eigenvectors {µ1, . . . , µd} of M̂ = B̂−1T̂ B̂−>. Set R̂ = (µ1, . . . , µd);
7: Return Â = B̂R̂.

Remark 2.4.3. Algorithm 3 follows the derivation: Recall that B = AK1/2D
1/2
ψ R>. Let

T = ∇2fAµ(B−>φ), then T = AD−1
ψ ΛA>, where

Λ =

 (φ>R1)2

. . .

(φ>Rd)
2

 ,

and Rj denotes the jth column of R. Thus, M = B−1TB−> = RK−1D−2
ψ ΛR>, and
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its eigen-decomposition recovers the orthonormal matrix R. Finally, BR = AK1/2D
1/2
ψ

recovers A.

Remark 2.4.4. Note that the eigenvalues of M are (φ>Ri)
2

(ψ>Ai)4κi
for 1 ≤ i ≤ d. When A is

highly coherent, we would expect that ψ>Ai’s are close to each other. Given that φ>Ri’s are

well separated from each other, we intuitively expect the eigenvalues to be well-separated

from each other. However, we do not have a rigorous proof of this. Experimental results

show that MDICA consistently outperforms DICA.

The following proposition shows that the minimal spacing of M in MDICA is large when

A is highly coherent. Instead of assuming the source signals s are bounded, we assume

‖Ai‖2 = 1 for any i ∈ [d] in this section.

Proposition 2.4.5. Fix 0 < δ < 1 and let c = 2
√
πδ

d(d−1) . Under the event of EAψ ∩ERφ , assume

that

• All κi’s are equal for 1 ≤ i ≤ d, denoted by κ;

• 〈Ai, Aj〉 ≥ 1− ε for any 1 ≤ i, j ≤ d, such that ε ≤ A8
(2,min)L

8
lowc

2

32L10
high

;

• ‖Ai‖2 = 1 holds for all i ∈ [d]

Then with probability at least 1− δ, the minimal spacing of M in the MDICA algorithm is

at least 2
√
πδLlow

κL4
highd(d−1)

.

Remark 2.4.6. Theoretical guarantee for Algorithm 3 can be developed in a similar way

based on Proposition 2.4.5. However, Proposition 2.4.5 is relatively week, as its first two

assumptions are not natural.

Proof of Proposition 2.4.5. Note that for any i, ‖Ai‖2 = 1. Thus, given 〈Ai, Aj〉 ≥ 1− ε,

‖Ai −Aj‖22 ≤ 2− 2〈Ai, Aj〉 ≤ 2ε.

Also,

|(ψ>Ai)2− (ψ>Aj)
2| = |(ψ>Ai)− (ψ>Aj)| · |(ψ>Ai) + (ψ>Aj)| ≤ 2

√
2‖ψ‖22

√
ε = 2

√
2L2

u

√
ε.

Now WLOG assume φ>Ri and φ>Rj are both nonnegative. Then the minimal eigenvalue

spacing ∣∣∣∣ (φ>Ri)
2

(ψ>Ai)4κi
− (φ>Rj)

2

(ψ>Aj)4κj

∣∣∣∣ ≥ 2

κ
min
i

∣∣∣∣ φ>Ri
(ψ>Ai)2

∣∣∣∣min
i6=j

∣∣∣∣ φ>Ri
(ψ>Ai)2

− φ>Rj
(ψ>Aj)2

∣∣∣∣
≥ 2Llow

κL2
high

min
i6=j

∣∣∣∣ φ>Ri
(ψ>Ai)2

− φ>Rj
(ψ>Aj)2

∣∣∣∣ .
It remains to bound

min
i6=j

∣∣∣∣ φ>Ri
(ψ>Ai)2

− φ>Rj
(ψ>Aj)2

∣∣∣∣ .
24



Note that given φ uniformly sampled from the standard Gaussian distribution, φ>Ri−φ>Rj
is a random variable from a Gaussian distribution with mean 0 and variance 2 for 1 ≤ i 6=

j ≤ d. Thus, with probability at least 1 − δ,

min
i6=j
|φ>Ri − φ>Rj | ≥

2
√
πδ

d(d− 1)
.

Thus, for any 1 ≤ i 6= j ≤ d,∣∣∣∣ φ>Ri
(ψ>Ai)2

− φ>Rj
(ψ>Aj)2

∣∣∣∣ =

∣∣∣∣( φ>Ri
(ψ>Aj)2

− φ>Rj
(ψ>Aj)2

)
−
(

φ>Ri
(ψ>Aj)2

− φ>Ri
(ψ>Ai)2

)∣∣∣∣
≥
∣∣∣∣ φ>Ri
(ψ>Aj)2

− φ>Rj
(ψ>Aj)2

∣∣∣∣− ∣∣∣∣ φ>Ri
(ψ>Aj)2

− φ>Ri
(ψ>Ai)2

∣∣∣∣
≥ |φ

>Ri − φ>Rj |
L2

high

− Lhigh
|(ψ>Ai)2 − (ψ>Aj)

2|
(ψ>Ai)2(ψ>Ai)2

≥ c

L2
high

− 2
√

2L3
u

√
ε

A4
(2,min)L

4
low

≥ c

2L2
high

.

2.4.4 Recursive Versions

Vempala and Xiao [2014] proposed a recursion idea to improve the sample complexity of

the Fourier PCA algorithm of Goyal et al. [2014]: Instead of recovering all the columns of

A in a single step, their recursive algorithm decomposes the whole space into two subspaces

according to the maximal spacing of the eigenvalues, then continues recursively to decom-

pose each of the subspaces obtained until they are all 1-dimensional. The idea underlying

this recursive procedure is so that the maximal spacing of the eigenvalues are much larger

than the minimal one, so the algorithm may win over a single decomposition even if errors

compound through the recursion. As this algorithm assumes that the mixing matrix is or-

thonormal (so that the projection to its subspaces can always eliminate some component of

the source signal), we will need to adapt it to our setting. We will only show this adapta-

tion for HKICA as an example. Our other algorithms can also be modified into a recursive

version in a similar way.

To force an orthonormal mixing matrix, we will first compute the square root matrix B

from ∇2f(ψ) = ADψKA
> in the same way as done in DICA. Thus, B = AD

1/2
ψ K1/2R> for

some orthonormal matrix R. Transforming our observations by B−1, we then have the new

observation y(t) = B−1x(t) + B−1ε(t) = RD
1/2
ψ K1/2s(t) + B−1ε(t). Note that D

1/2
ψ K1/2

is diagonal, thus RD
1/2
ψ K1/2s(t) is an orthonormal mixture of the ‘independent’ sources

D
1/2
ψ K1/2s(t) for t ∈ [T ]. We then apply the recursive algorithm of Vempala and Xiao

[2014] to recover the mixing matrix R. Finally, BR gives an estimation of A up to scaling

its columns.

The details of recovering are as follows: We follow the idea of HKICA (and DICA) to

compute two Hessian matrices T1 = RD−1
ψ Λ1R

> and T2 = RD−1
ψ Λ2R

>. Then, instead of
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computing the full eigen-decomposition of T0 = T1T
−1
2 (as in HKICA), we only decompose

its eigenspace into two subspaces, according to the maximal spacing of the eigenvalues of T0.

The Decompose helper function takes a projection matrix P of a subspace spanned by some

columns of R (WLOG we assume these are the first k columns of R). Then we compute

the projection of T0 as M = P>T0P . Thus the eigenspace of PMP> is in the span of P .

Lastly, by separating the eigenvectors of M according to its eigenvalues into PP1 and PP2,

the Decompose function recursively decomposes the subspaces into two smaller subspaces.

Algorithm 4 Recursive version of HKICA (HKICA.R)

Input: x(t) for 1 ≤ t ≤ T .
Output: An estimation of the mixing matrix A.

1: Sample ψ from a d-dimensional standard Gaussian distribution;
2: Evaluate ∇2f̂(ψ) = Ĝ;
3: Compute B̂ such that B̂B̂> = Ĝ;
4: Compute ŷ(t) = B̂−1x(t) for 1 ≤ t ≤ T ;
5: Let P = Id;
6: Compute R̂ = Decompose(ŷ, P );
7: Return B̂R̂;

Algorithm 5 The Decompose function

Input: x(t) for 1 ≤ t ≤ T , a projection matrix P ∈ Rd×k (d ≥ k).
Output: An estimation of the mixing matrix A ∈ Rd×k.

1: if k = 1, return P ;
2: Sample φ1 and φ2 independently from a standard Gaussian distribution of dimension d;
3: Evaluate ∇2f̂(φ1) and ∇2f̂(φ2),

4: Compute M̂ = (∇2f̂(φ1))(∇2f̂(φ2))−1;
5: Compute M̂P = P>T̂P ;
6: Compute the eigen-decomposition of M̂P , its eigenvalues {σ1, . . . , σd} where σ1 ≥ . . . ≥
σk and their corresponding eigenvectors {µ1, . . . , µk};

7: Find the index m = arg maxi σi − σi+1;
8: Let P1 = (µ1, . . . , µm), and P2 = (µm+1, . . . , µk);
9: Compute W1 = Decompose(x, PP1), and W2 = Decompose(x, PP2);

10: Return [W1,W2];

Theorem 2.4.1. With probability at least 1 − δ, the recursive version of HKICA returns

the mixing matrix with an error bound

d(Â, A) ≤ inf
µ∈Π0

C(µ) min
(
K2(µ) +K(µ),Θ(µ)

)
,

where K(µ) = D4(ν(s), µ) +Q(ν(ε)) +D
(d,d)
4 (ν(As,ε)) +N(ν(ε)) +N(ν(s)).

Remark 2.4.7. Note that when K(µ) is small enough, the term K2(µ) will be dominated

by the error carried over from the quasi-whitening procedure, K(µ). Compared to the result

in Section 2.4.1, the recursive algorithm improves the dependence of C(µ) on the dimension

d via its eigen-decomposition according to the maximal spacing of the eigen-values.
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2.5 Experimental Results

In this section we compare the performance of different ICA algorithms on some synthetic

examples, with mixing matrices of different coherences. We test 9 algorithms: HKICA

(HKICA), and its recursive version (HKICA.R); DICA (DICA), and its recursive version

(DICA.R); the modified version of DICA (MDICA), and its recursive version (MDICA.R);

the default FastICA algorithm from the ’ITE’ toolbox [Szabó, 2014] (FICA); the recursive

Fourier PCA algorithm of Xiao [2014] (FPCA); and random guessing (Random). FPCA is

modified so that it can be applied to the case of non-orthogonal mixing matrix. Random

guessing is included to provide a scale.

In the simulation, a common mixing matrix A of dimension 6 is generated in the

same way as in Section 2.4.2, where A1 has the lowest coherence and A4 has the high-

est coherence. Next, we generate a 6-dimensional “BPSK” signal s as follows. Let p =

(
√

2,
√

5,
√

7,
√

11,
√

13,
√

19). We generate a {+1,−1} valued sequence q(t) uniformly at

random for 1 ≤ t ≤ T , and set si(t) = q(t) sin(pit). Note that in order to have the compo-

nents of s close to independent, we need the ratios pi/pj for all i 6= j to be irrational.

Lastly, the observed signal is generated as x = As + cε where ε is the noise generated

from a d-dimensional normal distribution with randomly generated covariance. We take

T = 20000 instances of the observed signal on time steps t = 1, . . . , 20000. We test the

noise ratio c from 0 (noise-free) to 1 (heavily noisy). All the algorithms are evaluated on

150 repetitions. Since the algorithms are randomized, for each repetition we try 3 times and

report the best results. A randomly selected example is shown in Figure 2.3.
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Figure 2.3: An example of the behaviour of the DICA algorithm. Left: the original BPSK
signals; Right: the reconstructed signals by DICA with noise ratio c = 0 (noise-free case).

We measure the performances of the algorithms by their ability to reconstruct A. In

particular, we use d(Â, A) with the “true” mixing matrix A. The calculation of this measure

requires an exhaustive search over all possible permutation.

2.5.1 Results

We investigate the following 4 questions:

(i) How is the performance of moment methods compared to FastICA?
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(ii) How does noise affect the performance of the various ICA algorithms?

(iii) How does the coherence of the mixing matrix affect the performance of the various

ICA algorithms?

(iv) Do the recursive versions improve performance?

As shown in Figure 2.4, for the low coherence matrices FastICA achieves the best per-

formance. Its performance is specially outstanding in the noise-free case, where it achieves

close to 0 reconstruction error. However, its performance degrades quickly as the magni-

tude of noise, or the coherence of the mixing matrix A increases. On the other hand, the

ICA algorithms based on moment methods appear to be more robust to the noise and the

coherence of the mixing matrix. One interesting observation is that for the mixing matrix

A4 (high coherent), MDICA seems to be more robust.
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Figure 2.4: Reconstruction errors. Error bars are based on 150 repetitions. Left: Recon-
struction errors for different levels of noise; Right: Noisy observations. For comparison, the
reconstruction error of “random guessing” for A1 is 0.9± 0.033.)
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Figure 2.5: Reconstruction errors. Error bars are based on 150 repetitions.

Figure 2.5 shows that the recursive versions of the algorithms tested are not always

better than their respective non-recursive versions. In particular, when A has relatively
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low coherence, the minimum eigenvalue gap is not too small. For a highly coherent A, the

recursive versions outperform their non-recursive counterparts. Note that in this case, A is

close to singular (small minimal singular value), and thus it requires more samples.

We expected that DICA will achieve smaller error for an extremely coherent A, since

1/γA will be much larger than 1/γR. However, the experimental results indicate the opposite.

Note that high coherence implies small minimal singular value. In this case, the estimation

error of M in DICA could be much larger than that in HKICA, because of the fourth degree

of A−1. This error overwhelms the improvement brought by larger eigenvalue spacings, if

the sample size is not large enough. On the other hand, MDICA tries to achieve a small

estimation error, meanwhile we expect it to keep the eigenvalue spacing large (intuitively,

this eigenvalue spacing is approximately the spacing of the square of d Gaussian random

variables), leading to good performance. This is confirmed by the experimental results, in

both the non-recursive and recursive versions.

In summary, the results suggest that the moment methods are comparable to each other

in practice, while FastICA is better for mixing matrices with low coherence or mild coherence

with low noise. If the observations have a large amount of noise and the mixing matrix is

not extremely coherent, then HKICA may be the best choice. In the case of an extremely

coherent mixing matrix, MDICA performs the best.

2.6 Conclusions

Motivated by the observation that ICA algorithms achieve good performance on separating

the mixture of periodic sources, in this chapter we extend and analyze the problem of ICA

in a deterministic framework without any probabilistic assumptions. Our analysis leads

to provably polynomial-time ICA algorithms that have no unspecified parameters. Our

results are instance-dependent, and catches the important features of the data on which the

performance of our ICA algorithms relay. These results recover the usual statistical results

in the classic ICA setting, and also extend to other sources, e.g. periodic sources.
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Appendix A

Omitted Proofs for Chapter 2

This Chapter is devoted to the omitted proofs for Chapter 2.

A.1 Proof of Proposition 2.2.3

Proposition 2.2.3. Let (s(t))t∈[T ] be an zero-mean i.i.d. sequence bounded by C in `∞

norm, independent of the i.i.d. Gaussian noise N (0,Σ) sequence (ε(t))t∈[T ]. Then for any

δ ∈ (0, 1), with probability at least 1−δ, L = Poly
(
‖Σ‖2, d, 1

δ

)
. Moreover, if µ is the product

measure of the sources (i.e., s(t) ∼ µ), then D4(ν(s), µ), Q(ν(ε)), D
(d,d)
4 (ν(As,ε)), N(ν(ε)),

N(ν(s)) are all of orders O(1/
√
T ).

Proof. Denote the population expectation by E and the empirical expectation by Et, i.e.

Et[ε] = E
X∼ν(ε)

t
[X]. We actually prove a stronger result: there exists a function g : N→ R

satisfying g(t)→ 0 at a rate of 1√
t

as t→∞, such that

Claim (i): D4(µ, ν(s)) ≤ g(T ); ‖ET [s]‖F ≤ g(T );

Claim (ii): ‖ET [ε]‖F ≤ g(T ); ‖ET [ε⊗2]‖F = Poly
(
‖Σ‖2, d, 1

δ

)
;

‖ET [ε⊗3]‖F = Poly
(
‖Σ‖2, d, 1

δ

)
/
√
T ;

Claim (iii): ‖
(
ET [ε⊗4]− (ET [ε⊗2])⊗2

)
(η, η, ·, ·)− 2(ET [ε⊗2])⊗2(η, ·, η, ·)‖F

≤ g(T )‖η‖22, for any η ∈ Rd;

Claim (iv): for i1, i2, j1, j2 ≥ 0 such that i1 + i2 + j1 + j2 ≤ 4, denote (AS)⊗i1 ⊗ ε⊗j1 ⊗

(AS)⊗i2 ⊗ ε⊗j2 by T , then

‖ES∼ν(s) [Eε∼ν(ε) [T ]]− E(S,ε)∼ν(s,ε) [T ] ‖F ≤ g(T ).

Note that claim (i) bounds D4(µ, ν(s)) and N(ν(s)), claim (ii) bounds L and N(ν(ε)), claim

(iii) bounds Q(ν(ε)), and claim (iv) bounds D
(d,d)
4 (ν(As,ε)).

Proof of Claim (i): Recall that the signal s is zero-mean and bounded by C, thus by
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Hoeffding’s inequality, with probability at least 1 − δ,

‖ET [s]‖F ≤ C
√
d log(d/δ)

2T
. (A.1)

Moreover, any monomial with degree ≤ 4 will be bounded by C4. Similarly, with probability

at least 1− δ,

D4(µ, ν(s)) ≤ C4

√
log(d4/δ)

2T
. (A.2)

Proof of Claim (ii): Claim (ii) is about the moments of the Gaussian noise. For i.i.d.

standard Gaussian random variables, X1, . . . , Xt, note that

• E[
∑
j Xj/t] = 0, Var(

∑
j Xj/t) = 1/t; thus P

(
|
∑
j Xj/t| ≤

√
1/(tδ)

)
≥ 1− δ;

• E[
∑
j X

2
j /t] = 1, Var(

∑
j X

2
j /t) = 2/t; thus P

(
|
∑
j X

2
j /t− 1| ≤

√
2/(tδ)

)
≥ 1− δ;

• E[
∑
j X

3
j /t] = 0, Var(

∑
j X

3
j /t) = 15/t; thus P

(
|
∑
j X

3
j /t| ≤

√
15/(tδ)

)
≥ 1− δ;

• E[
∑
j X

4
j /t] = 3, Var(

∑
j X

4
j /t) = 96/t. thus P

(
|
∑
j X

4
j /t− 3| ≤

√
96/(tδ)

)
≥ 1− δ;

Here the probability inequalities are due to Chebyshev’s inequality.

Given ε ∼ N (0,Σ) for some fixed unknown Σ, firstly consider the case when Σ = I. For

the 1-dimensional tensor (vector) ε, it is straightforward that with probability at least 1−δ,

‖Et[ε]‖F ≤ d
√

1/(tδ). (A.3)

Moreover, consider the position (u, v) of the 2-dimensional tensor (matrix) ε⊗2. If u = v

then with probability at least 1 − δ,
∣∣∣∑j ε

2
u(j)/t− 1

∣∣∣ ≤ √2/(tδ). If u 6= v, by Chebysev’s

inequality with probability at least 1 − δ,
∣∣∣∑j εu(j)εv(j)/t

∣∣∣ ≤ √
1/(tδ). Therefore, with

probability at least 1− δ, all entries are less than 1 +
√

2d2/tδ. Thus

‖Et[ε⊗2]‖F ≤ d(1 + d
√

2/(tδ)). (A.4)

Lastly for the 3-dimenstional tensor ε⊗3, consider the (u, v, w) position where u, v, and w

are distinct. The expectation of εuεvεw is 0 and its variance is at most 15. Therefore, with

probability at least 1 − δ,
∣∣∣∑j εu(j)εv(j)εw(j)/t

∣∣∣ ≤ √15/(tδ). Thus, with probability at

least 1− δ,

‖Et[ε⊗3]‖F ≤ d3
√

15/(tδ). (A.5)

Similar result can be obtained following the same calculations for the cases when u, v and

w are not distinct.
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Proof of Claim (iii): Consider the (u, v) position of the matrix,∣∣∣(Et[ε⊗4](η, η, ·, ·)− (Et[ε⊗2])⊗2(η, η, ·, ·)− 2(Et[ε⊗2])⊗2(η, ·, η, ·)
)
u,v

∣∣∣
≤

∣∣∣∣∣∣
∑
k1,k2

ηk1
ηk2

(Et [εuεvεk1
εk2

]− E [εuεvεk1
εk2

])

∣∣∣∣∣∣+ |Et [εuεv] − E [εuεv]|

∣∣∣∣∣∣
∑
k1,k2

ηk1
ηk2

Et [εk1
εk2

]

∣∣∣∣∣∣
+ |E [εuεv]|

∣∣∣∣∣∣
∑
k1,k2

ηk1
ηk2

(Et [εk1
εk2

]− E [εk1
εk2

])

∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣
∑
k1,k2

ηk1
ηk2

(Et [εuεk1
]Et [εvεk2

]− E [εuεk1
]E [εvεk2

])

∣∣∣∣∣∣ . (A.6)

Note that the kurtosis of a Gaussian variable is 0, thus∑
k1,k2

ηk1
ηk2

E [εuεvεk1
εk2

] =
∑
k1,k2

ηk1
ηk2

(E [εuεv]E [εk1
εk2

] + 2E [εuεk1
]E [εvεk2

]) .

Note that the RHS of Eq. (A.6) including 5d2 deviation terms of moments of Gaussian

variables, i.e. differences between the empirical means and their true means. Also, each of

the following inequalities holds with probability at least 1 − δ,∣∣∣∣∣∣
∑
j

ε4u(j)/t− 3

∣∣∣∣∣∣ ≤√96/(tδ);

∣∣∣∣∣∣
∑
j

ε3u(j)εv(j)/t

∣∣∣∣∣∣ ≤√15/(tδ);

∣∣∣∣∣∣
∑
j

ε2u(j)ε2v(j)/t− 1

∣∣∣∣∣∣ ≤√4/(tδ);

∣∣∣∣∣∣
∑
j

ε2u(j)εv(j)εw(j)/t

∣∣∣∣∣∣ ≤√2/(tδ);

∣∣∣∣∣∣
∑
j

εu(j)εv(j)εw(j)εz(j)/t

∣∣∣∣∣∣ ≤√1/(tδ);

Thus, with probability at least 1 − 5d2δ,∣∣∣(Et[ε⊗4](η, η, ·, ·)− (Et[ε⊗2])⊗2(η, η, ·, ·)− 2(Et[ε⊗2])⊗2(η, ·, η, ·)
)
u,v

∣∣∣
≤ O(1)d

√
1

tδ
‖η‖22,

where we used that
∑
i,j ηiηj ≤ d‖η‖22. Thus,

‖
(
Et[ε⊗4]− (Et[ε⊗2])⊗2

)
(η, η, ·, ·)− 2(Et[ε⊗2])⊗2(η, ·, η, ·)‖F

≤ O(1)d2

√
1

tδ
‖η‖22. (A.7)
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Proof of Claim (iv): For the last claim, by the triangle inequality

‖ES∼ν(s) [Eε∼ν(ε) [T ]]− E(S,ε)∼ν(s,ε) [T ] ‖F

≤‖ES∼ν(s) [Eε∼ν(ε) [T ]]− ES∼ν(s)

[
Eε∼N (0,I) [T ]

]
‖F

+ ‖ES∼ν(s)

[
Eε∼N (0,I) [T ]

]
− ES∼µ [Eε∼ν(ε) [T ]] ‖F

+ ‖ES∼µ
[
Eε∼N (0,I) [T ]

]
− E[T ]‖F︸ ︷︷ ︸

=0

+‖E[T ]− ET [T ] ‖F ,

where the cancellation happens because s and ε are independent. Note that every term

in the RHS is an i1 + j1 + i2 + j2-dimensional tensors. We can bound these differences

elementwise as before to get that with probability at least 1 − δ,

‖ES∼ν(s) [Eε∼ν(ε) [T ]]− ET [T ] ‖F ≤ O(1)A4
maxC

4d4

√
1

tδ
(A.8)

Combining Eqs. (A.1) to (A.5), (A.7) and (A.8), picking

g(t) = O(1) max

(
C

√
d log(d/δ)

t
, C4

√
log(d4/δ)

t
, d3

√
1

tδ
, A4

maxC
4d4

√
1

tδ

)
,

leads to the claims.

Lastly, for the general case when ε ∼ N (0,Σ), the above conclusions will apply when

used with Σ−1/2ε. Thus multiplying g(t) by ‖Σ‖42, all results will still hold.

A.2 Proof of Proposition 2.3.2

Proposition 2.3.2. For any tuple (x,A, s, ε) such that x = As+ ε and any vector η,

‖∇2fν(x)(η)−∇2fν(As)(η)‖F

≤ Poly(L, d, σmax, C)
(
Q(ν(ε))

+N(ν(s)) +N(ν(ε)) +Q
(
N(ν(s))N(ν(ε)) +D

(d,d)
4 (ν(As,ε))

))
‖η‖22, (*)

where Q(x) = x+ x2.

Remark A.2.1. Note that in Proposition 2.3.2 η can be a function of x,A, and s, in which

case ‖η‖2 on the right-hand side will be replaced by its upper bound.

Proof. Note that ∇2fν(x)(η) and ∇2fν(As)(η) are the matrices generated by marginalizing 2

dimensions of the tensors on the direction η:

∇2fν(x)(η) =
(
ET [(As+ ε)⊗4]−

(
ET [(As+ ε)⊗2]

)⊗2
)

(η, η, ·, ·)

− 2
(
ET [(As+ ε)⊗2]

)⊗2
(η, ·, η, ·).

Similarly,

∇2fν(As)(η) =
(
ET [(As)⊗4]−

(
ET [(As)⊗2]

)⊗2
)

(η, η, ·, ·)− 2
(
ET [(As)⊗2]

)⊗2
(η, ·, η, ·).
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Hence,

∇2fν(x)(η)−∇2fν(As)(η) = (∆1 −∆2)(η, η, ·, ·)− 2∆2(η, ·, η, ·),

where ∆1 = ET [(As+ ε)⊗4]−ET [(As)⊗4] and ∆2 =
(
ET [(As+ ε)⊗2]

)⊗2−
(
ET [(As)⊗2]

)⊗2
.

Part 1: We start with bounding ∆1. Recall that

∆1 = ET [(As+ ε)⊗4]− ET
[
(As)⊗4

]
= K1 +K2 +K3 + ET

[
ε⊗4
]
,

where

K1 = ET
[
(As)⊗3 ⊗ ε+ (As)⊗2 ⊗ ε⊗ (As) + (As)⊗ ε⊗ (As)⊗2 + ε⊗ (As)⊗3

]
;

K2 = ET

[
(As)⊗2 ⊗ ε⊗2 + (As)⊗ ε⊗ (As)⊗ ε+ (As)⊗ ε⊗2 ⊗ (As)

+ ε⊗2 ⊗ (As)⊗2 + ε⊗ (As)⊗ ε⊗ (As) + ε⊗ (As)⊗2 ⊗ ε
]
;

K3 = ET

[
ε⊗3 ⊗ (As) + ε⊗2 ⊗ (As)⊗ ε+ ε⊗ (As)⊗ ε⊗2 + (As)⊗ ε⊗3

]
.

To bound ‖K1‖F , we show a bound for the term ‖ET [(As)⊗3⊗ε]‖F first, noting that the other

terms consisting K1 can be bounded similarly. Note that ET [(As)⊗3⊗ε]−ET [(As)⊗3⊗ET [ε]]

is a 4-th order tensor, each element of which is bounded by D
(d,d)
4 (ν(As,ε)) (by the definition

of D
(d,d)
4 (ν(As,ε))). Thus, by the triangle inequality,

‖ET [(As)⊗3 ⊗ ε]‖F ≤ ‖ET
[
(As)⊗3 ⊗ ET [ε]

]
‖F + d2D

(d,d)
4 (ν(As,ε))

≤ d2σ3
maxC

3N(ν(ε)) + d2D
(d,d)
4 (ν(As,ε)).

The bounds for the other terms behave identically, hence,

‖K1‖F ≤ 4d2σ3
maxC

3N(ν(ε)) + 4d2D
(d,d)
4 (ν(As,ε)).

Similarly, one can show that

‖K3‖F ≤ 4LσmaxN(ν(s)) + 4d2D
(d,d)
4 (ν(As,ε)).

Therefore,

ET [(As+ ε)⊗4]− ET [(As)⊗4]

= EY∼ν(ε)

[
Y ⊗4

]
+K2 + Poly(L, d, σmax, C)

(
N(ν(s)) +N(ν(ε)) +D

(d,d)
4 (ν(As,ε))

)
. (A.9)

Part 2: Let us turn to bounding

∆2 =
(
ET [(As+ ε)⊗2]

)⊗2 −
(
ET [(As)⊗2]

)⊗2
.

Note that

(As+ ε)⊗2 = (As)⊗2 + ε⊗2 + (As)⊗ ε+ ε⊗ (As),
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and

‖ET [(As)⊗ ε+ ε⊗ (As)]‖F ≤ 2σmaxN(ν(s))N(ν(ε)) + 2dD
(d,d)
4 (ν(As,ε)).

Thus,

∆2 =
(
ET [ε⊗2]

)⊗2
+K4 + Poly(L, d, σmax, C)Q

(
N(ν(s))N(ν(ε)) +D

(d,d)
4 (ν(As,ε))

)
,

(A.10)

where Q(x) = x+ x2 and K4 = ET [(As)⊗2]⊗ ET [ε⊗2] + ET [ε⊗2]⊗ ET [(As)⊗2].

Part 3: Finally, note that by the definition of Q(ν(ε)),

‖
(
ET [ε⊗4]− (ET [ε⊗2])⊗2

)
(η, η, ·, ·)− 2(ET [ε⊗2])⊗2(η, ·, η, ·)‖F ≤ Q(ν(ε))‖η‖22. (A.11)

Combining Eqs. (A.9) to (A.11), we have

‖∇2fν(x)(η)−∇2fν(As)(η)‖F

≤ ‖(K2 −K4)(η, η, ·, ·)− 2K4(η, ·, η, ·)‖F

+ Poly(L, d, σmax, C)
(
Q(ν(ε)) +N(ν(s))

+N(ν(ε)) +Q
(
N(ν(s))N(ν(ε)) +D

(d,d)
4 (ν(As,ε))

))
‖η‖22. (A.12)

Part 4: It remains to bound ‖(K2 −K4)(η, η, ·, ·)− 2K4(η, ·, η, ·)‖F . Note that

ET [(As)⊗ ε⊗ (As)⊗ ε](η, η, ·, ·) = ET [(As)⊗2 ⊗ ε⊗2](η, ·, η, ·).

Then,

‖(K2 −K4)(η, η, ·, ·)− 2K4(η, ·, η, ·)‖F

≤ ‖
(
ET [(As)⊗2 ⊗ ε⊗2]− ET [(As)⊗2]⊗ ET [ε⊗2]

)
(η, η, ·, ·)‖F

+ ‖
(
ET [ε⊗2 ⊗ (As)⊗2]− ET [ε⊗2]⊗ ET [(As)⊗2]

)
(η, η, ·, ·)‖F

+ 2‖
(
ET [(As)⊗2 ⊗ ε⊗2]− ET [(As)⊗2]⊗ ET [ε⊗2]

)
(η, ·, η, ·)‖F

+ 2‖
(
ET [ε⊗2 ⊗ (As)⊗2]− ET [ε⊗2]⊗ ET [(As)⊗2]

)
(η, ·, η, ·)‖F

≤ 6d2D
(d,d)
4 (ν(As,ε))‖η‖22.

Combining Eq. (A.12) with the above inequality leads to the conclusion.

A.3 Proofs for Section 2.3.3

Recall that

ξ = 6C2D2(µ, ν(s)) +D4(µ, ν(s)).

We start with presenting the proofs for Lemmas 2.3.6 and 2.3.7. The technical lemmas used

in the proofs are presented in the latter part of this section.
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Lemma 2.3.6. Given that ξ ≤ κminA
2
(2,min)σ

2
minL

2
low

4L2
highd

6A2
(2,max)

A2
max

and P (Lhigh) ≤ 1
4κminA

2
(2,min)σ

2
minL

2
low,

on the event EAψ ∩ EAφ ,

‖M − M̂‖2 ≤ Φ(µ)
(
D4(µ, ν(s)) +Q(ν(ε)) +N(ν(s)) +N(ν(ε)) +D

(d,d)
4 (ν(As,ε))

)
,

where Φ(µ) is a problem-dependent constant that is polynomial in Lhigh, d, σmax, 1/σmin,

κmax, 1/κmin, `, L and C.

Proof. Recall that f̂ = fν(x) . Let E1 = ∇2fAµ(φ) − ∇2f̂(φ) and E2 = ∇2fAµ(ψ) −

∇2f̂(ψ). Then by Lemma A.3.2, ‖E1‖2, ‖E2‖2 ≤ L2
highd

5A2
(2,max)A

2
maxξ + P (Lhigh). Note

that by Proposition 2.3.1, ∇2fAµ(φ) = AKDφA
>. Given that ξ ≤ κminA

2
(2,min)σ

2
minL

2
low

4L2
highd

5A2
(2,max)

A2
max

and P (Lhigh) ≤ 1
4κminA

2
(2,min)σ

2
minL

2
low, the condition in Lemma A.3.4 holds on the event

EAψ ∩ EAφ . Thus we have

‖M − M̂‖2

= ‖(∇2fAµ(φ))(∇2fAµ(ψ))−1 − (∇2f̂(φ))(∇2f̂(ψ))−1‖2

≤ 2‖∇2fAµ(φ)‖2
σ2

min(∇2fAµ(ψ))
‖E2‖2 +

2

σmin(∇2fAµ(ψ))
‖E1‖2

≤ 2

(
L2

highA
2
(2,max)κmaxσ

2
max

κ2
minA

4
(2,min)σ

4
minL

4
low

+
1

κminA2
(2,min)σ

2
minL

2
low

)(
L2

highd
5A2

(2,max)A
2
maxξ + P (Lhigh)

)
≤Φ(µ)

(
D4(µ, ν(s)) +Q(ν(ε)) +N(ν(s)) +N(ν(ε)) +D

(d,d)
4 (ν(As,ε))

)
,

where the first inequality is due to Lemma A.3.4, and the second inequality is due to

Lemma A.3.5.

Lemma 2.3.7. Denote M̂ = M + E where M = PDP−1 and where D is a diago-

nal matrix diag(σ1, . . . , σd). Assume M̂ has distinct eigenvalues. If γD = mini6=j |σi −

σj | > 4σmax(P )
σmin(P ) ‖E‖2, and mini,j:i6=j ‖Pi−Pj‖2 > 8

γD

σ2
max(P )
σmin(P ) ‖E‖2, then there exist constants

{c1, . . . , cd} and a permutation π, such that

max
1≤k≤d

‖ckP̂π(k) − Pk‖2 ≤ 4
σ2

max(P )

γDσmin(P )
‖E‖2 ,

and therefore
d∑
k=1

‖ckP̂π(k) − Pk‖2 ≤ 4d
σ2

max(P )

γDσmin(P )
‖E‖2 ,

where P̂ is the matrix of eigenvectors of M̂ .

Proof. For 1 ≤ k ≤ d, assume

P−1
(k)EP(k) =

(
F1k F2k

F3k F4k

)
,

where P(k) is the matrix (Pk, P1, · · · , Pk−1, Pk+1, · · · , Pd). Let γk = ‖F3k‖2, ηk = ‖F2k‖2,

and

δk = min
j:j 6=k

∣∣∣∣∣
(
φ>Pk
ψ>Pk

)2

−
(
φ>Pj
ψ>Pj

)2
∣∣∣∣∣− ‖F1k‖2 − ‖F4k‖2 .
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Note that by definition, γk = ‖F3k‖2 ≤ ‖P−1
(k)EPk‖2 ≤

σmax(P )
σmin(P ) ‖E‖2, ηk = ‖F2k‖2 ≤

‖(P−1)kEP(k)‖2 ≤ σmax(P )
σmin(P ) ‖E‖2, and ‖F1k‖2, ‖F4k‖2 ≤ ‖P−1

(k)EP(k)‖2 ≤ σmax(P )
σmin(P ) ‖E‖2.

Thus,

δk = min
j:j 6=k

∣∣∣∣∣
(
φ>Pk
ψ>Pk

)2

−
(
φ>Pj
ψ>Pj

)2
∣∣∣∣∣− ‖F1k‖2 − ‖F4k‖2

≥ min
j:j 6=k

∣∣∣∣∣
(
φ>Pk
ψ>Pk

)2

−
(
φ>Pj
ψ>Pj

)2
∣∣∣∣∣− 2

σmax(P )

σmin(P )
‖E‖2

≥ γD − 2
σmax(P )

σmin(P )
‖E‖2

> 2
σmax(P )

σmin(P )
‖E‖2 > 0,

and δ2
k > 4γkηk. Therefore, by Theorem 2.8, Chapter V of [Stewart and Sun, 1990], there

exist a unique vector v satisfying ‖v‖2 ≤ 2γkδk such that there exists one of a eigenvector P̂k

of M̂ satisfying

‖P̂k − Pk‖2 ≤ ‖Pck‖2‖v‖2 ≤ 2σmax(P )
γk
δk
≤ 4σ2

max(P )

γAσmin(P )
‖E‖2,

where Pck is the d × (d − 1) matrix (P1, . . . , Pk−1, Pk+1, . . . , Pd). By condition, for i 6= j,
8σ2

max(P )
γAσmin(P )‖E‖2 < ‖Pi − Pj‖2 ≤ ‖Pi − P̂i‖2 + ‖Pj − P̂i‖2, thus P̂i 6= P̂j . Summing up the

upper bound gets the result.

A.3.1 Technical lemmas

Given two matrices A and B, a distribution µ of s, and any vector η, define

G1(A,B, η) = E[(Bs)⊗2 ⊗ (As)⊗2](η, η, ·, ·) =

∫
(η>Bs)2Ass>A> dµ(s);

G2(A,B, η) =
(
E[(Bs)⊗2]⊗ E[(As)⊗2]

)
(η, η, ·, ·) =

∫
(η>Bs)2 dµ(s)

∫
Ass>A> dµ(s);

G3(A,B, η) = E[(Bs)⊗ (As)]⊗2(η, ·, η, ·) =
(∫

(η>Bs)Asdµ(s)
)(∫

(η>Bs)Asdµ(s)
)>
.

and their empirical estimations

Ĝ1(A,B, η) =
1

n

n∑
k=1

(
η>Bs(k)

)2
As(k)s(k)>A> =

∫
(η>Bs)2Ass>A> dν(s)(s);

Ĝ2(A,B, η) =
1

n2

n∑
k=1

(
η>Bs(k)

)2 n∑
k=1

As(k)s(k)>A>

=

∫
(η>Bs)2 dν(s)(s)

∫
Ass>A> dν(s)(s);

Ĝ3(A,B, η) =
1

n2

( n∑
k=1

(
η>Bs(k)

)
As(k)

)( n∑
k=1

(
η>Bs(k)

)
As(k)

)>
=
(∫

(η>Bs)Asdν(s)(s)
)(∫

(η>Bs)Asdν(s)(s)
)>
.
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We now present the technical lemmas used in the proof of Lemma 2.3.6. The first lemma is

to bound the empirical estimation of Gi(A,B, η) as defined above, which then can be used

to bound ‖∇2fAµ(η)−∇2fν(As)(η)‖2.

Lemma A.3.1. For any matrices A,B, and any vector η,

• ‖G1(A,B, η)− Ĝ1(A,B, η)‖2 ≤ d5B2
(2,max)A

2
maxD4(µ, ν(s))‖η‖22;

• ‖G2(A,B, η)− Ĝ2(A,B, η)‖2 ≤ 2d5B2
(2,max)A

2
maxC

2D2(µ, ν(s))‖η‖22;

• ‖G3(A,B, η)− Ĝ3(A,B, η)‖2 ≤ 2d5B2
(2,max)A

2
maxC

2D2(µ, ν(s))‖η‖22.

Proof. We use Gi(η) to denote Gi(A,B, η) in the proof. Without loss of generality assume

‖η‖2 = 1. Note that all the integral functions of Gi(η) or Ĝi(η) are matrices of polynomials

in s. Thus, we only need to bound its coefficients.

Part 1: Bounding ‖G1(η)− Ĝ1(η)‖2. Note that

(G1)i,j =

∫
(
∑
t

η>Btst)
2
∑
t

Ai,tst
∑
t

Aj,tstdµ(s),

where the coefficient of the term st1st2st3st4 is η>Bt1η
>Bt2Ai,t3Aj,t4 , which is bounded by

maxi |η>Bi|2A2
max ≤ B2

(2,max)A
2
max. So,∣∣∣(G1)i,j − (Ĝ1)i,j

∣∣∣ ≤ d4B2
(2,max)A

2
maxD4(µ, ν(s)),

and thus

‖G1(η)− Ĝ1(η)‖2 ≤ d5B2
(2,max)A

2
maxD4(µ, ν(s)).

Part 2: Bounding ‖G2(η)− Ĝ2(η)‖2. Similarly,∣∣∣∣∫ Ai:ss
>A>j: dµ(s)−

∫
Ai:ss

>A>j: dν
(s)(s)

∣∣∣∣ ≤ d2A2
maxD2(µ, ν(s))

and ∣∣∣∣∫ (η>Bs)2 dµ(s)−
∫

(η>Bs)2 dν(s)(s)

∣∣∣∣ ≤ d2B2
(2,max)D2(µ, ν(s)).

Also note that
∣∣∫ (η>Bs)2 dµ(s)

∣∣ ≤ d2B2
(2,max)C

2, and
∣∣∫ Ai:ss>A>j: dν(s)(s)

∣∣ ≤ d2A2
maxC

2.

Now consider the difference between G2 and Ĝ2.∣∣∣(G2)i,j − (Ĝ2)i,j

∣∣∣
=

∣∣∣∣∫ (η>Bs)2 dµ(s)

∫
Ai:ss

>A>j: dµ(s)−
∫

(η>Bs)2 dν(s)(s)

∫
Ai:ss

>A>j: dν
(s)(s)

∣∣∣∣
≤
∣∣∣∣∫ (η>Bs)2 dµ(s)

∫
Ai:ss

>A>j: dµ(s)−
∫

(η>Bs)2 dµ(s)

∫
Ai:ss

>A>j: dν
(s)(s)

∣∣∣∣
+

∣∣∣∣∫ (η>Bs)2 dµ(s)

∫
Ai:ss

>A>j: dν
(s)(s)−

∫
(η>Bs)2 dν(s)(s)

∫
Ai:ss

>A>j: dν
(s)(s)

∣∣∣∣
≤
∣∣∣∣∫ (η>Bs)2 dµ(s)

∣∣∣∣ ∣∣∣∣∫ Ai:ss
>A>j: dµ(s)−

∫
Ai:ss

>A>j: dν
(s)(s)

∣∣∣∣
+

∣∣∣∣∫ (η>Bs)2 dµ(s)−
∫

(η>Bs)2 dν(s)(s)

∣∣∣∣ ∣∣∣∣∫ Ai:ss
>A>j: dν

(s)(s)

∣∣∣∣
≤ 2d4B2

(2,max)A
2
maxC

2D2(µ, ν(s)).
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Therefore,

‖G2(η)− Ĝ2(η)‖2 ≤ 2d5B2
(2,max)A

2
maxC

2D2(µ, ν(s)).

Part 3: Bounding ‖G3(η)− Ĝ3(η)‖2. By a calculation similar to Part 2,

‖G3(η)− Ĝ3(η)‖2 ≤ 2d5B2
(2,max)A

2
maxC

2D2(µ, ν(s)).

Lemma A.3.2. For any tuple (x,A, s, ε) such that x = As+ ε and any vector η,

‖∇2fAµ(η)−∇2fν(As)(η)‖2 ≤ ‖∇2fAµ(η)−∇2fν(As)(η)‖F ≤ ‖η‖22d5A2
(2,max)A

2
maxξ.

Thus,

‖∇2fAµ(η)−∇2f̂(η)‖2 ≤ ‖η‖22d5A2
(2,max)A

2
maxξ + P (‖η‖2).

Proof. Without loss of generality assume ‖η‖2 = 1. Recall that

∇2fAµ(η) = G1(A,A, η)−G2(A,A, η)− 2G3(A,A, η).

Similarly,

∇2fν(As)(η) = Ĝ1(A,A, η)− Ĝ2(A,A, η)− 2Ĝ3(A,A, η).

Applying Lemma A.3.1,

‖∇2fAµ(η)−∇2f̂ν(As)(η)‖2 ≤ ‖∇2fAµ(η)−∇2f̂ν(As)(η)‖F

≤ d5A2
(2,max)A

2
max

(
6C2D2(µ, ν(s)) +D4(µ, ν(s))

)
.

Lastly, combining with Proposition 2.3.2,

‖∇2fAµ(η)−∇2f̂(η)‖2

≤ ‖∇2fAµ(η)−∇2fν(As)(η)‖2 + ‖∇2fν(As)(η)−∇2f̂(η)‖2

≤ ‖η‖22d5A2
(2,max)A

2
maxξ + P (‖η‖2).

The next lemma shows that X̂−1 is close to X−1 with respect to matrix induced 2-norm.

Lemma A.3.3. Let X̂ be a non-singular matrix satisfying that X̂ = X+E and σmin(X) ≥

2‖E‖2. Then ‖X̂−1‖2 ≤ 2
σmin(X) , and ‖X̂−1 −X−1‖2 ≤ 2

σ2
min(X)

‖E‖2.

Proof. Note that ‖X̂−1‖2 is the inverse of the minimal singular value of X̂. Also,

min
v:‖v‖2=1

‖X̂v‖2 = min
v:‖v‖2=1

‖(X + E)v‖2 ≥ min
v:‖v‖2=1

‖Xv‖2 − ‖Ev‖2 ≥ σmin(X)− ‖E‖2.
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So ‖X̂−1‖2 ≤ 1
σmin(X)−‖E‖2 ≤

2
σmin(X) . Moreover,

‖X̂−1 −X−1‖2 ≤ ‖X−1‖2‖X̂−1‖2‖X̂ −X‖2 ≤
2

σ2
min(X)

‖E‖2.

Now we can estimate the variance between XY −1 and (X + E1)(Y + E2)−1.

Lemma A.3.4. Assume that σmin(Y ) ≥ 2‖E2‖2, then

‖XY −1 − (X + E1)(Y + E2)−1‖2 ≤
2‖X‖2
σ2

min(Y )
‖E2‖2 +

2

σmin(Y )
‖E1‖2.

Proof. Applying Lemma A.3.3,

‖XY −1 − (X + E1)(Y + E2)−1‖2

≤‖XY −1 −X(Y + E2)−1‖2 + ‖X(Y + E2)−1 − (X + E1)(Y + E2)−1‖2

≤‖X‖2‖Y −1 − (Y + E2)−1‖2 + ‖E1‖2‖(Y + E2)−1‖2

≤ 2‖X‖2
σ2

min(Y )
‖E2‖2 +

2

σmin(Y )
‖E1‖2.

Lemma A.3.5. On the event EAψ ,

σmax(∇2fAµ(ψ)) ≤ L2
highκmaxA

2
(2,max)σ

2
max; σmin(∇2fAµ(ψ)) ≥ L2

lowκminA
2
(2,min)σ

2
min.

Proof. LetDψ = diag
(
(ψ>A1)2, · · · , (ψ>Ad)2

)
. Note that by Proposition 2.3.1, ∇2fAµ(ψ) =

AKDψA
>. Since ∇2fAµ(ψ) is symmetric, it is sufficient to bound v>∇2fAµ(ψ)v for any

unit vector v, as follows.

v>ADψKA
>v ≥ L2

lowκminA
2
(2,min)‖v

>A‖22 ≥ L2
lowκminA

2
(2,min)σ

2
min.

Thus, σmin(∇2fAµ(ψ)) ≥ L2
lowκminA

2
(2,min)σ

2
min. A similar calculation shows the bound on

the maximum singular value.

A.4 Analysis of DICA – Proof of Theorem 2.2.1

Instead of Theorem 2.2.1, we prove a stronger result, Theorem A.4.1, which is presented

below. As we will see, Theorem 2.2.1 will be an immediate corollary of Theorem A.4.1.

Let

ξ̄ =
L2

highd
5A2

(2,max)A
2
maxξ + P (Lhigh)

L2
lowκminA2

(2,min)σ
2
min

;

ξ̂ =

√
6L2

highσ
2
max

A2
(2,min)L

2
low

ξ̄ +
16L2

highd
5A2

max

9κminA(2,min)L
2
low

ξ + P

(
4Lhigh

3κ
1/2
minA(2,min)σminLlow

)

Q̃ =
4L6

highσ
2
maxA

4
(2,max)

L6
lowσ

4
minA

2
(2,min)

ξ̂ .
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Theorem A.4.1. Assume that the following conditions hold:

C1: T̂ has distinct eigenvalues;

C2: γR > 4
σ2

max

σmin
Q̃;

C3: mini,j:i6=j ‖Ai −Aj‖2 > 8
γR

σ2
max

σmin
Q̃;

C4: ξ ≤ L2
lowκminA

2
(2,min)σ

2
min

6L2
highd

5A2
(2,max)

A2
maxL

2
high

;

C5: P (Lhigh) ≤ 1
6L

2
lowκminA

2
(2,min)σ

2
min;

C6: ξ̂ ≤ σ2
minL

2
low

2L2
uA

2
(2,max)

.

Then on the event EAψ ∩ E R̃φ1
∩ E R̃φ2

,

d(Â, A) ≤ 4σ2
max

γRσmin
Q̃,

where Â is the output of the DICA algorithm.

The proof of Theorem A.4.1 is similar to the proof of Theorem 2.3.2. We will still first

bound the difference between M and M̂ , and then apply Lemma 2.3.7 to get the conclusion.

Again we postpone the technical lemmas in the latter part of this section.

Proof of Theorem A.4.1. We prove in Lemma A.4.6 that

‖M̂ −M‖2 ≤ Q̃.

Then by Lemma 2.3.7,

d(Â, A) ≤ 4σ2
max

γRσmin
‖M̂ −M‖2.

To finish the proof of Theorem 2.2.1, it remains to pick Llow and Lhigh, such that

Prob(EAψ ∩ E R̃φ1
∩ E R̃φ2

) ≥ 1− δ. Next lemma provides such result, whose proof is deferred to

Section A.6:

Lemma A.4.1. For any A and orthonormal matrix R, with probability at least 1 − δ, the

following inequalities holds simultaneously:

• mini |ψ>Ai| ≥
√
πA(2,min)

5
√

2(d+1)
δ;

• mini{|φ>2 Ri|} ≥
√
π

5
√

2(d+1)
δ;

• ‖φ1‖2, ‖φ2‖2 ≤
√

2
(√

log( 5
δ ) +

√
d
)

;

• γR ≥ π2δ2

25d3 .

Remark A.4.2. Note that all the constants in Lemma A.4.1 are polynomial in d (or d−1 for

the lower bound), thus the result of Theorem A.4.1 is polynomial in d and 1
δ with probability

at least 1− δ.
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A.4.1 Technical lemmas

This section is to prove that

‖M̂ −M‖2 ≤ Q̃.

Given a vector ψ, for any distribution ν, let B(ν) =
(
∇2fν(ψ)

)
, T (ν, φ) = ∇2fν(B−1(ν)φ),

and M(ν) = T (ν, φ1)T (ν, φ2)−1. Then M = M(Aµ) and M̂ = M(ν(x)). Thus, to bound

‖M̂ − M‖2 we study ν 7→ M(ν) in this section with ν = Aµ for some µ ∈ Π0. By

Proposition 2.3.1, ∇2fAµ(ψ) = AKDψA
>. Thus B = AK1/2D

1/2
ψ R> for some orthonormal

matrix R. We need to first introduce some lemmas. The next two lemmas show that B̂ is

a good estimate of B, in the sense that B̂−1B is close to some orthonormal matrix. This

result depends on the stability of the map X 7→ X1/2.

Lemma A.4.3. Given two symmetric positive semi-definite matrices X and X̂ = X + E,

where X = HH> and X̂ = ĤĤ>, such that ‖X−1‖2‖E‖2 < 1, then every singular value

of H−1Ĥ is bounded between
√

1− ‖X−1‖2‖E‖2 and
√

1 + ‖X−1‖2‖E‖2. Taking inverses,

it also follows that every singular value of Ĥ−1H is bounded between 1√
1+‖X−1‖2‖E‖2

and

1√
1−‖X−1‖2‖E‖2

.

Proof. For any unit vector x,

x>
(
H−1ĤĤ>H−> − I

)
x = x>H−1

(
ĤĤ> −HH>

)
H−>x

≤ ‖H−>x‖22‖E‖2 ≤ ‖X−1‖2‖E‖2.

Thus every singular value of H−1Ĥ is lower bounded by
√

1− ‖X−1‖2‖E‖2 and upper

bounded by
√

1 + ‖X−1‖2‖E‖2, and every singular value of Ĥ−1H is bounded between

1√
1+‖X−1‖2‖E‖2

and 1√
1−‖X−1‖2‖E‖2

.

Applying Lemma A.4.3, we can get the stability of B, as follows.

Lemma A.4.4. Assuming Condition (4) and (5) , under the event EAψ there exists an

orthonormal matrix R∗ such that√
1− ξ̄ ≤ ‖B−1B̂‖2 ≤

√
1 + ξ̄, and ‖B̂−1B −R∗‖2 ≤ ξ̄.

Proof. Note that by Lemma A.3.5, under the event EAψ ,

‖∇2fAµ(ψ)‖2 ≥ l2l κminA
2
(2,min)σ

2
min.

Moreover, by Lemma A.3.2, on event EAψ ,

‖∇2fAµ(ψ)−∇2f̂(ψ)‖2 ≤ L2
highd

5A2
(2,max)A

2
maxξ + P (Lhigh).

Thus,

‖
(
∇2fAµ(ψ)

)−1 ‖2‖∇2fAµ(ψ)−∇2f̂(ψ)‖2 ≤
L2

highd
5A2

(2,max)A
2
maxξ + P (Lhigh)

l2l κminA2
(2,min)σ

2
min

= ξ̄.
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Note that by Condition (5), ξ̄ ≤ 1/3. Thus we can apply Lemma A.4.3 to get that every

singular value of B̂−1B belongs to the interval 1√
1 + ‖ (∇2fAµ(ψ))

−1 ‖2‖E‖2
,

1√
1− ‖ (∇2fAµ(ψ))

−1 ‖2‖E‖2

 ⊂ [ 1√
1 + ξ̄

,
1√

1− ξ̄

]
.

Therefore, there exist an orthonormal matrix R∗ such that

‖B̂−1B −R∗‖2 ≤ max

{∣∣∣∣∣1− 1√
1 + ξ̄

∣∣∣∣∣ ,
∣∣∣∣∣ 1√

1− ξ̄
− 1

∣∣∣∣∣
}
≤ ξ̄,

where the last inequality is by 0 ≤ ξ̄ ≤ 1/3.

By renaming φi to (R∗)>φi where R∗ is the orthonormal matrix from Lemma A.4.4,

recall that Ti = ∇2fAµ(B−>R∗>φi) = AD−1
ψ ΛiA

> for i ∈ {1, 2}, where

Λi = diag
(
(φ>i R

∗R1)2, · · · , (φ>i R∗Rd)2
)
.

Then,

M = AΛ1Λ−1
2 A−1 = AΛA−1, (A.13)

where Λ = diag
(

(
φ>1 R

∗R1

φ>2 R
∗R1

)2, · · · , (φ
>
1 R
∗Rd

φ>2 R
∗Rd

)2
)

. It still remains to bound the perturbation of

M . We let R̃ = R∗R to be the orthonormal matrix that appears in the event ER̃φ .

Lemma A.4.5. Assuming that Condition (4) and (5) hold. Then on the event EAψ ∩ E R̃φ ,

‖∇2fAµ(B−>R∗>φ)−∇2f̂(B̂−>φ)‖2 ≤ ξ̂.

Proof. By triangular inequality,

‖∇2fAµ(B−>R∗>φ)−∇2f̂(B̂−>φ)‖2

≤ ‖∇2fAµ(B−>R∗>φ)−∇2fν(As)(B̂−>φ)‖2 + ‖∇2fν(As)(B̂−>φ)−∇2f̂(B̂−>φ)‖2

≤ ‖∇2fAµ(B−>R∗>φ)−∇2fAµ(B̂−>φ)‖2 + ‖∇2fAµ(B̂−>φ)−∇2fν(As)(B̂−>φ)‖2

+ ‖∇2fν(As)(B̂−>φ)−∇2f̂(B̂−>φ)‖2

Part 1: To bound ‖∇2fAµ(B−>R∗>φ)−∇2fAµ(B̂−>φ)‖2, note that on the event EAψ ∩E R̃φ ,

‖∇2fAµ(B−>R∗>φi)−∇2fAµ(B̂−>φi)‖2

= ‖AD−1
ψ ΛiA

> −AD−1
ψ Λ̂iA

>‖2 ≤ ‖A‖22‖D−1
ψ ‖2‖Λi − Λ̂i‖2,

where Λ̂i = diag
(

(φ>i B̂
−1BR1)2, · · · , (φ>i B̂−1BRd)

2
)

. Note that Λi − Λ̂i is diagonal, and

the absolute value of its diagonal element |(φiB̂−1BRj)
2− (φiR

∗Rj)
2| for 1 ≤ j ≤ d can be

bounded as follows.

|(φiB̂−1BRj)
2 − (φiR

∗Rj)
2| ≤ |(φiB̂−1BRj) + (φiR

∗Rj)||(φiB̂−1BRj)− (φiR
∗Rj)|

≤ 2‖φi‖2
(
‖B̂−1B‖2 + 1

)
‖φi‖2‖B̂−1B −R∗‖2

≤ 2L2
highξ̄/

√
1− ξ̄,
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where the last inequality is due to Lemma A.4.4. Hence,

‖A‖22‖D−1
ψ ‖2‖Λi − Λ̂i‖2 ≤ 2

σ2
max

L2
lowA

2
(2,min)

L2
highξ̄√
1− ξ̄

.

Thus,

‖∇2fAµ(B−>R∗>φ)−∇2fAµ(B̂−>φ)‖2 ≤
√

6L2
highσ

2
max

A2
(2,min)L

2
low

ξ̄. (A.14)

Part 2: To bound ‖∇2fAµ(B̂−>φ)−∇2fν(As)(B̂−>φ)‖2, note that

∇2fAµ(B̂−>φ) = G1(A, B̂−1A, φ)−G2(A, B̂−1A, φ)− 2G3(A, B̂−1A, φ),

and

∇2fν(As)(B̂−>φ) = Ĝ1(A, B̂−1A, φ)− Ĝ2(A, B̂−1A, φ)− 2Ĝ3(A, B̂−1A, φ).

Also,

‖B̂−1A‖2 ≤‖B̂−1B‖2‖B−1A‖2 = ‖B̂−1B‖2‖R>K−1/2D
−1/2
ψ ‖2

≤ 1 + ξ̄

κ
1/2
minA(2,min)Llow

≤ 4

3κ
1/2
minA(2,min)Llow

.

Thus, by Lemma A.3.1,

‖∇2fAµ(B̂−>φ)−∇2fν(As)(B̂−>φ)‖2 ≤
16L2

highd
5A2

max

9κminA2
(2,min)L

2
low

ξ. (A.15)

Part 3: It remains to bound the last term. Again note that on the event EAψ ∩ E R̃φ ,

‖B̂−>φ‖2 ≤ 4Lhigh

3κ
1/2
minA(2,min)σminLlow

. Thus by Proposition 2.3.2,

‖∇2fν(As)(B̂−>φ)−∇2f̂(B̂−>φ)‖2 ≤ P

(
4Lhigh

3κ
1/2
minA(2,min)σminLlow

)
. (A.16)

Therefore, combining Eqs. (A.14) to (A.16),

‖∇2fµ(B−>R∗>φ)−∇2f̂(B̂−>φ)‖2

≤
√

6L2
highσ

2
max

A2
(2,min)L

2
low

ξ̄ +
16L2

highd
5A2

max

9κminA2
(2,min)L

2
low

ξ + P

(
4Lhigh

3κ
1/2
minA(2,min)σminLlow

)
= ξ̂.

Lemma A.4.6. Assuming that Condition (4), (5), and (6) hold, on the event EAψ ∩E R̃φ1
∩E R̃φ2

,

‖M − M̂‖2 ≤
4L4

highκ
1/2
maxA4

(2,max)

L5
lowκminA5

(2,min)

ξ̂ = Q̃.

Proof. Recall Ti = AD−1
ψ ΛiA

> for i ∈ {1, 2}. On the event EAψ ∩ E R̃φ1
∩ E R̃φ2

,

σmin(T2) ≥ σ2
minL

2
low

L2
uA

2
(2,max)

; σmax(T2) ≤
L2

highσ
2
max

`2lA
2
(2,min)

; σmax(T1) ≤
L2

highσ
2
max

`2lA
2
(2,min)

.

44



Let Ei = ∇2fAµ(B−>R∗>φi) − ∇2f̂(B̂−>φi) for i ∈ {1, 2}. By Condition 6, σmin(T2) ≥

2‖E2‖2. Then by Lemma A.4.5 and Lemma A.3.4,

‖M − M̂‖2 ≤
2‖T1‖2
σ2

min(T2)
‖E2‖2 +

2

σmin(T2)
‖E1‖2

≤
4L6

highσ
2
maxA

4
(2,max)

L6
lowσ

4
minA

2
(2,min)

ξ̂ = Q̃.

.

A.5 Proof of Theorem 2.4.1

Let

ξrecur =

4P

( √
4Lhigh√

3κ
1/2
minA(2,min)σminLlow

)
3κminA2

(2,min)σ
2
min`

2
l

+
L2

highd
5

κ2
minA

4
(2,min)`

4
l

ξ

+ 3ξ̄

(
L2

highd
5

κ2
minA

4
(2,min)`

4
l

ξ +
L2

high

A4
(2,min)L

4
low

)
;

Qrecur =
L10

highA
8
(2,max)

A4
(2,min)L

8
low

ξrecur.

In Section A.5.1, we will prove that

‖M − M̂‖2 ≤ Qrecur. (*)

We now follow the idea of Vempala and Xiao [2014] to analyze the error accumulation of the

recursion. Recall that M = R̄ΛR̄>, where R̄ = R∗R is an orthonormal matrix. Assume we

have computed a m-dimensional subspace in a recursion of depth k − 1 whose orthonormal

projection matrix is V (k−1) ∈ Rd×m, such that there exists m columns of R̄ (WLOG assume

these are 1, . . . ,m.) satisfying

sin
(

Θ
(
V (k−1), R̄1:m

))
≤ Ek−1,

where R̄1:m is the first m columns of R̄ and Ek−1 is a error upper bound for depth k − 1

recursion. Then,

V (k−1)>MV (k−1) =
(
V (k−1)>R̄1:m, V

(k−1)>R̄m+1:d

)
Λ

(
R̄>1:mV

(k−1)

R̄>m+1:dV
(k−1)

)
= V (k−1)>R̄1:mΛ1:mR̄

>
1:mV

(k−1) + V (k−1)>R̄m+1:dΛm+1:dR̄
>
m+1:dV

(k−1),

where Λ1:m and Λm+1:d are the first m×m and last (d−m)× (d−m) submatrices of the

diagonal matrix Λ.

Recall that the diagonal elements of Λ are squares of Cauchy random variables. The

following proposition lower bounds the maximal spacing of i.i.d. Cauchy random variables,

whose proof is deferred to Section A.6:

45



Proposition A.5.1. Assuming that Z1, . . . , Zd are i.i.d. Cauchy random variables, then

with probability at least 1− 2δ,

max
i

min
j 6=i
|Z2
i − Z2

j | ≥
δ

2

(
δ

d

)1/(d−1)

.

Also, with probability at least 1− δ,

max
i
|Zi| ≤

3(d+ 1)

πδ
.

Denote the event of Proposition A.5.1 as EZ . Therefore, by Proposition A.5.1, with

probability at least 1− 3δ, the error of V (k−1)>R̄1:mΛ1:mR̄
>
1:mV

(k−1) is

‖V (k−1)>M̂V (k−1) − V (k−1)>R̄1:mΛ1:mR̄
>
1:mV

(k−1)‖2

≤ ‖V (k−1)>M̂V (k−1) − V (k−1)>MV (k−1)‖2

+ ‖V (k−1)>MV (k−1) − V (k−1)>R̄1:mΛ1:mR̄
>
1:mV

(k−1)‖2

= ‖V (k−1)>M̂V (k−1) − V (k−1)>MV (k−1)‖2 + ‖V (k−1)>R̄m+1:dΛm+1:dR̄
>
m+1:dV

(k−1)‖2

≤ Qrecur + E2
k−1

9(d+ 1)2

π2δ2
.

Now, by Proposition A.5.1 with probability at least 1 − 2δ the maximal spacing of the

diagonal elements of Λ1:m satisfy

max
i

min
j 6=i
|Z2
i − Z2

j | ≥
δ

2

(
δ

d

)1/(d−1)

≥ δ2

2d
.

Now consider the error after the eigen-decomposition of V (k−1)>M̂V (k−1). Assume the

maximal gap in Λ1:m divides Λ1:m into Λ1:t and Λt+1:m. Let E = V (k−1)>M̂V (k−1) −

V (k−1)>R̄1:mΛ1:mR̄
>
1:mV

(k−1), and

(R̄>1:tV
(k−1), R̄>t+1:mV

(k−1))>E(V (k−1)>R̄1:t, V
(k−1)>R̄t+1:m) =

(
F1 F2

F3 F4

)
.

It is easy to see that if δ2

2d ≥ 4‖E‖2, then the conditions of Theorem 2.8 in Chapter V,

[Stewart and Sun, 1990] are satisfied. Thus,

Ek ≤
4
δ2

2d

(
Qrecur + E2

k−1

9(d+ 1)2

π2δ2

)
=

8dQrecur

δ2
+

72d(d+ 1)2

π2δ4
E2
k−1.

Vempala and Xiao [2014] gave the following proposition.

Proposition A.5.2 ( [Vempala and Xiao, 2014], V.1). Fix a, b > 0 where 4a/b2 ≤ 1, and

define the recurrence yi+1 = a+ (yi/b)
2 and yi = 0. Then yi ≤ 2a for all i.

Using this proposition on {Ek}, given that Qrecur ≤ π2δ6

576d2(d+1)2 , for 0 ≤ k ≤ d, we have

Ek ≤
16d

δ2
Qrecur.
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Thus Line 6 in Algorithm 4 returns a matrix R̂ s.t.

‖R̂−R∗R‖2 = 2− 2 cos(Θ) = 2− 2

√
1− sin2(Θ) ≤ 2− 2

√
1− 256d2

δ4
Q2

recur .

Therefore,

‖B̂R̂−AD1/2
φ K1/2‖2 = ‖B̂R̂−AD1/2

φ K1/2R>R∗>R∗R‖2

≤ ‖B̂R̂− B̂R∗R‖2 + ‖B̂R∗R−AD1/2
φ K1/2R>R∗>R∗R‖2

≤ ‖B‖2‖B−1B̂‖2‖R̂−R∗R‖2 + ‖B̂ −AD1/2
φ K1/2R>R∗>‖2

≤ ‖B‖2‖B−1B̂‖2‖R̂−R∗R‖2 + ‖B‖2‖B−1B̂ −R∗>‖2.

By Lemma A.6.1, ‖B‖2 ≤ σmaxLhighA(2,max)κ
1/2
max, and by Lemma A.4.4, ‖B−1B̂‖2 ≤

(1 + ξ̄)1/2. Also, given that ξ̄ ≤ 1/2, by Lemma A.3.3, ‖B−1B̂ − R∗>‖2 ≤ 2ξ̄. Adding all

the terms together,

‖B̂R̂−AD1/2
φ K1/2‖2

≤ σmaxLhighA(2,max)κ
1/2
max

(
(1 + ξ̄)1/2

(
2− 2

√
1− 256d2

δ4
Q2

recur

)
+ 2ξ̄

)
.

Note that for a small enough ε,
√

1− ε ≥ 1− 2ε
3 . Thus, if Qrecur is small enough,

‖B̂R̂−AD1/2
φ K1/2‖2 ≤σmaxLhighA(2,max)κ

1/2
max

(
(1 + ξ̄)1/2 512d2

3δ4
Q2

recur + 2ξ̄

)
≤C(µ)

(
K2(µ) +K(µ)

)
,

where K(µ) = D4(ν(s), µ) +Q(ν(ε)) +D
(d,d)
4 (ν(As,ε)) +N(ν(ε)) +N(ν(s)).

It remains to bound the probability that the above result holds. We need event EAψ to be

satisfied once, and ER̃φ and EZ for at most d times (we ignore the log d factor here). Thus,

given the conditions of Theorem 2.2.1, with probability 1−7dδ, the above error bound holds.

A.5.1 Technical lemmas

This section is to prove that in Algorithm 4,

‖MP − M̂P ‖2 ≤ Qrecur,

by proving that ‖M − M̂‖2 ≤ Qrecur, and thus ‖MP − M̂P ‖2 ≤ ‖M − M̂‖2 ≤ Qrecur.

Let Ã = B̂−1A. Thus, ŷ = B̂−1x = Ãs+ B̂−1ε. We start with bounding ‖∇2fν(ŷ)(φ)−

∇2fB−1Aµ(φ)‖2. Then applying Lemma A.3.4 will lead to a bound on ‖M − M̂‖2. Note

that

‖∇2fν(ŷ)(φ)−∇2fR∗B−1Aµ(φ)‖2 ≤ ‖∇2fν(x̂)(φ)−∇2fν(Ãs)(φ)‖2

+ ‖∇2fν(Ãs)(φ)−∇2fν(R∗B−1As)(φ)‖2 + ‖∇2fν(R∗B−1As)(φ)−∇2fR∗B−1Aµ(φ)‖2
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Part 1: Bounding ‖∇2fν(x̂)(φ)−∇2fν(Ãs)(φ)‖2.

Note that for any unit vector v, by some calculation, we have

v>∇2fν(x̂)(φ)v = (v>B̂−1)∇2fν(x)(B̂−>φ)B̂−>v,

and

v>∇2fν(Ãs)(φ)v = (v>B̂−1)∇2fν(As)(B̂−>φ)B̂−>v.

Thus

‖∇2fν(x̂)(φ)−∇2fν(Ãs)(φ)‖2 ≤ ‖B̂−1‖22‖∇2fν(x)(B̂−>φ)−∇2fν(As)(B̂−>φ)‖2

≤ ‖B̂−1‖22P
(
‖B̂−>φ‖2

)
≤ 4

3κminA2
(2,min)σ

2
min`

2
l

P

( √
4‖φ‖2√

3κ
1/2
minA(2,min)σminLlow

)
,

(A.17)

where the second inequality is by Proposition 2.3.2, and the last inequality is due to

that on the event EAψ , ‖B̂−1‖2 ≤ ‖B̂−1B‖2‖B−1‖2 ≤
√

4/
(√

3κ
1/2
minA(2,min)σminLlow

)
, and

‖B̂−>φ‖2 ≤ ‖B̂−>‖2‖φ‖2.

Part 2: to bound ‖∇2fν(R∗B−1As)(φ)−∇2fR∗B−1Aµ(φ)‖2.

Note that R∗B−1A = R∗R>K−1/2D
−1/2
ψ , thus σmax(R∗B−1A) ≤ 1/

(
κ

1/2
minA(2,min)Llow

)
on

the event EAψ . Hence, by Lemma A.3.2,

‖∇2fν(R∗B−1As)(φ)−∇2fR∗B−1Aµ(φ)‖2 ≤
‖φ‖22d5

κ2
minA

4
(2,min)`

4
l

ξ. (A.18)

Part 3: to bound ‖∇2fν(Ãs)(φ)−∇2fν(R∗B−1As)(φ)‖2.

Again for any unit vector v, v>∇2fν(Ãs)(φ)v and v>∇2fν(B−1As)(φ)v are both achieved by

marginalizing 4th order tensors. Further, note that ‖B̂−1B‖2 ≤
√

1 + ξ̄. Thus

‖∇2fν(Ãs)(φ)−∇2fν(B−1As)(φ)‖2 = ‖∇2fν(B̂−1BB−1As)(φ)−∇2fν(R∗B−1As)(φ)‖2

≤
(
(1 + ξ̄)2 − 1

)
‖∇2fν(R∗B−1As)(φ)‖2

≤ 3ξ̄‖∇2fν(R∗B−1As)(φ)‖2.

Lastly, note that

∇2fR∗B−1Aµ(φ) = R∗R>D−2
ψ ΛφRR

∗>,

where Λφ = diag
(
(φ>R∗R>1 )2, · · · , (φ>R∗R>d )2

)
. Thus on the event EAψ ∩ EAφ

‖∇2fR∗B−1Aµ(φ)‖2 = ‖R∗R>D−2
ψ ΛφRR

∗>‖2 ≤
L2

high

A4
(2,min)L

4
low

.

and

‖∇2fν(R∗B−1As)(φ)‖2 = ‖∇2fν(R∗B−1As)(φ)−∇2fR∗B−1Aµ(φ)‖2 + ‖∇2fR∗B−1Aµ(φ)‖2

≤
L2

highd
5

κ2
minA

4
(2,min)`

4
l

ξ +
L2

high

A4
(2,min)L

4
low

.
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Therefore,

‖∇2fν(Ãs)(φ)−∇2fν(B−1As)(φ)‖2

≤ 3ξ̄‖∇2fν(R∗B−1As)(φ)‖2 ≤ 3ξ̄

(
L2

highd
5

κ2
minA

4
(2,min)`

4
l

ξ +
L2

high

A4
(2,min)L

4
low

)
. (A.19)

Combining Eqs. (A.17) to (A.19), we have that on the event EAψ ∩ EAφ ,

‖∇2fν(ŷ)(φ)−∇2fR∗B−1Aµ(φ)‖2

≤ 4

3κminA2
(2,min)σ

2
min`

2
l

P

( √
4Lhigh√

3κ
1/2
minA(2,min)σminLlow

)
+

L2
highd

5

κ2
minA

4
(2,min)`

4
l

ξ

+ 3ξ̄

(
L2

highd
5

κ2
minA

4
(2,min)`

4
l

ξ +
L2

high

A4
(2,min)L

4
low

)
= ξ̃.

Finally, on the event EAψ ∩ E R̃φ1
∩ E R̃φ2

, for i ∈ {1, 2},

σmax

(
∇2fR∗B−1Aµ(φi)

)
≤

L2
high

A4
(2,min)L

4
low

; σmin

(
∇2fR∗B−1Aµ(φi)

)
≥ L2

low

A4
(2,max)L

4
high

.

Thus, by Lemma A.3.4,

‖M − M̂‖2 ≤
4L10

highA
8
(2,max)

A4
(2,min)L

8
low

ξrecur = Qrecur.

A.6 Proofs of Proposition 2.4.2, Lemma A.4.1, and Propo-
sition A.5.1

Proposition 2.4.2. With probability at least 1− δ,

γR ≥
π2δ2

d3
.

Proof of Proposition 2.4.2. Recall that Zi’s are independent Cauchy random variables. With

no loss of generality assume both Zi and Zj are positive. Then,

γR = min
i6=j

∣∣Z2
i − Z2

j

∣∣
= min

i6=j
|Zi − Zi| |Zi + Zi|

≥2 min
i
|Zi|min

i6=j
|Zi − Zj | .

We will first bound mini |Zi|. Recall that for t ∈ [0,∞],

P (|Z| ≥ t) = 1− 2

∫ t

0

1

π(1 + x2)
dx ≥ 1− 2t

π
.

Thus,

P
(

min
i
|Zi| ≥ t

)
≥ 1− 2dt

π
.

Picking t = πδ
2d ,

P
(

min
i
|Zi| ≥ t

)
≥ 1− δ.
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To bound mini6=j |Zi − Zj |, note that for k 6= j, Zk − Zj ∼ Cauchy(0, 2). Thus

P (|Zk − Zj | ≤ `) = P (|Zk − Zj |/2 ≤ `/2) = 2

∫ `/2

0

1

π(1 + x2)
dx ≤ `

π
.

Therefore,

P
(

min
i6=j
|Zi − Zj | ≥ `

)
≥ 1− d(d− 1)

2

`

π
. (A.20)

Picking ` = 2πδ
d2 , we have

P
(

min
i6=j
|Zi − Zj | ≥ `

)
≥ 1− δ.

Therefore, with probability at least 1 − 2δ,

γR ≥
π2δ2

d3
.

Lemma A.6.1. With probability at least
(
1− `

d

)
exp(−`) − exp(−x), EAψ holds, where

Lhigh =
√

2x+
√

2d.

Proof of Lemma A.6.1. For a fixed constant Llow ≤ A(2,max), note that {ψ : mini{|ψ>Ai|} ≥

A(2,min)Llow} is equivalent to ∩iGi, where Gi is the set defined as {x : x>Ai ≥ A(2,min)Llow}.

Let Vi = Ai/‖Ai‖2, then Gi ⊃ G′i = {x : x>Vi ≥ Llow} holds for any i.

Now we consider P (∩iG′i). This probability is minimized when Vis are orthogonal to

each other. Thus, for any orthonormal matrix R, define G′′i = {x : x>Ri ≥ Llow}. Then

P (∩iG′i) ≥ P (∩iG′′i ) = P
(
|ψ>R| ≥ Llow

)
= P (|ψ| ≥ Llow) .

Note that P (|X| ≥ Llow) ≥ 1−
√

2Llow√
π

for X ∼ N(0, 1). Thus, picking Llow =
√
π√
2d
` for any

0 ≤ ` ≤ 1,

P (|ψ| ≥ Llow) ≥ (1−
√

2Llow√
π

)d = (1− `

d
)d =

(
1− `

d

)(
1− `

d

)d−1

≥
(

1− `

d

)
exp(−`).

(A.21)

On the other hand, note that P (‖ψ‖2 ≤ Lhigh) = P
(
X ≤ L2

high

)
where X ∼ χd. Thus, by

Lemma 1 of Laurent and Massart [2000], picking

x =

(√
2

2
Lhigh −

√
d

)2

,

then L2
high ≥ d+ 2

√
dx+ 2x, and

P (‖ψ‖2 ≤ Lhigh) = 1− P
(
X ≥ L2

high

)
≥ 1− P

(
X − d ≥ 2

√
dx+ 2x

)
≥ 1− exp(−x) .

(A.22)

Therefore,

P
(
EAψ
)
≥ (1− exp(−x)) +

(
1− `

d

)
exp(−`)− 1 =

(
1− `

d

)
exp(−`)− exp(−x) . (A.23)
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Lemma A.4.1. For any A and orthonormal matrix R, with probability at least 1 − δ, the

following inequalities holds simultaneously:

• mini |ψ>Ai| ≥
√
πA(2,min)

5
√

2(d+1)
δ;

• mini{|φ>2 Ri|} ≥
√
π

5
√

2(d+1)
δ;

• ‖φ1‖2, ‖φ2‖2 ≤
√

2
(√

log( 5
δ ) +

√
d
)

;

• γR ≥ π2δ2

25d3 .

Proof of Lemma A.4.1. Denote the event defined by the inequalities by E . Note that for

0 ≤ ` ≤ 1, (
1− `

d

)
exp(−`) ≥ 1− d+ 1

d
`.

Combining Proposition 2.4.2 and Lemma A.6.1, given that 0 ≤ ` ≤ 1, we get

P (E) ≥ P
(
EAψ
)

+ P (EZ) + P
(
ERφ
)
− 2 ≥ 1− δ

5
− 2

d+ 1

d
`− 2 exp(−x)

Now choose ` = d
d+1

δ
5 and x = log( 5

δ ). Then, with probability 1 − δ,

• mini |ψ>Ai| ≥
√
πA(2,min)

5
√

2(d+1)
δ;

• mini{|φ>2 Ri|} ≥
√
π

5
√

2(d+1)
δ;

• ‖φ1‖2, ‖φ2‖2 ≤
√

2
(√

log( 5
δ ) +

√
d
)

;

• γR ≥ π2δ2

25d3 .

Proposition A.5.1. Assuming that Z1, . . . , Zd are i.i.d. Cauchy random variables, then

with probability at least 1− 2δ,

max
i

min
j 6=i
|Z2
i − Z2

j | ≥
δ

2

(
δ

d

)1/(d−1)

.

Also, with probability at least 1− δ,

max
i
|Zi| ≤

3(d+ 1)

πδ
.

Proof of Proposition A.5.1. Let Z(1) ≤ . . . ≤ Z(d) denote the order statistics of Zi. WLOG,

we fold the negative part of the Cauchy distribution to its positive part, leading to a density

function pZ(z) = 2
π(1+z2) for 0 ≤ z. Note that

max
i

min
i6=j
|Z2
i − Z2

j | ≥ |Z2
(d) − Z

2
(d−1)| ≥ 2Z(d−1)

(
Z(d) − Z(d−1)

)
.

We will bound both terms on the RHS.

To bound, Z(d−1), recall that for a folded Cauchy random variable Z,

P (Z ≤ L) ≤ 2L

π
.
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Therefore,

P
(
Z(d−1) ≥ L

)
≥ 1− dP (Z ≤ L)

d−1 ≥ 1− d
(

2L

π

)d−1

.

Picking L = π
2

(
δ
d

)1/(d−1)
, we have P

(
Z(d−1) ≥ L

)
≥ 1− δ. Thus, with probability at least

1− δ,

Z(d−1) ≥
π

2

(
δ

d

)1/(d−1)

.

On the other hand, let U(1), . . . , U(d) denote the order statistics of d i.i.d random vari-

ables from the Uniform(0,1) distribution, and E(1), . . . , E(d) denote the order statistics from

the exponential distribution with density function pE(x) = πe−πx. We will bound the

probability of Z(d) − Z(d−1) ≥ L by E(d) − E(d−1) ≥ L.

First, by the Quantile Transformation Theorem [DasGupta, 2011], the joint distribution

of (FC(Z(1)), . . . , FC(Z(d))) has the distribution of (U(1), . . . , U(d)). So is the distribution of

(FE(E(1)), . . . , FE(E(d))). Here FC(·) and FE(·) are the c.d.f. of the folded Cauchy distri-

bution and the exponential distribution with parameter π. Recall that FC(t) = 2
π arctan(t)

and FE(t) = 1− e−πt. Therefore,

P
(
Z(d) − Z(d−1) ≥ t

)
= P

(
tan

(π
2
U(d)

)
− tan

(π
2
U(d−1)

)
≥ t
)
,

and

P
(
E(d) − E(d−1) ≥ t

)
= P

(
1

π

(
log

1

1− U(d)
− log

1

1− U(d−1)

)
≥ t
)
.

To bound P
(
Z(d) − Z(d−1) ≥ t

)
by P

(
E(d) − E(d−1) ≥ t

)
, it suffices to prove

tan
(π

2
U(d)

)
− tan

(π
2
U(d−1)

)
≥ log

1

1− U(d)
− log

1

1− U(d−1)
.

Let f(x) = tan
(
π
2x
)
− tan

(
π
2U(d−1)

)
, and g(x) = log 1

1−x − log 1
1−U(d−1)

for 1 ≥ x ≥

U(d−1) ≥ 0. Clearly, f(U(d−1)) = g(U(d−1)). Taking the derivative of both functions, by

simple algebra, f ′(x) ≥ g′(x). Therefore,

P
(
Z(d) − Z(d−1) ≥ t

)
≥ P

(
E(d) − E(d−1) ≥ t

)
= e−πt ≥ 1− πt.

Thus, with probability at least 1−δ, Z(d)−Z(d−1) ≥ δ
π . Therefore, with probability at least

1− 2δ,

max
i

min
j 6=i
|Z2
i − Z2

j | ≥
δ

2

(
δ

d

)1/(d−1)

.

Lastly, for a Cauchy random variable Z, P
(
|Z| ≤ 3L

π

)
= 2

π arctan( 3L
π ). Note that for

L ≥ π,

tan(
π

2
− π

2L
) ≤ 1

cos(π2 −
π

2L )
≤ 1

sin( π
2L )
≤ 1

π
2L −

(
π

2L

)3 ≤ 2L

π

1

1−
(
π

2L

)2 ≤ 3L

π
.

Thus,

P
(
|Z| ≤ 3L

π

)
≥ 1− 1

L
.
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Therefore, for L ≥ d,(
1− 1

L

)d
=

(
1− d/L

d

)d
≥
(

1− d/L

d

)
exp(−d/L) ≥ 1− d+ 1

d

d

L
= 1− d+ 1

L
.

Picking L = d+1
δ , the probability that maxi |Zi| ≤ 3L

π is at least 1− δ.
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Chapter 3

Generalized Partially Linear
Model

In Chapter 2, we presented an instance-dependent analysis of the task of independent com-

ponent analysis in the unsupervised learning setting. In this chapter we will present our

first demonstration in the setting of supervised learning. In particular, we consider the

performance of arguably the most popular supervised learning algorithm, empirical risk

minimization (ERM), on the generalized partially linear model. We first investigate the

behaviour of ERM in the purely parametric case. Unexpectedly, we detect a potential

deficiency of ERM that in the worst case it suffers infinite expected error even on a sim-

ple least-square linear regression problem. We then further investigate the performance

of ERM on this model, and develop an instance-dependent high probability finite-sample

bound, which helps partially explain the success of ERM in practice. More importantly,

our results reveal a potential gap between two different evaluation criteria: an ‘in-sample’

generalization bound in the fixed design that is extensively studied in the statistics literature

may not imply an ‘out-of-sample’ bound in the random design.

One of the technical challenges in this chapter is that we allow the dependent variable Y

to be unbounded, and thus standard concentration inequalities can not be simply applied.

Our main tool will thus be a ratio-type concentration inequality due to van de Geer [2000].

This chapter is organized as follows: We introduce the problem setup and notations in

Section 3.2. In Section 3.3 we first investigate the behaviour of ERM on a least-square

linear regression problem. Section 3.4 is devoted to various assumptions required to develop

a high probability finite-sample bound. We also discuss the generality of these assumptions.

Before proving our main result, we first prove the boundedness of the predictor in Section

3.5. Our main result is a high probability bound for the generalization error in the random

design setting, which is presented in Section 3.6. We discuss our observations in Section 3.7.

Lastly, Section 3.8 concludes the chapter.

The results in this chapter have appeared in our AISTATS paper [Huang and Szepesvári,
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2014a,b].

3.1 Introduction

We consider finite-time risk bounds for empirical risk-minimization algorithms (ERM) for

partially linear models of the form

Yi = φ(Xi)
>θ + h(Xi) + εi, 1 ≤ i ≤ n, (3.1)

where Xi ∈ Rd is an input, Yi ∈ R is an observed, potentially unbounded response, εi is

random noise, φ is the known basis function, θ is an unknown, finite dimensional parameter

vector, and h is a nonparametric function component. Given (X1, Y1), . . . , (Xn, Yn), the

learning problem is concerned with the case when the (Xi, Yi) are sampled independently

from some underlying distribution and the goal is to find model “θ” and “h” to use Eq. (3.1)

to predict Y at X for arbitrary (X,Y ) sampled from the same distribution.

The most well-known example of this type of model in machine learning is the case of

Support Vector Machines (SVMs) with offset (in this case φ(x) ≡ 1). The general partially

linear stochastic model, which perhaps originates from the econometrics literature [e.g.,

Engle et al., 1986, Robinson, 1988, Stock, 1989, 1991], is a classic example of semiparametric

models that combine parametric (in this case φ(·)>θ) and nonparametric components (here

h) into a single model. The appeal of semiparametric models has been widely discussed

in statistics, machine learning, control theory and other branches of applied sciences [e.g.,

Bickel et al., 1998, Smola et al., 1998, Härdle et al., 2004, Gao, 2007, Kosorok, 2008, Greblicki

and Pawlak, 2008, Horowitz, 2009]. In a nutshell, whereas a purely parametric model gives

rise to the best accuracy if correct, it runs the risk of being misspecified. On the other hand,

a purely nonparametric model avoids the risk of model misspecification, therefore achieving

greater applicability and robustness, though at the price of the estimates perhaps converging

at a slower rate. Semiparametric models, by combining parametric and nonparametric

components into a single model, aim at achieving the best of both worlds. Another way of

looking at them is that they allow to add prior “structural” knowledge to a nonparametric

model, thus potentially significantly boosting the convergence rate when the prior is correct.

For a convincing demonstration of the potential advantages of semiparametric models, see,

e.g., the paper by Smola et al. [1998].

Despite all the interest in semiparametric modeling, to our surprise we were unable to

find any work that would have been concerned with the finite-time predictive performance

(i.e., risk) of semiparametric methods. Rather, existing theoretical works in semiparamet-

rics are concerned with discovering conditions and algorithms for constructing statistically

efficient estimators of the unknown parameters of the parametric part. This problem has

been more or less settled in the book of Bickel et al. [1998], where sufficient and necessary
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conditions are described along with recipes for constructing statistically efficient procedures.

Although statistical efficiency (which roughly means achieving the Cramer-Rao lower bound

as the sample size increases indefinitely) is of major interest, statistical efficiency does not

give rise to finite-time bounds on the excess risk, the primary quantity of interest in machine

learning. Here, we make the first initial steps to provide these missing bounds. Surprisingly

a perfectly innocent-looking problem exists in the purely parametric case which makes ordi-

nary least squares fail. This observation then suggests a question, as to what extent ERM

would perform well as observed in practice. Our next result is an instance-dependent high

probability finite-sample bound for ERM on the generalized partially linear model.

The closest to our work are the papers of Chen et al. [2004] and Steinwart [2005], who

both considered the risk of SVMs with offset (a special case of our model). Here, as noted by

these authors, the main difficulty is bounding the offset. While Chen et al. [2004] bounded

the offset based on a property of the optimal solution for the hinge loss and derived finite-

sample risk bounds, Steinwart [2005] considered consistency for a larger class of “convex

regular losses”. Specific properties of the loss functions were used to show high probability

bounds on the offset. For our more general model, similarly to these works the bulk of the

work will be to prove that with high probability the parametric model will stay bounded (we

assume supx ‖φ(x)‖2 < +∞). The difficulty is that the model is underdetermined and in

the training procedures only the nonparametric component is penalized. This suggests that

perhaps one could modify the training procedure to penalize the parametric component, as

well. However, it appears that the semiparametric literature largely rejects this approach.

The main argument is that a penalty would complicate the tuning of the method (because the

strength of the penalty needs to be tuned, too), and that the parametric part is added based

on a strong prior belief that the features added will have a significant role and thus rather

than penalizing them, the goal is to encourage their inclusion in the model. Furthermore,

the number of features in the parametric part are typically small, thus penalizing them is

largely unnecessary. We will return to discussing this issue at the end of the chapter.

Finally, let us make some comments on the computational complexity of training par-

tially linear models. When the nonparametric component belongs to an RKHS, an appropri-

ate version of the representer theorem can be used to derive a finite-dimensional optimization

problem [Smola et al., 1998], leading to quadratic optimization problem subject to linear

constrains. Recent work by Kienzle and Schölkopf [2005] and Lee and Wright [2009] concern

specialized solvers to find an approximate optimizer of the arising problem. In particular,

in their recent work, Lee and Wright [2009] proposed a decomposition algorithm that is

capable to deal with large-scale semiparametric SVMs.
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3.2 Problem setting

In this chapter, we will assume that the input space X is a separable, complete metric

space, and Y, the label space, will be a subset of the reals R. The random response Y ∈ Y

is allowed to be unbounded. We equip X and Y with their respective Borel σ-algebra.

We start with the problem setup in the random design setting. Given the independent,

identically distributed sample Z1:n = (Z1, ..., Zn), Zi = (Xi, Yi), Xi ∈ X , Yi ∈ Y, the

partially constrained empirical risk minimization problem with the partially linear stochastic

model (3.1) is to find a minimizer of

min
θ∈Rd,h∈H

1

n

n∑
i=1

`
(
Yi, φ(Xi)

>θ + h(Xi)
)
,

where ` : Y × R → [0,∞) is a loss function, φ : X → Rd is a basis function and h ∈ H is a

set of real-valued functions over X , holding the “nonparametric” component h. Our main

interest is when the loss function is quadratic, i.e., `(y, y′) = 1
2 (y − y′)2, but for the sake of

exploring how much we exploit the structure of this loss, we will present the results in an

abstract form.

Introducing G =
{
φ(·)>θ : θ ∈ Rd

}
, the above problem can be written in the form

min
g∈G,h∈H

Ln(g + h), (3.2)

where Ln(f) = 1
n

∑n
i=1 `(Yi, f(Xi)). Typically, H arises as the set

{h : X → R : J(h) ≤ K}

with some K > 0 and some functional J that takes larger values for “rougher” functions.1

The goal of learning is to find a predictor with a small expected loss. Given a measurable

function f : X → R, the expected loss, or risk, of f is defined to be L(f) = E [`(Y, f(X))],

where Z = (X,Y ) is an independent copy of Zi = (Xi, Yi) (i = 1, . . . , n). Let (gn, hn) be a

minimizer2 of (3.2) and let fn = gn + hn.

When analyzing a learning procedure returning a function fn, we compare the risk L(fn)

to the best risk possible over the considered set of functions, i.e., to L∗ = infg∈G,h∈H L(g+h).

A bound on the excess risk L(fn)−L∗ is called a generalization (error) bound. In this work,

we seek bounds on the tail behaviour of the excess risk in terms of the entropy-integral of H.

Our main result, Theorem 3.6.1, provides such a bound, essentially generalizing the analogue

result of Bartlett and Mendelson [2002]. In particular, our result shows that, in line with

existing empirical evidence, the price of including the parametric component in terms of the

1 The penalized empirical risk-minimization problem, ming∈G,h Ln(h+g)+J(h) is closely related to (3.2)
as suggested by the identity ming∈G,h Ln(g+h)+λJ(h) = minK≥0 λK+ming∈G,h:J(h)≤K Ln(g+h) explored
in a specific context by Blanchard et al. [2008].

2For simplicity, we assume that this minimizer and in fact all the others that we will need later exist.
This is done for the sake of simplifying the presentation: The analysis is simple to extend to the general
case. Further, if there are multiple minimizers, we choose one.
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increase of the generalization bound is modest, which, in favourable situations, can be far

outweighed by the decrease of L∗ that can be attributed to including the parametric part.

However, due to the unbounded response, the high probability bound that we derive fails

to imply a bound on the expected excess risk. Thus, in the case of unbounded response, it

may be unwise to use an unregularized parametric component.

To explain this issue, consider the following standard decomposition of the excess risk:

L(fn)− L(f∗) = (L(fn)− Ln(fn)) + (Ln(fn)− Ln(f∗))︸ ︷︷ ︸
≤0

+(Ln(f∗)− L(f∗)) ,
(3.3)

where f∗ = arg minf∈G+H L(f). Here, the third term can be upper bounded as long as f∗

is “reasonable” (e.g., bounded). On the other hand, the first term is more problematic, at

least for unbounded loss functions and when Y is unbounded. Indeed, in this case fn can

take on large values and correspondingly L(fn) could also be rather large. Note that this is

due to the fact that the parametric component is unconstrained.

The classical approach to deal with this problem is to introduce clipping or truncation

of the predictions (cf. Theorem 11.5 of Györfi et al. [2002]). However, clipping requires

additional knowledge perhaps that Y is bounded with a known bound. Furthermore, the

clipping level appears in the bounds, making the bounds weak when the level is conserva-

tively estimated. In fact, one suspects that clipping is unnecessary in our setting where we

will make strong enough assumptions on the tails of Y (though much weaker than assuming

that Y is bounded). In fact, in practice, it is quite rare to see clipping implemented. Hence,

in this chapter we will keep our original goal and analyze the procedure with no clipping.

To analyze the excess risk we will proceed by showing that with large probability, ‖gn‖∞
is controlled. This is, in fact, where the bulk of the work will lie. A high probability upper

bound for the generalization error is then developed based on this boundedness. We then

discuss a potential problem caused by including the unconstrained parametric part, and

explain why standard asymptotic analysis cannot detect this problem.

3.2.1 More notations

Before stating our assumptions and results, we introduce some more notation. We will

denote the Minkowski-sum G +H of G and H by F : F = G +H .
= {g + h : g ∈ G, h ∈ H}.

The L2-norm of a function is defined as ‖f‖22
.
= E

[
f2(X)

]
, while given the sample X1:n =

{X1, . . . , Xn}, the n-norm of a function is defined as the `2-norm of the restriction of the

function to X1:n: ‖f‖2n = 1
n

∑
i f(Xi)

2. The vector (f(X1), . . . , f(Xn))> is denoted by

f(X1:n). The matrix (φ(X1), . . . , φ(Xn))> ∈ Rn×d is denoted by Φ (or Φ(X1:n) if we

need to indicate its dependence on X1:n). We let Ĝ = 1
nΦ>Φ ∈ Rd×d be the empirical

Grammian matrix and G = E
[
φ(X)φ(X)>

]
be the population Grammian matrix underlying

φ. Denote the minimal positive eigenvalue of G by λmin, while let λ̂min be the same for Ĝ.
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The rank of Ĝ (G, respectively) is denoted by ρ̂ = rank(Ĝ) (ρ = rank(G), respectively).

Lastly, let Lh,n(g) = Ln(h + g), Ln(f) = E [Ln(f) |X1:n], Lh,n(g) = E [Ln(h+ g) |X1:n],

and L
∗
n = infg∈G,h∈H Ln(g + h). It will be convenient to introduce the alternate notation

`((x, y), f) for `(y, f(x)) (i.e., `((x, y), f)
.
= `(y, f(x)) for all x ∈ X , y ∈ Y, f : X → R. Given

h ∈ H, let gh,n = arg ming∈G Ln(h+ g) = arg ming∈G Lh,n(g) and gh,n = arg ming∈G Lh,n(g)

We summarized the notations of this section in Table 3.1.

Table 3.1: Notation for Chapter 3

X Input space: separable complete metric space

Y Unbounded label space in R

` Loss function `(y, y′)

G Hypothesis set
{
φ(·)>θ : θ ∈ Rd

}
for the parametric part

H Hypothesis set for the nonparametric part

hn (gn, hn) is the empirical minimizer of Equation (3.2)

gn (gn, hn) is the empirical minimizer of Equation (3.2)

fn The empirical minimizer fn = hn + gn

f∗ Minimizer of the expected loss over H+ G

g∗ (g∗, h∗) is the minimizer of the expected loss, f∗ = h∗ + g∗

h∗ (g∗, h∗) is the minimizer of the expected loss, f∗ = h∗ + g∗

Ln Empirical loss

Ln Expected loss conditioned on X1:n

L Expected loss in the random design setting

L∗ L(f∗), minimum loss over H+ G

‖ · ‖2 L2 norm

‖ · ‖n Empirical L2 norm

gh,n Empirical minimizer over G of (3.2) for a fixed h

G G = E
[
φ(X)φ(X)>

]
Ĝ Ĝ = 1

n

∑
i φ(Xi)φ(Xi)

>

ρ The rank of G

λmin The minimal positive eigenvalue of G

λ̂min The minimal positive eigenvalue of Ĝ

3.3 An infinite expected excess risk

We start with a simple regression example, based on Problem 10.3 of the book by Györfi

et al. [2002], with least square loss in the purely parametric setting. This example shows

that already in the purely parametric case, there exist perfectly innocent looking problems
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that make ordinary least squares fail.

Example 3.3.1 (Failure of Ordinary Least Squares). Let X = [0, 1], Y = R, `(y, p) =

(y − p)2, φ : X → R3, φ1(x) = I[0, 1/2](x), φ2(x) = x · I[0, 1/2](x), φ3(x) = I(1/2, 1](x),

where I(A) denotes the indicator of set A ⊂ X . Let fθ(x) = φ(x)>θ, θ ∈ R3 as shown in

Fig. 3.1. As to the data, let (X,Y ) ∈ X ×{−1,+1} be such that X and Y are independent of

each other, X is uniform on X and P (Y = +1) = P (Y = −1) = 1/2. Note that E [Y |X] = 0,

hence the model is well-specified (the true regression function lies in the span of the basis

functions). Further, L and Ln have the same optimal regression function f∗(x) = 0 and

L(f∗) = Ln(f∗) = 1. Now, let (X1, Y1), . . . , (Xn, Yn) be n independent copies of (X,Y )

and let θ̂n = arg minθ∈R3 Ln(φ>θ). Denote the empirical Grammian on the data by Ĝn =

1
n

∑
k φ(Xk)φ(Xk)>, λ̂min(n) = λmin(Ĝn), λmin = λmin(E

[
φ(X)φ(X)>

]
). The following

hold:

(a) E
[
Ln(fθ̂n)

]
=∞ (infinite risk!);

(b) Ln(fθ̂n)− Ln(f∗)→ 0 as n→∞ (well-behaved in-sample generalization);

(c) For some event Bn with P (Bn) ∼ e−n,

c(
√
t− 2t) ≤ P

(
λ̂min(n) ≤ tλmin|Bn

)
≤ c′(

√
t− 2t)

for some 0 < c < c′;

(d) E
[
λ̂−1

min(n)
]

= +∞.

1
2

1O

fθ(x)

Figure 3.1: The regres-
sion function fθ(x) for
Example 3.3.1 .

To understand what happens in this example, consider the

event An that exactly two of the n Xi’s belong to the inter-

val [0, 1/2] . On this event, which has a probability propor-

tional to e−n, θ̂n,1 = (Y1 + Y2)/2 and θ̂n,2 = Y1−Y2

X1−X2
, so that

fθ̂n(Xi) = Yi, i = 1, 2. Then, the out-of-sample risk can be

lower bounded using E
[(
fθ̂n(X)− Y

)2
]

= E
[
fθ̂n(X)2

]
+1 ≥(

E
[
|fθ̂n(X)|

∣∣∣An]P (An)
)2

+ 1. Now,

E
[
|fθ̂n(X)− Y |

∣∣∣An] = 2E
[

X

|X1 −X2|

∣∣∣∣An]
= E

[
1

|X1 −X2|

∣∣∣∣An] = +∞.

A similar calculation shows the rest of the claims. This

example leads to multiple conclusions:

(i) Ordinary least squares is guaranteed to have finite expected risk if and only if we have

E
[
λmin(Gn)−1

]
< +∞, a condition that is independent to previous conditions such as

“good statistical leverage” [Hsu et al., 2012].
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(ii) Neither good in-sample generalization, or in-probability parameter convergence, or

that the estimated parameter satisfies the central limit theorem (which all hold in the

above example) lead to good expected risk for ordinary least-squares; demonstrating

a practical example where out-of-sample generalization error is not implied by any of

these “classical” results that are extensively studied in statistics (e.g., [Bickel et al.,

1998]).

(iii) Although the “Eigenvalue Chernoff Bound” (Theorem 4.1) of Gittens and Tropp [2011]

captures the probability of the smallest positive eigenvalue being significantly under-

estimated correctly as a function of the sample size, it fails to capture the actual

behaviour of the left-tail, and this behaviour can be significantly different for different

distributions.

Based on this example, we see that another option to get an expected risk bound without

clipping the predictions or imposing an additional restriction on the basis functions and the

data generating distribution, is to clip the eigenvalues of the data Grammian before inversion

at a level of O(1/n) or to add this amount to all the eigenvalues. One way of implementing

the increase of eigenvalues is to employ ridge regression by introducing a penalty of the

form ‖θ‖22 in the empirical loss minimization criterion. Yet the success of ERM of the

partially linear model without regularization in practice still remains vague. In the rest of

this chapter, we further investigate the performance of ERM for the general setting. We

show that given n is large enough, with high probability, ERM indeed has controllable

generalization bound. Unsurprisingly, our analysis also indicates its essential dependence

on E
[
λ̂min(n)−1

]
.

3.4 Assumptions

Before presenting our main results, we need some mild assumptions on the setting. In what

follows we will assume that the functions in H are bounded by r > 0. If K is an RKHS

space with a continuous reproducing kernel κ and X is compact (a common assumption

in the literature, e.g., Cucker and Zhou [2007], Steinwart and Christmann [2008]), this

assumption will be satisfied if J(h) = ‖h‖K and H = {h ∈ K : J(h) ≤ r}, where, without

loss of generality (WLOG), we assume that the maximum of κ is below one.

We will also assume that R = supx∈X ‖φ(x)‖2 is finite. If φ is continuous and X is

compact, this assumption will be satisfied, too. In fact, by rescaling the basis functions if

needed, we will assume WLOG that R = 1.

Definition 3.4.1. Let β,Γ be positive numbers. A (noncentered) random variable X is

subgaussian with parameters (β,Γ) if

E
[
exp

(
|βX|2

)]
≤ Γ <∞.
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Let us start with our assumptions that are partly concerned the loss function, `, and are

partly concerned with the joint distribution of (X,Y ).

Assumption 1 (Loss function).

(i) Convexity: The loss function ` is convex with respect to its second argument, i.e.,

`(y, ·) is a convex function for all y ∈ Y.

(ii) There exists a bounded measurable function ĥ and a constant Q <∞ such that

E
[
`
(
Y, ĥ(X)

)
|X
]
≤ Q almost surely.

(iii) Subgaussian Lipschitzness: There exists a function K` : Y × (0,∞)→ R such that for

any constant c > 0 and c1, c2 ∈ [−c, c],

|`(y, c1)− `(y, c2)| ≤ K`(y, c) |c1 − c2| ,

and such that E
[
exp(|βK`(Y, c)|2)|X

]
≤ Γc <∞ for some constant Γc depending only

on c almost surely. WLOG, we assume that K`(y, ·) is a monotonically increasing

function for any y ∈ Y.

(iv) Level-Set: For any X1:n ⊂ X , and any c ≥ 0, Rc = supf∈F :Ln(f)≤c ‖f‖n is finite and

independent of n.

Remark 3.4.2. Assumption 1(ii) requires that Y , even if it is unbounded, still can be

approximated by a bounded function in H at every X with constant expected loss. For

quadratic losses, this is satisfied if and only if E
[
Y 2 |X

]
<∞ almost surely.

Remark 3.4.3. The subgaussian Lipschitzness assumption 1(iii) is a general form of Lip-

schitzness property that allows the Lipschitzness coefficient to depend on y. If the loss

function is the quadratic loss, the subgaussian Lipschitzness assumption is an immediate

corollary of the subgaussian property of Y conditioned on X. In particular, |(Y − c1)2 −

(Y − c1)2| = |2Y − c1 − c2||c1 − c2|. Thus we can pick K`(Y, c) = 2|Y | + 2c and β = 1
2
√

2
,

then E
[
exp(|βK`(Y, c)|2)

]
= E

[
exp( 1

2 (|Y |+ c)2)
]
≤ E

[
exp(|Y |2)

]
+ exp(c2).

Remark 3.4.4. Unlike the first three assumptions, Assumption 1(iv), which requires that

the sublevel sets of Ln(·) are bounded in ‖·‖n, is nonstandard. This assumption will be

crucial for showing the boundedness of the parametric component of the model. We argue

that in some sense this assumption, given the method considered, is necessary. The idea

is that since fn minimizes the empirical loss, it should also have a small value of Ln(·) (in

fact, this is not that simple to show given that it is not known whether fn is bounded). As

such, it will be in some sublevel set of Ln(·). Otherwise, nothing prevents the algorithm from

choosing a minimizer (even when minimizing Ln(·) instead of Ln(·)) with an unbounded ‖·‖n
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norm. One way of weakening Assumption 1(iv) is to assume that there exist a minimizer of

Ln(·) over F that has a bounded norm and then modify the procedure to pick the minimizer

with the smallest ‖·‖n norm.

Example 3.4.5 (Quadratic Loss). In the case of quadratic loss, i.e., when `(y, y′) = 1
2 (y−

y′)2, R2
c ≤ 4c+ 8Q+ 4s2 where s = ‖ĥ‖∞. Indeed, this follows from

‖f‖2n ≤
2

n

∑
i

E
[
(f(Xi)− Yi)2 |X1:n

]
+ E

[
Y 2
i |X1:n

]
≤ 4Ln(f) +

2

n

∑
i

E
[
Y 2
i |Xi

]
.

Then E
[
Y 2
i |Xi

]
≤ 2E

[
(Yi − ĥ(Xi))

2 |Xi

]
+ 2ĥ2(Xi) ≤ 4Q + 2s2. Here, the last inequality

is by Assumption 1(ii) and the boundedness of ĥ.

Example 3.4.6 (Exponential Loss). In the case of exponential loss, i.e., when `(y, y′) =

exp(−yy′) and if Y = {+1,−1}, the situation is slightly more complex. Rc will be finite

as long as the posterior probability of seeing either of the labels is uniformly bounded away

from one, as assumed e.g., by Blanchard et al. [2008]. Specifically, if η(x)
.
= P(Y = 1|X =

x) ∈ [ε, 1− ε] for some ε > 0 then a simple calculation shows that R2
c ≤ c/ε.

The next assumption states that the loss function is locally “non-flat”:

Assumption 2 (Non-flat Loss). Assume that there exists ε > 0 such that for any h ∈ H

and vector a ∈ [−ε, ε]n ∩ Im(Φ),

ε

n
‖a‖22 ≤ E

[
1

n

∑
i

`(Zi, h+ gh,n + ai)
∣∣∣X1:n

]

− E

[
1

n

∑
i

`(Zi, h+ gh,n)
∣∣∣X1:n

]
holds a.s., where recall that Zi = (Xi, Yi).

Note that it is key that the “perturbation” a is in the image space of Φ, and that it is

applied at h+ gh,n and not at an arbitrary function h, as shown by the next example:

Example 3.4.7 (Quadratic loss). In the case of the quadratic loss, note that g(X1:n) =

Φ(X1:n)θ. Let θh,n be a minimizer of Lh,n(·) satisfying θh,n =
(
Φ>Φ

)+
Φ>(E [Y1:n|X1:n] −

h(X1:n)). Therefore,

E

[
1

n

∑
i

`((Xi, Yi), h+ gh,n + ai) |X1:n

]

− E

[
1

n

∑
i

`((Xi, Yi), h+ gh,n) |X1:n

]

=
1

n

∑
i

E
[
ai
{

2(gh,n(Xi) + h(Xi)− Yi) + ai
}
|X1:n

]
,
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which is equal to 1
n‖a‖

2
2 + 2

na
>
{

Φ
(
Φ>Φ

)+
Φ> − I

}
{E [Y1:n|X1:n]− h(X1:n)} = 1

n‖a‖
2
2,

where the last equality follows since a ∈ Im(Φ).

We will need an assumption that the entropy of H satisfies an integrability condition.

For this, recall the definition of entropy numbers:

Definition 3.4.8. For ε > 0, the ε-covering number N(ε,H, d) of a set H equipped with a

pseudo-metric d, is the number of balls with radius ε measured with respect to d, necessary

to cover H. The ε-entropy of H is H(ε,H, d) = logN(ε,H, d).

The definition is extended in the natural way to the case when H is equipped with a

pseudo-norm. Note that if d′ ≤ d then the ε-balls w.r.t. d′ are bigger than the ε-balls w.r.t. d.

Hence, any ε-cover w.r.t. d also gives an ε-cover w.r.t. d′. Therefore, N(ε,H, d′) ≤ N(ε,H, d)

and also H(ε,H, d′) ≤ H(ε,H, d).

Let ‖·‖∞,n be the infinity empirical norm: For f : X → R, ‖f‖∞,n = max1≤k≤n |f(Xk)|.

Note that trivially ‖f‖n ≤ ‖f‖∞,n ≤ ‖f‖∞. We use ‖·‖∞,n in our next assumption:

Assumption 3 (Integrable Entropy Numbers of H). There exists a (non-random) constant

CH such that,
∫ 1

0
H1/2(v,H, ‖·‖∞,n) dv ≤ CH holds a.s.

Remark 3.4.9. Assumption 3 is well-known in the literature of empirical processes to

guarantee the uniform laws of large numbers [Dudley, 1984, Giné and Zinn, 1984, Tewari

and Bartlett, 2013]. The assumption essentially requires that the entropy numbers of H

grow slowly as the scale of ε approaches to zero. For example, this assumption holds if for

any 0 < u ≤ 1, H(u,H, ‖·‖∞,n) ≤ cu−(2−ε) for some c > 0, ε > 0. Based on our previous

discussion, H(u,H, ‖·‖∞,n) ≤ H(u,H, ‖·‖∞). The latter entropy numbers are well-studied

for a wide range of function spaces (and enjoy the condition required here). For examples

see, e.g., Dudley [1984], Giné and Zinn [1984], Tewari and Bartlett [2013].

For the next assumption let Gλmin
be the event when λ̂min ≥ λmin/2.

Assumption 4 (Lipschitzness of the Parametric Solution Path). Let PX denote the dis-

tribution of X. There exists a constant Kh such that on Gλmin for [PX ] almost all x ∈ X ,

h 7→ gh,n(x) is Kh-Lipschitz w.r.t. ‖·‖∞,n over H.

Remark 3.4.10. When gh,n is uniquely defined, Assumption 4 will be satisfied whenever

` is sufficiently smooth w.r.t. its first argument, as follows, e.g., from the Implicit Function

Theorem.

Example 3.4.11 (Quadratic loss). In the case of the quadratic loss, by Example 3.4.7,

gh,n(x) = 〈φ(x),
(
Φ>Φ

)+
Φ>(E [Y1:n|X1:n]− h(X1:n))〉

=
1

n

∑
i

〈φ(x), Ĝ+φ(Xi) (E [Yi|X1:n]− h(Xi))〉
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Thus, for h, h′ ∈ H, on Gλmin ,

|gh,n(x)− gh′,n(x)|

=
∣∣∣〈φ(x),

(
Φ>Φ

)+
Φ> (h′(X1:n)− h(X1:n)〉

∣∣∣
≤

2 ‖φ(x)‖2
λmin

1

n

∑
i

|h′(Xi)− h(Xi)| ‖φ(Xi)‖2

≤ 2

λmin
‖h′ − h‖∞,n

where we used ‖φ(x)‖2 ≤ 1 multiple times which holds [PX ] a.e. on X .

3.5 The boundedness of the predictor

Our first main result implies that gn is bounded with high probability in the random design

setting.

Theorem 3.5.1. Let Assumptions 1 to 4 hold. Then, there exist positive constants c1, c2,

K such that for any 0 < δ < 1 and n such that n ≥ c1 + c2
log( 2ρ

δ )
λmin

, it holds that

P
(

sup
h∈H
‖gh,n‖∞ ≥ K

)
≤ δ . (3.4)

The result essentially states that for some specific value of K, the probability that the

event suph∈H ‖gh,n‖∞ > K happens is exponentially small as a function of the sample size

n. The constant K is inversely proportional to λmin and depends on both Rc from the

level-set assumption and r. Here c depends on Q, ‖ĥ‖∞ from Assumption 1(ii) and the

subgaussian parameters. The actual value of K can be read out from the proof.

The main challenges in the proof of this result are that the bound has to hold uniformly

over H (this allows us to bound ‖gn‖∞), and also that the response Y is unbounded, as are

the functions in G. The main tool is a ratio type tail inequality for empirical processes, al-

lowing us to deal both with the unbounded responses and functions, which is then combined

with our assumptions on the loss function, in particular, with the level-set assumption.

Proof of Theorem 3.5.1. Recall that our goal is to derive a bound on

sup
h∈H
‖gh,n‖∞

that holds with high probability. Fix h ∈ H. Then, gh,n(x) = 〈θ, φ(x)〉 ≤ ‖θh,n‖2 ‖φ(x)‖2,

where θh,n is the parameter vector of gh,n. Since ‖φ(x)‖2 ≤ 1, it suffices to bound ‖θh,n‖2.

On Gλmin
, which is defined as the event {λ̂min ≥ λmin/2}, we have

g2
h,n(x) ≤ ‖θh,n‖22 ≤

θ>h,nĜ θh,n

λ̂min

=
2 ‖gh,n‖n
λmin

. (3.5)

Hence, the problem is reduced to proving a uniform (h-independent) upper bound on the

empirical norm of gh,n and showing that Gλmin
happens with “large probability”.

65



For the latter, we use a result of Gittens and Tropp [2011]. This is summarized in the

lemma which also includes some observations that will prove to be useful later:

Lemma 3.5.1. The following hold:

(i) With probability one, for any θ ∈ Rd, θ>Ĝθ ≤ θ>Gθ
λmin

.

(ii) Assuming that n ∈ N and δ ∈ (0, 1) are such that

n ≥ 2

λmin log
(
e
2

) log
(ρ
δ

)
, (3.6)

where ρ and λmin are respectively the rank and the smallest positive eigenvalue of G,

with probability at least 1− δ, it holds that λ̂min ≥ λmin

2 > 0.

(iii) For any n, δ satisfying (3.6), then with probability 1 − δ it holds that for any θ ∈ Rd

and [PX ] almost every x ∈ X , |〈θ, φ(x)〉| ≤
√

2θ>Ĝθ
λmin

.

The (easy) proof of the lemma is deferred to Appendix B.2.

To get an upper bound on the empirical norm of gh,n, we will use

‖gh,n‖n ≤
∥∥gh,n − gh,n∥∥n +

∥∥gh,n∥∥n (3.7)

and develop uniform bound on the two terms on the r.h.s..

Lemma 3.5.2. It holds almost surely that

sup
h∈H

∥∥gh,n∥∥n ≤ R̄,
where R̄ = RCΓ

+ r, CΓ = 2r̂
β

√
Γr̂ − 1 + Q, r̂ = max(r, ‖ĥ‖∞) and ĥ is the function from

Assumption 1(ii).

The constant RC0
that appears in the statement is defined in our “level-set assumption”

(cf. Assumption 1(iv)).

Proof. Fix some h ∈ H. We have
∥∥gh,n∥∥n =

∥∥h+ gh,n + (−h)
∥∥
n
≤
∥∥h+ gh,n

∥∥
n

+ ‖−h‖n ≤∥∥h+ gh,n
∥∥
n

+ r thanks to ‖h‖∞ ≤ r. Hence, it remains to bound
∥∥h+ gh,n

∥∥
n
.

By Assumption 1(iv), for this it suffices if we show a bound on Ln(h + gh,n) since by

this assumption if Ln(h+ gh,n) ≤ c then
∥∥h+ gh,n

∥∥
n
≤ Rc. By the optimizing property of

gh,n, we have Ln(h+ gh,n) = Ln,h(gh,n) ≤ Ln,h(0) = Ln(h). Now, by definition

Ln(h) = E

[
1

n

∑
i

`(Yi, h(Xi))
∣∣∣X1:n

]
,

hence, it suffices to bound E [`(Yi, h(Xi))|Xi]. For this, we have

E [`(Yi, h(Xi))|Xi] ≤ E
[
|`(Yi, h(Xi))− `(Yi, ĥ(Xi))| |Xi

]
+ E

[
`(Yi, ĥ(Xi)) |Xi

]
,
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where we used that by assumption the loss is nonnegative. By Assumption 1(ii),

E
[
`(Yi, ĥ(Xi)) |Xi

]
≤ Q.

Therefore it is sufficient to bound

E
[
|`(Yi, h(Xi))− `(Yi, ĥ(Xi))| |Xi

]
.

Note that by Assumption 1(iii), almost surely E
[
exp

(
|βK`(Y, r)|2

)
|X
]
≤ Γr. So, by

Lemma B.1.1 (i), E [K`(Y, r)|X] ≤ 1
β

√
Γr − 1 a.s.. Thus, with r̂ = max(r, ‖ĥ‖∞),

E
[
|`(Yi, h(Xi))− `(Yi, ĥ(Xi))| |Xi

]
≤ E [2r̂K`(Yi, r̂)|Xi] ≤ 2r̂

β

√
Γr̂ − 1.

Putting together the inequalities, we obtain that Ln(h+ gh,n) ≤ 2r̂
β

√
Γr̂ − 1 +Q =: CΓ and

thus
∥∥h+ gh,n

∥∥
n
≤ RCΓ .

Let us now consider bounding
∥∥gh,n − gh,n∥∥n. In fact, we will only bound this on the

event Gλmin
when λ̂min ≥ λmin/2. Since we use this event to upper bound 1/λ̂min by 2/λmin,

there is no loss in bounding
∥∥gh,n − gh,n∥∥n on this event only. Note that by Lemma 3.5.1

(ii), Gλmin
holds with probability at least 1 − δ.

Lemma 3.5.3. There exist problem-dependent positive constants C0 and L0 ≥ 1 such that

for any n ≥ 16L4
0, it holds that

P
(

sup
h∈H

∥∥gh,n − gh,n∥∥n ≥ 1 , Gλmin

)
≤ exp

(
−C0n

4

)
. (3.8)

Remark 3.5.4. Although gh,n may be bounded, the concentration inequality for gh,n and

gh,n is still not trivial since gh,n is potentially unbounded. Relaxing the boundedness condi-

tion to weaker ones in the concentration inequality has been explored in the literature, e.g.

making use of the bounded-difference property [Kutin, 2002], or a Lipschitzness assumption

of the loss function w.r.t. the sample space and finite subgaussian diameter [Kontorovich,

2013]. Our result, Lemma 3.5.3, continues to contribute to this line of research.

The proof of this lemma follows the proofs in the paper of van de Geer [1990], who

studied the deviations
∥∥gh,n − gh,n∥∥n for h = 0 (see also van de Geer 2000). It turns out

the techniques of the mentioned paper are just strong enough to also bound the uniform

deviation suph∈H
∥∥gh,n − gh,n∥∥n. As the proof is lengthy and technical, it is deferred to

Appendix B.3.

Now, combining (3.5), (3.7) and Lemma 3.5.2 we get that on Gλmin ,

Gn,∞
.
= sup
h∈H
‖gh,n‖∞ ≤

2

λmin
sup
h∈H
‖gh,n‖n ≤

2

λmin

(
R+ sup

h∈H

∥∥gh,n − gh,n∥∥n) . (3.9)

Since for any A > 0,

P (Gn,∞ > A) ≤ P
(
Gcλmin

)
+ P (Gn,∞ > A,Gλmin

)
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and by (3.9),

P (Gn,∞ > A,Gλmin
) ≤ P

(
2

λmin

(
R+ sup

h∈H

∥∥gh,n − gh,n∥∥n) > A,Gλmin

)
,

choosing A = 2
λmin

(
R+ 1

)
, we see that

P
(
Gn,∞ >

2

λmin

(
R+ 1

))
≤ P

(
Gcλmin

)
+ P

(
sup
h∈H

∥∥gh,n − gh,n∥∥n ≥ 1, Gλmin

)
.

By Eq. (3.6) and Lemma 3.5.3, provided that n ≥ 2

λmin log( e2 )
log
(

2ρ
δ

)
, n ≥ 16L4

0 and n ≥
4 log( 2

δ )
C0

we get that

P
(
Gn,∞ >

2

λmin

(
R+ 1

))
≤ δ ,

which is the desired statement. In particular, we can choose K = 2
λmin

(
R+ 1

)
.

3.6 A high probability bound of the excess risk

Given Theorem 3.5.1, various high-probability risk bounds can be derived using more or

less standard techniques. Despite this, when the response is unbounded and clipping is not

available, we were not able to identify any result in the literature that would achieve this.

In our proof, we use the technique of van de Geer [1990], which allows us to work with

unbounded responses without clipping the predictions. Since this technique was developed

for the fixed design case, we combine it with a method, which uses Rademacher complexities

upper bounded in terms of the entropy integral, so as to get an out-of-sample generalization

bound.3 The bound in our result is of the order 1/
√
n, which is expected given our con-

straints on the nonparametric class H. However, we note in passing, that under stronger

conditions, such as L(f∗) = 0 [Pollard, 1995, Haussler, 1992], or that F is convex (which

does not hold in our case unless we take the convex hull of F = G + H) and the loss is

the quadratic loss (or some other loss which is strongly convex), a faster rate of O(1/n)

can also be proved [Lee et al., 1998, Györfi et al., 2002, Bartlett et al., 2005, Koltchinskii,

2006, 2011], though the existing works seem to make various assumptions about Y which

we would like to avoid. Let (x)+ = max(x, 0) denote the positive part of x ∈ R.

Theorem 3.6.1 (Generalization). Let Assumptions 1 to 4 hold and let f∗ = g∗ + h∗ be

a minimizer of L over G + H (i.e., g∗ ∈ G, h∗ ∈ H). There exist positive constants

c, c1, c2, c3, c4, α and U ≥ max{1,K, ‖g∗‖∞} such that for any 0 < δ < 1 satisfying log 1
δ ≥ c

and n ≥ c1 + c2 log
(

4ρ
δ

)
/λmin, with probability at least 1− 3δ,

L(fn)− L(f∗) ≤ c3
CH + ρ1/2(log(U))+√

n
+ 2(r + U)

√
log 2

δ

αn
+ c4

√
log 1

δ

2n
(3.10)

where fn = hn + gn is a minimizer of Ln(·) over H+ G.

3Recall that “In-sample” generalization bounds concern the deviation Ln(fn) − Ln(f∗), while “out-of-
sample” bounds concern L(fn)− L(f∗).

68



Remark 3.6.1. The constants ρ and λmin appear both in U and in the lower bound

constraint of n. Defining `(x, p) = E [`(Y, p)|X = x], constant c3 depends on the (essential)

Lipschitz coefficient of `(X, p) when p ∈ [−r − U, r + U ] and constant c4 depends on the

(essential) range of `(X, p). Both of them can be shown to be finite based on Assumption 1.

The bound has a standard form: The first and the last of the three terms comes from

bounding the out-of-sample generalization error, while the term in the middle (containing α)

bounds the in-sample generalization error. We use a novel measure-disintegration technique

to transfer the results of van de Geer [1990] which are developed for the fixed design setting

(i.e., when the covariates X1:n are deterministic) to the random design setting that we

consider in this theorem.

Proof of Theorem 3.6.1. Let U be as in Theorem 3.5.1 and let E denote the event when

sup
h∈H
‖gh,n‖∞ ≤ K .

For any z ≥ 0,

P (L(fn)− L(f∗) > z) = P (L(fn)− L(f∗) > z,Ec) + P (L(fn)− L(f∗) > z,E)

≤ P (Ec) + P (L(fn)− L(f∗) > z,E) .
(3.11)

Thus, to study the tail probabilities of L(fn)−L(f∗), it suffices to study L(fn)−L(f∗) on

the event E.

Define G(U) = {g ∈ G : ‖g‖∞ ≤ U} and C = H + G(U). On E, we claim that fn ∈ C.

We have fn = hn + gn and since hn ∈ H by definition, it remains to show that gn ∈

G(U). By appropriately selecting gh,n, we can arrange for gn = ghn,n. Hence, ‖gn‖∞ ≤

suph∈H ‖gh,n‖∞ ≤ K ≤ U , showing that fn ∈ C indeed holds.

Note that f∗ = h∗ + g∗ ∈ C. By Eq. (3.3), on E it holds almost surely that

L(fn)− L(f∗) ≤ Ln(f∗)− L(f∗)− (Ln(fn)− L(fn))

= (∆̃n(fn)− ∆̃n(f∗)) + (∆n(f∗)−∆n(fn))

≤ sup
f∈C

∆̃n(f)− ∆̃n(f∗)︸ ︷︷ ︸
∆̃∗n(C)

+ sup
f∈C
|∆n(f)−∆n(f∗)|︸ ︷︷ ︸

∆
∗
n(C)

, (3.12)

where we introduced ∆n(f) = Ln(f) − Ln(f) and ∆̃n(f) = L(f) − Ln(f) with Ln(f) =

1
n

∑n
k=1 E [`(Yk, f(Xk))|Xk]. Note that the first term does not depend on the (unbounded)

responses Y1, . . . , Yn. Furthermore, by our assumptions, ∆̃n(f) is bounded for f bounded.

Hence, we can analyze these terms using tools developed for bounded random variables and

empirical processes. Now, while the last term involves Y1, . . . , Yn, ∆n compares average

losses over the sample X1, . . . , Xn, this last term concerns in-sample generalization. Hence,

as we will show it below, it can be analyzed using tools developed for the “fixed design”

setting. In fact, the following result gives tail bounds for this term:
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Lemma 3.6.2. Let Assumptions 1 to 4 hold and WLOG assume that U ≥ max(1,K, ‖g∗‖∞).

Then, there exist constants c, α > 0 such that for any 0 < δ < 1 satisfying log 1
δ ≥ c with

probability at least 1− δ,

∆
∗
n(C) ≤2(r + U)

√
log 2

δ

αn
. (3.13)

The proof, which we defer to Section B.4, is based on Theorem 3.3 of van de Geer [1990].

It remains to bound ∆̃∗n(C) = supf∈C ∆̃n(f)− ∆̃n(f∗). For this, define

`(x, p) = E [`(Y, p) |X = x)] .

With a slight abuse of notation, we also introduce `(x, f) = `(x, f(x)). Let

B(`, U) =
∥∥∥supp∈[−r−U,r+U ] `(X, p)

∥∥∥
L∞

,

where ‖·‖L∞ denotes the essential supremum of its argument. We also let L be the Lipschitz

constant of ` when p ∈ [−r − U, r + U ]:

Lip(`, U) =
∥∥∥supp,p′∈[−r−U,r+U ],p 6=p′

`(X,p)−`(X,p′)
|p−p′|

∥∥∥
L∞

.

The next lemma shows that both quantities are finite:

Lemma 3.6.3. Let r′ = max(r + U, ‖ĥ‖∞). Then, B(`, U) ≤ Q+ 2r′

β

√
Γr′ − 1 < +∞ and

Lip(`, U) <

√
Γr+U−1

β < +∞.

Proof. For the second statement, for any t, s ∈ [−b, b] we have

`(X, t)− `(X, s) ≤ E
[
|`(Y, t)− `(Y, s)|

∣∣X] ≤ E
[
K`(Y, b)|t− s|

∣∣X] ≤ √Γb−1
β |t− s| ,

where we used Assumption 1(iii) and Lemma B.1.1(i). Thus, Lip(`, U) ≤
√

Γr+U−1

β < +∞.

For the first statement take some |p| ≤ r + U and write

`(X, p) ≤ `(X, ĥ(X)) + |`(X, p)− `(X, ĥ(X))| ≤ Q+ Lip(`, r′)|p− ĥ(X)|

≤ Q+ Lip(`, r′)(|r + U |+ ‖ĥ‖∞|) ≤ Q+ Γr′−1
β (2r′) ,

where in the second inequality we used Assumption 1(ii), while in the last one we used the

bound on the Lipschitz coefficient.

As it is well known, the Rademacher complexity of C, defined next, captures exactly the

behavior of E
[
∆̃∗n(C)

]
(e.g., Tewari and Bartlett [2013]).

Definition 3.6.4 (Rademacher Complexity of Subsets of Rn). Let A ⊂ Rn, (σ1, . . . , σn) ∈

{−1,+1}n be independent Rademacher random variables (i.e., P (σk = 1) = 1/2). The

Rademacher complexity of A, R(A) is

R(A) =
1

n
E

[
sup
a∈A

n∑
i=1

σiai

]
.
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Definition 3.6.5 (Rademacher Complexity of Function Sets). Let F ⊂ {f : f : X → R}

and P be a measure on X . Then, the nth Rademacher number of F induced by P is

Rn(F) = E [R(F(X1:n))] ,

where F(X1:n) = {(f(X1), . . . , f(Xn)) : f ∈ F} is the projection of F to an i.i.d. sample

X1:n = (X1, . . . , Xn) from P . When n and P are uniquely identified from the context, we

also call Rn(F) the Rademacher-complexity of F .

The Rademacher complexity enjoys a number of useful properties, amongst which we

need the following contraction property:

Theorem 3.6.2. Let φ = (φ1, . . . , φn) : Rn → Rn, denote {(φ1(a1), . . . , φn(an)) : a ∈ A}

by φ ◦ A for A ⊂ Rn. Assume that all the component functions φi are L-Lipschitz over A.

Then, R(φ ◦A) ≤ LR(A).

Note that this theorem is usually stated for the case when φ1 = . . . = φn. The sim-

pler form is sufficient for “margin based losses” (used in classification) that have the form

`(y, p) = g(yp) with some g. As we will see, here we need this more general form as our

losses are less constrained. However, the proof of this more general result still follows the

standard reasoning. We defer the proof to Appendix B.5.

Let L =
{
sf : X → R : sf (x) = `(x, f)− `(x, f∗), f ∈ C, x ∈ X

}
. Note that ∆̃n(f) −

∆̃n(f∗) = (L(f)−Ln(f))− (L(f∗)−Ln(f∗)) = E
[
`(X, f)− `(X, f∗)

]
− 1
n

∑n
k=1(`(Xk, f)−

`(Xk, f
∗)) = E [sf (X)]− 1

n

∑n
k=1 sf (Xk). Following the standard argument, since the range

of functions in L is bounded by B(`, U), by McDiamid’s inequality, for any 0 < δ < 1, with

probability at least 1− δ,

∆̃∗n(C) = sup
s∈L

E [s(X)]− 1
n

∑n
k=1 s(Xk)

≤ E
[
sup
s∈L

E [s(X)]− 1
n

∑n
k=1 s(Xk)

]
+B(`, U)

√
2 log 1

δ

n
.

Following the calculation before Theorem 7 in Section 3.2 of Tewari and Bartlett [2013],

E
[
sup
s∈L

E [s(X)]− 1
n

∑n
k=1 s(Xk)

]
≤ 2Rn(L).

Let us now bound Rn(L) = E [R(L(X1:n))]. We can write

L(X1:n) = {sf (X1:n) : f ∈ C} = φ ◦ C(X1:n),

where φ = (φ1, . . . , φn) : Rn → Rn is defined by φk(t) = `(Xk, t) − `(Xk, f
∗(Xk)) (note

that φ is random). By definition, each component of φ is almost surely Lipschitz over any

bounded interval [−b, b] with the same Lipschitz constant (depending on b). Indeed, for any
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t, s ∈ [−b, b],

‖|φk(t)− φk(s)|‖L∞ = ‖|`(Xk, t)− `(Xk, s)|‖L∞

= inf
{
a ∈ R : P

(
|`(Xk, t)− `(Xk, s)| > a

)}
= inf

{
a ∈ R : P

(
|`(X, t)− `(X, s)| > a

)}
= ‖|`(X, t)− `(X, s)|‖L∞

≤ Lip(`, b)|t− s| ,

where the second and fourth equalities used the definition of ‖·‖L∞ and the third used that

Xk and X are identically distributed. Now, since C contains functions bounded by r + U ,

by Theorem 3.6.2,

R(φ ◦ C(X1:n)) ≤ Lip(`, U)R(C(X1:n)) a.s.

and hence

Rn(L) = ER(L(X1:n)) = ER(φ ◦ C(X1:n)) ≤ Lip(`, U)ER(C(X1:n)) = Lip(`, U)Rn(C).

Our next goal is to bound Rn(C). By Dudley’s entropy integral bound [Dudley, 1967]

(e.g., Theorem 10 of Tewari and Bartlett [2013], for a statement with a proof see Theo-

rem 11.4 of Rakhlin and Sridharan [2014]),

Rn(C) ≤ 12√
n
E
[∫ 1

0

H1/2(u, C, ‖·‖n) du

]
≤ 12√

n
(2CH + 2CG(U)),

where the second inequality holds thanks to Lemma B.1.2 and we also used that Dudley’s

bound holds regardless the scale of the range of functions in C (this is not hard to check

by inspecting the proof of the bound). Combining all the inequalities we get that with

probability at least 1− δ,

∆̃∗n(C) ≤ 48(CH + CG(U)) Lip(`, U)√
n

+B(`, U)

√
log 1

δ

2n
. (3.14)

Combining Equations (3.11) and (3.12), we have for any z ≥ 0,

P (L(fn)− L(f∗) > z) ≤ P (Ec) + P
(

∆̃∗n(C) + ∆
∗
n(C) > z

)
. (3.15)

Now, by Lemma 3.6.2 and (3.14), for any 0 < δ < 1 such that log(1/δ) ≥ c, with probability

at least 1− 2δ,

∆̃∗n(C) + ∆
∗
n(C) ≤ 48(CH + CG(U)) Lip(`, U)√

n
+ 2(r + U)

√
log 2

δ

αn
+B(`, U)

√
log 1

δ

2n
=: π(δ) .

Together with (3.15) and Theorem 3.5.1, we thus get that with probability 1− 3δ, provided

that log(1/δ) ≥ c and n ≥ c1 + c2
log( 2ρ

δ )
λmin

,

L(fn)− L(f∗) ≤ π(δ) ,

thus finishing the proof.
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3.7 Discussions

Notice that the above high probability result holds only if n is large compared to log(1/δ),

or, equivalently when δ is not too small compared to n, a condition that is inherited from

Theorem 3.5.1. Was without this constraint, the tail of L(fn) − L(f∗) would be of a sub-

gaussian type, which we could integrate to get an expected risk bound. However, because

of the constraint, this does not work. With no better idea, one can introduce clipping, to

limit the magnitude of the prediction errors on an event of probability (say) 1/n. This

still results in an expected risk bound of the order (i.e., O(1/
√
n)), as expected, although

with an extra logarithmic factor. However, if one needs to introduce clipping, this could

be done earlier, reducing the problem to studying the metric entropy of the clipped version

of F (which is almost what is done in Lemma B.1.2 given in the supplementary material).

For this, assuming Y is bounded, one can use Theorem 11.5 of Györfi et al. [2002]. Note,

however, that in this result, for example, the clipping level, which one would probably se-

lect conservatively in practice, appears raised to the 4th power. In comparison, with our

technique, the clipping level could actually be made appear only through its logarithm in

our bound if we choose δ = 1/(Ln).

On the other hand, our bound scales with λ−1
min through U . This is alarming unless the

eigenvalues of the Grammian are well-controlled, in which case λ−1
min = O(

√
ρ). Our example

in Section 3.3 also shows that the constraint connecting n, λmin and δ in Theorem 3.6.1

is not removable without imposing additional conditions. More importantly, not all high

probability bounds are equal. In particular, the type of in Theorem 3.6.1 constraining n to

be larger than log(1/δ) does not guarantee small expected risk.

Finally based on this example, we see that an expected risk bound can be derived from

Theorem 3.6.1, e.g., for the squared loss, by introducing a penalty of the form ‖θ‖22 in the

empirical loss minimization criterion to add an amount of O(1/n) to all the eigenvalues of the

data Grammian and setting δ = O(1/n2). Since then outside of an event with probability

O(1/n2), the risk is controlled by the high probability bound of Theorem 3.6.1, while on the

remaining “bad event”, the prediction error will stay bounded by n2. Although numerical

algebra packages implement pseudo-inverses by cutting the minimum eigenvalue, this may

be insufficient since they usually cut at the machine precision level, which translates into

sample sizes which may not be available in practice.

3.8 Conclusions and future work

In this chapter we set out to investigate the question whether current practice in semipara-

metric regression of not penalizing the parametric component is a wise choice from the point

of view of finite-time performance. We found that for any error probability level, for sample
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sizes n = Ω(log(1/δ)), the risk of such a procedure can indeed be bounded with high prob-

ability, proving the first finite-sample generalization bound for partially linear stochastic

models. The main difficulty of the proof is to guarantee that the parametric component is

bounded in the supremum norm. However, we have also found that an additional restriction

connecting the data generating distribution and the parametric part is necessary to prove

an expected risk bound. This second observation is based on an example where the model

is purely parametric. Based on the attained results, unless other additional knowledge is

available, we think that it is too risky to follow current practice and recommend introducing

some form of regularization for the parametric part and/or clipping the predictions when

suitable bounds are available on the range of the Bayes predictor. Our results also help

identify that existing bounds in the literature do not capture the behavior of the distribu-

tion of the minimum positive eigenvalue of empirical Grammian matrices λ̂min, which would

be critical for improving our understanding of the basic question of how the expected risk

of ordinary least-squares behaves.
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Appendix B

Omitted Proofs for Chapter 3

This Chapter is devoted to the omitted proofs for Chapter 3.

B.1 Technical lemmas

We first present some results that we will need later multiple times.

Lemma B.1.1 (Elementary Properties of Subgaussian Random Variables). Let U be a

subgaussian random variable with parameters (β,Γ). Then,

(i) E [|U |] ≤ 1
β

√
Γ− 1;

(ii) for any constant c ≥ 0, U + c is subgaussian.

Proof. (i) follows from

Γ ≥ E
[
exp

(
|βU |2

)]
≥ exp

(
E
[
|βU |2

])
≥ exp

(
E [|βU |]2

)
≥ 1 + E [|βU |]2 .

(ii) follows from

E
[
exp

(
1
2β

2(U + c)2
)]
≤ E

[
exp

(
β2U2 + β2c2

)]
≤ eβ

2c2E
[
exp

(
|βU |2

)]
≤ eβ

2c2Γ .

We will also need the following result:

Lemma B.1.2. Let U > 0, C = H+ G(U). Then, a.s.∫ 1

0

√
H(u, C, ‖·‖n) du ≤ 2CH + 2CG(U) ,

where CG(U) = ρ1/2
∫ 1

0
log1/2

(
4U+u
u

)
du (= O(

√
ρ(log(U))+).

Proof of Lemma B.1.2. Since C = H+ G(U), a standard argument shows that

H(u;σ) ≤ H(u/2;H; ‖·‖n) +H(u/2,G(U), ‖·‖n) . (B.1)
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Now, note that ‖·‖n ≤ ‖·‖∞,n. Thus,∫ 1

0

H1/2(u/2,H, ‖·‖n) du

= 2

∫ 1/2

0

H1/2(u,H, ‖·‖n) du ≤ 2

∫ 1

0

H1/2(u,H, ‖·‖n) du

≤ 2

∫ 1

0

H1/2(u,H, ‖·‖∞,n) du ≤ 2CH ,

where the last inequality is by Assumption 3. Moreover, since ‖g‖n ≤ ‖g‖∞, G(U) is a

subset of the ball BG,‖·‖n(0, U). Thus,∫ 1

0

H1/2(u/2,G(U), ‖·‖n) du

≤ 2

∫ 1

0

H1/2(u,G(U), ‖·‖n) du ≤ 2

∫ 1

0

H1/2(u,BG,‖·‖n(0, U), ‖·‖n) du

≤ 2ρ1/2

∫ 1

0

log1/2

(
4U + u

u

)
du = 2CG(U) ,

where the second inequality is by Corollary 2.6 of [van de Geer, 2000], which states that

H(ε, BG,‖·‖n(0, σ)) ≤ ρ log( 4σ+ε
ε ). Using (B.1) and

√
a+ b ≤

√
a +
√
b which holds for

a, b ≥ 0, we conclude that ∫ 1

0

√
H(u;σ) du ≤ 2CH + 2CG(U),

finishing the proof of the claim.

B.2 Proof of eigenvalue bound (Lemma 3.5.1)

Lemma 3.5.1. The following hold:

(i) With probability one, for any θ ∈ Rd, θ>Ĝθ ≤ θ>Gθ
λmin

.

(ii) Assuming that n ∈ N and δ ∈ (0, 1) are such that

n ≥ 2

λmin log
(
e
2

) log
(ρ
δ

)
, (3.6)

where ρ and λmin are respectively the rank and the smallest positive eigenvalue of G,

with probability at least 1− δ, it holds that λ̂min ≥ λmin

2 > 0.

(iii) For any n, δ satisfying (3.6), then with probability 1 − δ it holds that for any θ ∈ Rd

and [PX ] almost every x ∈ X , |〈θ, φ(x)〉| ≤
√

2θ>Ĝθ
λmin

.

Proof. Part (i): We first show that Ker(G) ⊆ Ker(Ĝ) holds almost surely: In particular,

this can be seen by proving that Gθ = 0 for some θ ∈ Rd then with probability one,

Ĝθ = 0 also holds. Indeed, if the latter did not hold with probability one, then for some

ε > 0, P(θ>Ĝθ ≥ ε) > 0 would hold. Then, θ>Gθ = E[θ>Ĝθ] ≥ εP(θ>Ĝθ ≥ ε) > 0,
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which means that θ 6∈ Ker(G). Now, if we take a set of vectors {θ1, . . . , θm} spanning

Ker(G), then on some event E with P(E) = 1, Ĝθi = 0 holds for all 1 ≤ i ≤ m. Now,

on E, Ker(G) ⊂ Ker(Ĝ). Indeed, take an arbitrary θ ∈ Ker(G) and expand it using {θi}:

θ =
∑m
i=1 λiθi. Then, Ĝθ =

∑
i λĜθi and since Ĝθi = 0 simultaneously for all i, the

statement follows.

Now, for proving Part (i), consider the event E where Ker(G) ⊂ Ker(Ĝ). We prove the

result on E: Pick any θ ∈ Rd and decompose it into θ = θ⊥+ θ|| such that θ⊥ ⊥ Im(G) and

θ|| ∈ Im(G). Hence, θ>Gθ = θ>||Gθ||. Since θ⊥ ∈ Ker(G) and Ker(G) ⊂ Ker(Ĝ), we have

Ĝθ⊥ = 0. Hence, θ>Ĝθ = θ>|| Ĝθ||. Now, since ‖φ(x)‖2 ≤ 1 it holds that λ̂max ≤ 1, where

λ̂max denotes the largest eigenvalue of Ĝ. Therefore, on E,

θ>Ĝθ = θ>|| Ĝθ|| ≤ ‖θ||‖
2
2 ≤

θ>||Gθ||

λmin
=
θ>Gθ

λmin
.

Since P(E) = 1, the result follows.

Part (ii): By the “Eigenvalue Chernoff Bound” (Theorem 4.1) of Gittens and Tropp [2011],

with probability at least 1 − ρ exp
(
− nλmin

(
ε + (1 − ε) log(1 − ε)

))
, λ̂min ≥ (1 − ε)λmin.

Choosing ε = 1/2 gives the result.

Part (iii): Fix n, δ as required. Let E be the event where Ker(G) ⊂ Ker(Ĝ) and let Fδ be

the event where the inequality of Part (ii) holds. Take the set S of those x ∈ supp(PX)

where Ker(G) ⊂ Ker(φ(x)φ(x)>) holds. It follows from the argument presented in Part (i)

that PX(X \ S) = 0.

Since P(E ∩ Fδ) ≥ 1 − δ, it suffices to prove the statement on E ∩ Fδ. Hence, in what

follows all statements are meant to hold on this event. Pick any θ ∈ Rd, x ∈ S and

decompose θ as before. Then, thanks to x ∈ S it holds that θ⊥ ∈ Ker(φ(x)φ(x)>). Hence,

〈θ, φ(x)〉2 = θ>φ(x)φ(x)>θ = θ||φ(x)φ(x)>θ|| = 〈θ||, φ(x)〉2. Now, owning to ‖φ(x)‖2 ≤ 1,

〈θ||, φ(x)〉2 ≤
∥∥θ||∥∥2

2
≤
θ>|| Ĝθ||

λ̂min

≤
2 θ>|| Ĝθ||

λmin
=

2 θ>Ĝθ

λmin
,

where the last inequality follows from Part (ii).

B.3 Proof of Lemma 3.5.3

The proof follows the ideas from the paper of van de Geer [1990]. Lemma 3.5.3 calls for a

uniform (in h ∈ H) bound for
∥∥gh,n − gh,n∥∥n. Fix h ∈ H. We consider a self-normalized

“version” of the differences gh,n−gh,n, which are easier to deal with. This is done as follows:

For g ∈ G, define

ωg,h =
g − gh,n

1 +K
∥∥g − gh,n∥∥n and Ωh,n = {ωg,h : g ∈ G} ,
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where K > 0 is to be chosen later. Then, for any ω ∈ Ωh,n, ‖ω‖n <
1
K and

∥∥g − gh,n∥∥n =

∥∥g − gh,n∥∥n
1 +K

∥∥g − gh,n∥∥n
(

1 +K
∥∥g − gh,n∥∥n) = ‖ωg,h‖n

(
1 +K

∥∥g − gh,n∥∥n)
=

‖ωg,h‖n
1−K ‖ωg,h‖n

.

(B.2)

Thus, we see that is enough to control the empirical norm of

ω̂h,n = ωgh,n,h =
gh,n − gh,n

1 +K
∥∥gh,n − gh,n∥∥n .

The first step is to bound this norm in terms of the increments of the empirical process

∆h,n(g) := Lh,n(g)− Lh,n(g) .

Lemma B.3.1 (“Basic Inequality”). Let Assumption 2 hold. There exists a constant η,

such that on the event Gλmin
, for any h ∈ H,

η ‖ω̂h,n‖2n ≤∆h,n(gh,n)−∆h,n(gh,n + ω̂h,n) .

The proof, which is stated in Section B.3.1, follows standard arguments. Based on this,

we can reduce the study of the supremum of the empirical norm of ω̂h,n to that of the

supremum of the increments Vh,n(ω) =
√
n
(
∆h,n(gh,n)−∆h,n(gh,n + ω)

)
normalized by ω.

In particular, it follows from Lemma B.3.1 that for L, σ > 0,

P
(

sup
h∈H
‖ω̂h,n‖n ≥ Lσ ,Gλmin

)
= P

(
∃h ∈ H : ‖ω̂h,n‖n ≥ Lσ,

Vh,n(ω̂h,n)

‖ω̂h,n‖2n
≥ η
√
n ,Gλmin

)
≤ P

(
sup

(g,h)∈G×H:‖ωg,h‖n≥Lσ

Vh,n(ωg,h)

‖ωg,h‖2n
≥ η
√
n ,Gλmin

)
. (B.3)

The supremum of normalized increments similar to the one appearing above was studied

by van de Geer [1990]. In fact, we will adapt Lemma 3.4 of this paper to our purposes.

The lemma requires minimal modifications: In our case, the empirical process is indexed

with elements of {ωg,h : g ∈ G, h ∈ H}, the product set G ×H, whereas van de Geer [1990]

considers a similar result for h = 0. As a result, whereas van de Geer [1990] reduces the

study of this probability to bounding the “size” of balls in the the index space, we will

reduce it to bounding the size of “tubes”.

To state the generalization of Lemma 3.4 of van de Geer [1990], we introduce the following

abstract setting: Let (V, dV,k), (Λ, dΛ,k) be pseudo-metric spaces (k = 1, . . . , n), d2
k be

the pseudo-metric on V × Λ, which for γ = (ν, λ), γ̃ = (ν̃, λ̃) in V × Λ is defined by
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d2
k(γ, γ̃) = d2

V,k(ν, ν̃) + d2
Λ,k(λ, λ̃). Further, let d2 be the pseudo-metric on V × Λ defined

by d2 = 1
n

∑n
k=1 d

2
k. Consider the real-valued processes U1, U2, . . . , Un on V × Λ and the

process

Zn =
1√
n

n∑
k=1

Uk .

For σ > 0, denote by H(ε, σ)
.
= H(ε, T (σ), d), the metric entropy of the σ-“tube”

T (σ) = ∪ν∈V {ν} × {λ ∈ Λν : dΛ(λν , λ) ≤ σ} ⊂ V × Λ ,

where for ν ∈ V , Λν ⊂ Λ and dΛ (defining the “tube”) is the a pseudo-metric on Λ defined

by d2
Λ(λ, λ̃) = 1

n

∑
k d

2
Λ,k(λ, λ̃). For L > 0, define

αn(L, σ) =

∫ 1

0

√
H(uLσ,Lσ)du
√
nLσ

.

With this, we are ready to state our generalization of Lemma 3.4 of van de Geer [1990]:

Lemma B.3.2. Assume that the following conditions hold:

(i) U1, U2, · · · , Un are independent, centered; for all ν ∈ V , Zn(ν, λν) = 0 for some

λν ∈ Λ, and

|Uk(γ)− Uk(γ̃)| ≤Mkdk(γ, γ̃) , γ, γ̃ ∈ V × Λ,

where M1,M2, · · · ,Mn are uniformly subgaussian, i.e., for some positive β and Γ,

E[exp(|βMk|2)] ≤ Γ <∞, k = 1, 2, . . . , n.

(ii) Assume that σ > 0 is such that
√
nσ ≥ 1 and suppose

lim
L→∞

αn(L, σ) = 0 .

Then, there exist constants L0 ≥ 1 and C0, depending only on (β,Γ) and the map L 7→

αn(L, σ), such that for all L ≥ L0,

P
(

sup
ν∈V

sup
λ∈Λν :

dΛ(λν ,λ)>Lσ

|Zn(ν, λ)|
d2

Λ(λν , λ)
≥
√
n
)
≤ exp(−C0L

2σ2n).

Remark B.3.3. The proof is obtained by modifying the proof of van de Geer [1990]’s

Lemma 3.4 in a straightforward manner and hence it is omitted. A careful investigation

of the original proof will find that the result also holds if we find L0 and C0 depending

on an upper bound α̃n(L, σ) for αn(L, σ) provided that limL→∞ α̃n(L, σ) = 0 still holds.

Moreover, if the upper bound is selected such that it does not depend on n and σ but only

on L and the “size” of the spaces V , (Λν)ν∈V , then L0 and C0 will depend only on (β,Γ)

and the mentioned “size”.
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To apply Lemma B.3.2 to our problem, we choose the spaces to be V = H, Λ = ∪h∈HΛh,

where Λh = Ωh,n. Further, we choose the pseudo-metrics to be d2
V,k(h, h̃) = |h(Xk) −

h̃(Xk)|2 + ‖h − h̃‖2∞,n (h, h̃ ∈ V ), and dΛ,k(ω, ω̃) = |ω(Xk) − ω̃(Xk)| (ω, ω̃ ∈ Λ). We also

choose Λh = Ωh,n ⊂ Λ. Since these pseudo-metrics are random (they depend on X1:n), for

a proper use of Lemma B.3.2 we again need to “condition” on X1:n when using this lemma.

Making this argument formal will be discussed in ??.

For f ∈ L1(X , PX), ω ∈ Λ, h ∈ H set

∆k(f) =
1

η
(`(Zk, f)− Ex1:n

[`(Zk, f)]) ,

Uk(h, ω) = ∆k(h+ gh,n)−∆k(h+ gh,n + ω) .

(We remind the reader that, although not shown to minimize clutter, ∆k and Uk do depend

on x1:n.)

Now, for h ∈ H, we set λh = 0. Thus, Uk(h, λh) = Uk(h, 0) = 0. Furthermore,

for Zn(h, ω) = 1√
n

∑n
k=1 Uk(h, ω) we have Zn(h, ω) = 1

ηVh,n(ω) and therefore (using that

λh = 0 and dΛ(ω, ω̃) = ‖ω − ω̃‖n)

sup
h∈H

sup
ω∈Λh:

dΛ(λh,ω)>Lσ

Zn(h, ω)

d2
Λ(λh, ω)

= sup
h∈H

sup
ω∈Ωh,n:
‖ω‖n>Lσ

Vh,n(ω)

η ‖ω‖2n
=: Qn(Lσ) , (B.4)

showing that the conclusion of the lemma suffices to bound the quantity of interest appearing

in (B.3).

We claim that the condition of Lemma B.3.2 are satisfied for [PX ] almost every x1:n ∈ Xn

such that λmin(x1:n)
.
= λmin(Φ(x1:n)>Φ(x1:n)) ≥ λmin/2. Let N ⊂ Xn be the [PX ] null-set

where the claim is not required to hold (we will construct N in the proof). That Uk are

centered and Zn(h, λh) = 0 for any h ∈ H holds by construction. As far as the remaining

conditions are concerned, we have:

Condition (i), the independence of (Uk): This follows from the definition of Px1:n and the

independence of (Xk, Yk).

Condition (i), the Lipschitzness of Uk: Our goal is to show (for later use) that the Lipschitz

coefficients Mk can be chosen independently of n and x1:n as long λmin(x1:n) ≥ λmin/2. For

this, we will assume that

K ≥ 1 . (B.5)

Since Uk is defined as a function of ∆k, we consider the Lipschitzness of ∆k first. Using the

definition of ∆k and the Lipschitzness of ` (cf. Assumption 1(iii)), for any f, f ′ ∈ L1(X , PX)

we have

|∆k(f)−∆k(f ′)|

≤ 1

η

(
|`(Zk, f))− `(Zk, f ′)|
|f(Xk)− f ′(Xk)|

+
E [|`(Zk, f)− `(Zk, f ′)| |Xk]

|f(Xk)− f ′(Xk)|

)
|f(Xk)− f ′(Xk)|.
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Denote |`(Zk,f))−`(Zk,f ′)|
|f(Xk)−f ′(Xk)| +

E[|`(Zk,f)−`(Zk,f ′)| |Xk]
|f(Xk)−f ′(Xk)| by Nk(f, f ′). Thus, for h, h̃ ∈ H, ω, ω̃ ∈ Λ,

letting f = h+ gh,n, f̃ = h̃+ gh̃,n,

|Uk(h, ω)− Uk(h̃, ω̃)|

≤ 1

η
Nk(f, f̃)

∣∣∣f(Xk)− f̃(Xk)
∣∣∣

+
1

η
Nk(f + ω, f̃ + ω̃)

{∣∣∣f(Xk)− f̃(Xk)
∣∣∣+ |ω(Xk)− ω̃(Xk)|

}
Now, by assumption |h(xk)|, |h̃(xk)| ≤ r. Also from (3.5), Lemma 3.5.2, and λmin(x1:n) ≥

λmin/2, it follows that |gh,n(xk)|, |gh̃,n(xk)| ≤ 2R
λmin

. Also, by the same argument as in

Lemma B.3.5, again thanks to λmin(x1:n) ≥ λmin/2, |ω(xk)|, |ω̃(xk)| ≤ 1
K(λmin/2)1/2 ≤

1
(λmin/2)1/2 , where we used (B.5). Hence,

Nk(f, f̃) ≤ K`

(
Yk, r +

2R

λmin

)
+ E

[
K`

(
Yk, r +

2R

λmin

)
|Xk

]
and similarly,

Nk(f + ω, f̃ + ω̃) ≤ K`

(
Yk, r +

2R

λmin
+

1

(λmin/2)1/2

)
+ E

[
K`

(
Yk, r +

2R

λmin
+

1

(λmin/2)1/2

)
|Xk

]
Now,

|f(xk)− f̃(xk)| ≤ |h(xk)− h̃(xk)|+ |gh,n(xk)− gh̃,n(xk)|

≤ |h(xk)− h̃(xk)|+Kh‖h− h̃‖∞,n ,

where the second inequality follows since by Assumption 4, h 7→ gh,n(xk) is Kh-Lipschitz.

Therefore, by the choice of dV,k and dΛ,k,

|Uk(h, ω)− Uk(h̃, ω̃)| ≤ 2Mk

η

(
dV,k(h, h̃) + dΛ,k(ω, ω̃)

)
≤M ′kdk

(
(h, ω), (h̃, ω̃)

)
where

Mk = 2K`

(
Yk, r +

2R

λmin
+

1

(λmin/2)1/2

)
+ 2E

[
K`

(
Yk, r +

2R

λmin
+

1

(λmin/2)1/2

)
|Xk

]
.

Note that by Lemma B.1.1(i), it holds almost surely that

E
[
K`

(
Yk, r +

2R

λmin
+

1

(λmin/2)1/2

)
|Xk

]
≤ 1

β

√
Γr+2R/λmin+1/(λmin/2)1/2 − 1.

Then by Lemma B.1.1(ii), Mk is uniformly subgaussian, so is M ′k.

Condition (ii): We want to verify that αn(L, σ) → 0 as L → ∞ and show that in fact an

upper bound α̃(L) on αn(L, σ) which is independent of x1:n, n, K and σ exists such that
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α̃(L) → 0 still holds. Since αn(L, σ) depends on the entropy numbers H(ε, T (σ), d) of the

tube w.r.t. d2 = 1
n

∑
k d

2
k, first we need to estimate these entropy numbers. For γ = (h, ω),

γ̃ = (h̃, ω̃), we have

d2(γ, γ̃) =
1

n

∑
k

d2
V,k(h, h̃) +

1

n

∑
k

d2
Λ,k(ω, ω̃)

= ‖h− h̃‖2n + ‖h− h̃‖2∞,n + ‖ω − ω̃‖2n ≤ 2
(
‖h− h̃‖2∞,n + ‖ω − ω̃‖2n

)
.

Further, d2
Λ(ω, ω̃) = ‖ω − ω̃‖2n and therefore by the choice Λh = Ωh,n and λh = 0,

T (σ) = {(h, ω) : h ∈ H, ω ∈ Ωh,n s.t. ‖ω‖n ≤ σ} .

Therefore, it suffices to estimate the metric entropy of T (σ) at different scales w.r.t. the

pseudo-norm ‖·‖T defined by ‖(h, ωg,h)‖T = ‖h‖∞,n+‖ωg,h‖n. This is done in the following

Proposition B.3.4, which also shows that the integrability assumption is satisfied (the proof

is presented in the appendix):

Proposition B.3.4. Let Assumptions 1 to 4 hold. Take n ≥ 1, K > 0, ε > 0, 1 ≥ σ ≥ ε

such that Kσ ≤ 1/2. Then on Gλmin
,

H(ε, T (σ), ‖ · ‖T ) ≤ρ log(σ/ε) + ρ log(241) + AH( εA ,H, ‖·‖∞,n)

holds a.s. for some positive (non-random) constant A that depends only on Kh.

Furthermore, on Gλmin ,∫ 1

0

H1/2(uσ, T (σ), ‖ · ‖T ) du ≤ A′√ρ+
A′′

σ
,

holds a.s. for some universal constant A′ > 0 and some non-random constant A′′ that

depends on CH and Kh only.

Now, H(ε, σ) = H(ε, T (σ), d) ≤ CH(ε, T (σ), ‖·‖T ) with some universal constant C,

hence H(uLσ,Lσ) ≤ CH(uLσ, T (Lσ), ‖·‖T ) and by the previous result,∫ 1

0

H1/2(uLσ,Lσ)du ≤ C1/2

∫ 1

0

H1/2(uLσ, T (Lσ), ‖·‖T ) du

≤ C ′
(

1 +
1

σ

)
≤ 2C ′

σ

where C ′ is a constant that is independent of L, n,K, σ and we assumed that σ ≤ 1. Hence,

αn(L, σ) ≤ 2C ′√
nLσ2

≤ 2C ′

L

provided that
√
nσ2 ≥ 1. Thus, under this condition, αn(L, σ)→ 0 as L→∞, as required.

Furthermore, the upper bound on αn(L, σ) is independent of x1:n, K, n and σ. Therefore,

L0 and C0 can be selected independently of x1:n, K, n and σ, finishing the verification of

the conditions of Lemma B.3.2.
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Therefore, using (B.4) we conclude that for any L ≥ L0, K,n, σ such that
√
nσ2 ≥ 1

and Kσ ≤ 1/2 and K ≥ 1, for [PX ] almost all x1:n such that λmin(x1:n) ≥ λmin/2,

Px1:n

(
Qn(Lσ) ≥

√
n
)
≤ exp(−C0L

2σ2n).

Now, by the definition of Px1:n
,

P
(
Qn(Lσ) ≥

√
n,Gλmin

)
=

∫
Px1:n

(
Qn(Lσ) ≥

√
n,Gλmin

)
PX(dx1:n)

=

∫
λmin(x1:n)≥λmin/2

Px1:n

(
Qn(Lσ) ≥

√
n
)
PX(dx1:n)

≤
∫
λmin(x1:n)≥λmin/2

exp(−C0L
2σ2n)PX(dx1:n)

≤ exp(−C0L
2σ2n) ,

where the second equality follows since Gλmin is X1:n-measurable.

Hence, by combining (B.2) and (B.3), using the definition of Qn(Lσ) in (B.4) and choos-

ing L = L0,

P
(

sup
h∈H

∥∥gh,n − gh,n∥∥n ≥ L0σ

1−KL0σ
,Gλmin

)
≤ P

(
Qn(Lσ) ≥

√
n,Gλmin

)
≤ exp(−C0L

2
0σ

2n) .

Choosing σ = 1/(2L0) and K = 1, noting that n ≥ σ−4 then translates into n ≥ 16L4
0 gives

that

P
(

sup
h∈H

∥∥gh,n − gh,n∥∥n ≥ 1, Gλmin

)
≤ exp(−C0n/4),

which is the desired result (we also used that L0 ≥ 1 by assumption and hence σ ≤ 1 which

gives that
√
nσ ≥

√
nσ2 ≥ 1).

B.3.1 Proof of the “Basic Inequality” (Lemma B.3.1)

We start with a uniform bound for the infinity norm of elements in Ωh,n. Let

K∞ =
1

K(λmin/2)1/2
.

Recall that Gλmin
is the event when λ̂min ≥ λmin/2.

Lemma B.3.5. On the event Gλmin
,

sup
ω∈Ωh,n

‖ω‖∞ < K∞.

Proof. Introduce ‖x‖2M = x>Mx for M positive definite. Let θh,n be the parameter of

gh,n. Thus,

|ω(x)| = |〈φ(x), θ − θh,n〉|

1 +K

√∥∥θ − θh,n∥∥2

Ĝ

≤ ‖θ − θh,n‖2
1 +Kλ̂

1/2
min‖θ − θh,n‖2

<
1

Kλ̂
1/2
min

≤ K∞.
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With this, we can state the proof of Lemma B.3.1:

Lemma B.3.1 (“Basic Inequality”). Let Assumption 2 hold. There exists a constant η,

such that on the event Gλmin , for any h ∈ H,

η ‖ω̂h,n‖2n ≤∆h,n(gh,n)−∆h,n(gh,n + ω̂h,n) .

Proof. The proof follows the ideas underlying the proof of Lemma 12.2 of the book of van

de Geer [2000].

First, we will prove that Lh,n(gh,n)−Lh,n(gh,n + ω̂h,n) ≥ 0. Note that by the definition

of gh,n, Lh,n(gh,n)− Lh,n(gh,n) ≥ 0. Thus,

0 ≤ Lh,n(gh,n)− Lh,n(gh,n − gh,n + gh,n) ≤ 1

α
(Lh,n(gh,n)− Lh,n((1− α)gh,n + αgh,n))

for any 0 < α ≤ 1, because of the convexity of Lh,n. Taking α = 1

1+K‖gh,n−gh,n‖n
, the

previous inequality gives

1

α
(Lh,n(gh,n)− Lh,n(gh,n + ω̂h,n)) ≥ 0. (B.6)

Now take ε > 0 small enough so that it satisfies Assumption 2 and also ε
K∞
≤ 1. Then

we have Lh,n(gh,n + ω̂h,n)− Lh,n(gh,n) ≥ ε
K∞

(Lh,n(gh,n + ω̂h,n)− Lh,n(gh,n)) because gh,n

is a minimizer of Lh,n (thus Lh,n(gh,n + ω̂h,n)− Lh,n(gh,n) > 0) and thus

Lh,n(gh,n + ω̂h,n)− Lh,n(gh,n) ≥ Lh,n(gh,n +
ε

K∞
ω̂h,n)− Lh,n(gh,n)

≥ ε3

K2
∞
‖ω̂h,n‖2n.

(B.7)

Here, the first inequality holds by the convexity of Lh,n. The second inequality follows from

Assumption 2 used with a = ω̂h,n

∣∣∣
X1:n

, once we verify that its conditions. That a ∈ [−ε, ε]n

follows from Lemma B.3.5, while a ∈ Im(Φ) follows since both gh,n|X1:n and gh,n|X1:n satisfy

this, by construction. Combining (B.6) and (B.7) gives the desired result.

B.3.2 Proof of Proposition B.3.4

The result we want to prove is as follows:

Proposition B.3.4. Let Assumptions 1 to 4 hold. Take n ≥ 1, K > 0, ε > 0, 1 ≥ σ ≥ ε

such that Kσ ≤ 1/2. Then on Gλmin ,

H(ε, T (σ), ‖ · ‖T ) ≤ρ log(σ/ε) + ρ log(241) + AH( εA ,H, ‖·‖∞,n)

holds a.s. for some positive (non-random) constant A that depends only on Kh.

Furthermore, on Gλmin ,∫ 1

0

H1/2(uσ, T (σ), ‖ · ‖T ) du ≤ A′√ρ+
A′′

σ
,

holds a.s. for some universal constant A′ > 0 and some non-random constant A′′ that

depends on CH and Kh only.
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We start by showing that the mapping g, h 7→ (h, ωg,h) is Lipschitz w.r.t ‖·‖T (g ∈ G,

h ∈ H) as this will allow us to bound the entropy of T (σ) in terms of the entropy of H and

the entropy of the union of balls in ∪h∈HΩh,n, in particular ∪h∈HΩh,n(σ).

Let Assumption 4 hold Then, for any K,σ > 0 satisfying Kσ ≤ 1/2 and any (g1, h1),

(g2, h2) ∈ G ×H s.t. ‖ωgi,hi‖n ≤ σ,

‖ωg1,h1 − ωg2,h2‖n ≤ Kg ‖g1 − g2‖n +KgKh ‖h1 − h2‖∞,n (B.8)

holds a.s. on the event Gλmin
, where Kg = 4

√
2. The constant Kh appearing in the bound

is the Lipschitz constant defined in Assumption 4.

Proof. Take any (g1, h1), (g2, h2) ∈ G × H with the required property. By the triangle

inequality, we have

‖ωg1,h1
− ωg2,h2

‖T ≤ ‖ωg1,h1
− ωg2,h1

‖T + ‖ωg2,h1
− ωg2,h2

‖T .

Let us consider bounding ‖ωg1,h1
− ωg2,h1

‖T as the first step. To minimize clutter, introduce

h = h1, ωi = ωgi,h, i = 1, 2. With this, our goal is to bound ‖ω1 − ω2‖T .

We have

|ω1(x)− ω2(x)| =

∣∣∣∣∣ (g1 − gh,n)(x)

1 +K
∥∥g1 − gh,n

∥∥
n

−
(g2 − gh,n)(x)

1 +K
∥∥g2 − gh,n

∥∥
n

∣∣∣∣∣
=

∣∣∣∣∣g1(x)

(
1

1 +K
∥∥g1 − gh,n

∥∥
n

− 1

1 +K
∥∥g2 − gh,n

∥∥
n

)

+
1

1 +K
∥∥g2 − gh,n

∥∥
n

(g1 − g2)(x)

− gh,n(x)

(
1

1 +K
∥∥g1 − gh,n

∥∥
n

− 1

1 +K
∥∥g2 − gh,n

∥∥
n

)∣∣∣∣∣.
By the triangle inequality,∣∣∣∣∣ 1

1 +K
∥∥g1 − gh,n

∥∥
n

− 1

1 +K
∥∥g2 − gh,n

∥∥
n

∣∣∣∣∣ ≤ K ‖g1 − g2‖n .

Thus,

|ω1(x)− ω2(x)| ≤ K|g1(x)− gh,n(x)| ‖g1 − g2‖n + |(g1 − g2)(x)|

and therefore,

n‖ω1 − ω2‖2n ≤
n∑
i=1

{
K|g1(Xi)− gh,n(Xi)| ‖g1 − g2‖n + |(g1 − g2)(Xi)|

}2

≤ 2
n∑
i=1

{
K2|g1(Xi)− gh,n(Xi)|2 ‖g1 − g2‖2n + |(g1 − g2)(Xi)|2

}
≤ 2n(K2

∥∥g1 − gh,n
∥∥2

n
+ 1) ‖g1 − g2‖2n .
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By Equation (B.2), ∥∥g1 − gh,n
∥∥
n

=
‖ω1‖n

1−K ‖ω1‖n
.

Since ω1 ∈ Ωh,n(σ), ‖ω1‖n ≤ σ and Kσ < 1 by assumption,
∥∥g1 − gh,n

∥∥
n
≤ σ

1−Kσ . Com-

bining this with the bound on n ‖ω1 − ω2‖2n, after simplification we get

‖ω1 − ω2‖n ≤

√
2 + 2

(
Kσ

1−Kσ

)2

‖g1 − g2‖n

≤
√

2

(
1 +

Kσ

1−Kσ

)
‖g1 − g2‖n

=
2
√

2

1−Kσ
‖g1 − g2‖n ≤ Kg ‖g1 − g2‖n ,

(B.9)

where Kg = 4
√

2 in the last two steps we used that by assumption Kσ ≤ 1/2.

Let us now consider bounding

‖ωg2,h1 − ωg2,h2‖n .

Noticing that apart from a sign, gh,n and g play a symmetric role in the definition of ωg,h,

following the derivation in the first part we get that, similarly to (B.9),

‖ωg2,h1
− ωg2,h2

‖n ≤
2
√

2

1−Kσ
‖ḡh1,n − ḡh2,n‖n ≤ Kg ‖ḡh1,n − ḡh2,n‖n .

Since by Assumption 4, ‖ḡh1,n − ḡh2,n‖n ≤ Kh ‖h1 − h2‖∞,n holds a.s. on Gλmin
, we get

‖ωg2,h1
− ωg2,h2

‖n ≤ KgKh ‖h1 − h2‖∞,n .

Putting together the bounds obtained, we get that on the event Gλmin ,

‖ωg1,h1
− ωg2,h2

‖n ≤ Kg ‖g1 − g2‖n +KgKh ‖h1 − h2‖∞,n

as required.

With this, we can state the proof of Proposition B.3.4.

Proof of Proposition B.3.4. We can write

T (σ) = ∪h∈H{h} × Ωh,n(σ) ,

where

Ωh,n(σ) = {ω ∈ Ωh,n : ‖ω‖n ≤ σ} .

We first show that

H(ε, T (σ), ‖·‖T ) ≤ H( ε2 ,H, ‖·‖∞,n) +H( ε2 ,Ωn(σ), ‖·‖n) , (B.10)

where Ωn(σ) = ∪h∈HΩh,n(σ). In short, this follows since T (σ) ⊂ H × Ωn(σ) and since, by

definition, ‖·‖T is obtained by “summing” ‖·‖∞,n and ‖·‖n.
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In details, we have: Let C be an integer s.t. C ≥ exp (H(ε/2,H, ‖·‖∞,n)). Then, there

exists {h1, . . . , hC} ⊂ H such that for any h ∈ H, ‖h− hi‖∞,n ≤ ε/2 for some i ∈ {1, . . . , C}.

Similarly, let D be an integer s.t.

D ≥ exp(H( ε2 ,Ωn(σ), ‖·‖n)) ≥ max
1≤i≤C

exp(H( ε2 ,Ωhi,n(σ), ‖·‖n))

and {ω1, . . . , ωD} ⊂ Ωn(σ) be an ε/2-net of Ωn(σ) w.r.t. ‖·‖n. Then,

{(hi, ωj : 1 ≤ i ≤ C, 1 ≤ j ≤ D}

is an ε-net of T (σ): To show this pick any (h, ω) ∈ T (σ). Then, take the index i such that

‖h− hi‖∞,n ≤ ε/2 and take the index j such that ‖ω − ωj‖n ≤ ε/2. Then,

‖(h, ω)− (hi, ωj)‖T = ‖h− hi‖∞,n + ‖ω − ωj‖n ≤ ε,

as required. This shows that (B.10) indeed holds.

Next, we bound H(ε,Ωn(σ), ‖·‖n). We have

Ωn(σ) =
{
ωg,h : h ∈ H, g ∈ G, ‖ωg,h‖n ≤ σ

}
⊂
{
ωg,h : h ∈ H, g ∈ G,

∥∥g − gh,n∥∥n ≤ σ
1−Kσ

}
,

(B.11)

where the containment follows since by Equation (B.2),
∥∥g − gh,n∥∥n =

‖ωg,h‖n
1−K‖ωg,h‖n

. For

s ≥ 0 define

Gh(s) =
{
g ∈ G :

∥∥g − gh,n∥∥n ≤ s} .
Pick Ĥ ⊂ H and an arbitrary “discretization” map N : H → Ĥ. We claim that on Gλmin ,

Ωn(σ) ⊂
{
ωg,h : h ∈ H, g ∈ GN(h)

(
σ

1−Kσ +Kh ‖N(h)− h‖∞,n
)}

a.s. (B.12)

By (B.11) it suffices to show that for any h ∈ H and g ∈ Gh
(

σ
1−Kσ

)
,

g ∈ GN(h)

(
σ

1−Kσ +Kh ‖N(h)− h‖∞,n
)

(B.13)

also holds true. For brevity introduce h′ = N(h). Thanks to the choice g and Assumption 4,∥∥g − gh′,n∥∥n ≤ ∥∥g − gh,n∥∥n +
∥∥gh,n − gh′,n∥∥n ≤ σ

1−Kσ
+Kh ‖h− h′‖∞,n

holds a.s. on Gλmin
, which shows that (B.13) indeed holds.

The following statements holds a.s. on Gλmin
– hence we will not mention this con-

dition to minimize clutter. If Ĥ is an ε/(2KgKh)-net of H w.r.t. ‖·‖∞,n and N(h) =

arg minh′∈H ‖h− h′‖∞,n then Kh ‖N(h)− h‖∞,n ≤ ε/(2Kg) ≤ ε/2 and therefore for any

h′ ∈ Ĥ,

Gh′
(

σ
1−Kσ +Kh ‖N(h)− h‖∞,n

)
⊂ Gh′

(
2σ +

ε

2

)
.

For each h ∈ Ĥ, let Ĝh′ be an ε/2Kg-net of Gh′
(
2σ + ε

2

)
. We claim that

S =
{
ωg′,h′ : h′ ∈ Ĥ, g′ ∈ Ĝh′

}
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is an ε-net of Ωn(σ) w.r.t. ‖·‖n. Indeed, let ω = ωg,h ∈ Ωn(σ) arbitrary. Let h′ be the

nearest neighbor of h in Ĥ w.r.t. ‖·‖∞,n and let g′ be the nearest neighbor of g in Ĝh′ w.r.t.

‖·‖n. Note that g ∈ Gh′(2σ + ε/2). Then, by Section B.3.2,

‖ωg,h − ωg′,h′‖n ≤ Kg ‖g − g′‖n +KgKh ‖h− h′‖∞,n .

Now, because g ∈ Gh′(2σ+ε/2) and Ĝh′ is an ε/(2Kk)-net of this set, we have Kg ‖g − g′‖n ≤

ε/2. Similarly, by the choice of H, ‖h− h′‖∞,n ≤ ε/2, showing that S is indeed an ε-net of

Ωn(σ). Note that the cardinality of S can be bounded by

|S| ≤ |Ĥ| max
h′∈Ĥ

|Ĝh′ | .

Hence,

H(ε,Ωn(σ), ‖·‖n) ≤ H( ε
2Kg

,Gh0(2σ + ε/2), ‖·‖n) +H( ε
2KgKh

,H, ‖·‖∞,n) ,

for an arbitrary h0 ∈ H, where we used that ‖·‖n is translation invariant.

Combining this with (B.10), we get

H(ε, T (σ), ‖·‖T ) ≤ H( ε2 ,Ωn(σ), ‖·‖n) +H( ε2 ,H, ‖·‖∞,n)

≤ H( ε
4Kg

,Gh0(2σ + ε/2), ‖·‖n) +H( ε
4KgKh

,H, ‖·‖∞,n)

+H( ε2 ,H, ‖·‖∞,n)

≤ H( ε
4Kg

,Gh0
(2σ + ε/2), ‖·‖n) +AH( εA ,H, ‖·‖∞,n)

(B.14)

for A large enough.

By Corollary 2.6 in the book of van de Geer [2000], H(ε,Gh0
(σ), ‖·‖n) ≤ ρ log( 4σ+ε

ε ) a.s..

Hence,

H( ε
4Kg

,Gh0
(2σ + ε/2), ‖·‖n) ≤ ρ log

(
32σKg + 8Kgε+ ε

ε

)
≤ ρ log(241) + ρ log(σ/ε), a.s..

Here the second inequality follows from bounding the ε in numerator by σ (since σ ≥ ε),

and Kg < 6. Combining this with (B.14) finishes the proof of the first statement.

To prove the second part, note that
∫ 1

0
(− log(x))1/2 dx =

√
π/2. Thus, with I(σ,H) =∫ 1

0
H1/2(uσ,H, ‖·‖∞,n) du,∫ 1

0

H1/2(uσ, T (σ), ‖ · ‖T ) du ≤ ρ 1
2

∫ 1

0

log
1
2 ( 1
u ) du+ ρ

1
2 log

1
2 (241) +A

1
2 I( σA ,H)

≤ ρ 1
2
√
π/2 + ρ

1
2 log

1
2 (241) +A

1
2 I( σA ,H).

Now, note that∫ 1

0

H1/2(uσ,H, ‖·‖∞,n) du =
1

σ

∫ σ

0

H1/2(v,H, ‖·‖∞,n) dv

≤ 1

σ

∫ 1

0

H1/2(v,H, ‖·‖∞,n) dv ≤ CH/σ,

where the first inequality follows since σ ≤ 1, while the last inequality follows by Assump-

tion 3. The desired result follows by choosing A′ =
√
π/2+log

1
2 (241) and A′′ = A3/2CH .
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B.4 Proof of Lemma 3.6.2

Let (Λ, d) be a pseudo-metric space and for u > 0 let BΛ,d(λ, u) be the d-ball in Λ that has

radius u and is centered at λ. We will allow d to be replaced with a pseudo-norm meaning

the ball where the pseudo-metric is defined by the chosen pseudo-norm. The theorem of

van de Geer bounds the tails of the suprema of centered, Lipschitz empirical processes of Λ

over balls of Λ:

Theorem B.4.1 (Theorem 3.3 of van de Geer [1990]). Let (Λ, d) be a pseudo-metric space

with d2 = (1/n)
∑n
k=1 d

2
k where d1, . . . , dn pseudo-metrics on Λ. Let U1, . . . , Un be real-

valued, independent, centered process on Λ such that for Zn = 1√
n

∑
Uk, Zn(λ0) = 0 for

some λ0 ∈ Λ. For u > 0, denote by H(u;σ) = H(u,BΛ,d(λ0, σ), d), the u-entropy of the

ball BΛ,d(λ0, σ). Assume further that |Uk(λ)− Uk(λ′)| ≤Mkdk(λ, λ′) with Mk ≥ 0 random

such that E[exp(|βMk|2)] ≤ Γ < ∞ for some positive constants β and Γ. Then, there exist

α, η, C1, C2 > 0 depending only on β and Γ such that

P

(
sup

λ∈BΛ,d(λ0,σ)

|Zn(λ)| ≥ t

)
≤ 2 exp

(
−αt

2

σ2

)
holds for any t > 0 and σ > 0 that satisfies t/σ > C1 and t > C2

∫ t0
0

√
H(u;σ) du where

t0 ≥ inf{u : H(u;σ) ≤ ηt2/σ2}.

Let us now turn to the proof of Lemma 3.6.2.

Proof of Lemma 3.6.2. We denote the probability space that holds (X1, Y1), . . . , (Xn, Yn)

by (W,W,P). Note that with no loss of generality, we can assume that (W,W) is a Borel-

space (this is because all our random variables leave in complete, separable metric spaces).

For x1, . . . , xn ∈ X , let x1:n = (x1, . . . , xn). Similarly, let X1:n = (X1, . . . , Xn). Define

(Px1:n)x1:n∈Xn to be the disintegration of the probability measure P with respect to X1:n, also

known as the regular conditional probability measure obtained from P by conditioning on

X1:n.1 The expectation operator corresponding to Px1:n
will be denoted by Ex1:n

. Note that,

by the definition of Px1:n , for any random variable Z on (W,W,P), EX1:n [Z] = E[Z|X1:n]

holds everywhere and in particular, for a measurable function s : Y → R, EX1:n
[s(Yk)] =

E[s(Yk)|X1:n] = E[s(Yk)|Xk], where the last equality holds since by assumption (Xt, Yt) is

i.i.d.

Let Uk,x1:n
(f) = ∆k,x1:n

(f)−∆k,x1:n
(f∗), where

∆k,x1:n
(f) = `(Yk, f(xk))− Ex1:n

[`(Yk, f(xk))] , f ∈ Λ .

1 The defining properties of (Px1:n ) are that for each x1:n ∈ Xn, Px1:n is a probability measure on
(W,W) concentrated on {X1:n = x1:n}, x1:n 7→ Px1:n is measurable and for any f : (W,W) → [0,∞)
measurable function

∫
f(w)P(dw) =

∫
(
∫
f(w)Px1:n (dw))PX1:n

(dx1:n). The existence of (Px1:n ), which is
also called a regular conditional probability distribution is ensured thanks to the assumption that (W,W) is

Borel. Moreover, (Px1:n ) is unique up to an almost sure equivalence in the sense that if (P̂x1:n ) is another

disintegration of P w.r.t. X1:n then PX({x1:n : Pux 6= P̂x1:n}) = 0. For background on disintegration and
conditioning, the reader is referred to Chang and Pollard [1997].
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Note that Uk,x1:n ’s are independent, centered processes over Wx1:n . Moreover, let Zn,x1:n =

1√
n

∑n
k=1 Uk,x1:n

. By construction, Zn,x1:n
(f∗) = 0. We now show that it is enough to study

the deviations of the suprema of Zn,x1:n
(f) over the probability spaces Wx1:n

.

We have

∆n(f) = Ln(f)− Ln(f) =
1

n

n∑
k=1

∆k,X1:n
(f)

and so
√
n(∆n(f)−∆n(f∗)) = Zn,X1:n

(f) .

By the construction of Px1:n , for z ≥ 0,

P(∆
∗
n(C) ≥ z) =

∫
Px1:n(∆

∗
n(C) ≥ z)PX1:n(dx1:n) , (B.15)

and

Px1:n
(∆
∗
n(C) ≥ z/

√
n) = Px1:n

(
√
n sup
f∈C
|∆n(f)−∆n(f∗)| ≥ z) = Px1:n

(sup
f∈C

Zn,x1:n
(f) ≥ z) .

(B.16)

Let Λ = C, dk,x1:n
(f, f ′) = |f(xk) − f ′(xk)| and d2

x1:n
(f, f ′) = 1

n

∑n
k=1 d

2
k,x1:n

(f, f ′). By

construction, dx1:n
(f, f ′) = ‖f − f ′‖n. Since for any f = h+ g ∈ C,

‖f − f∗‖n = ‖h− h∗‖n + ‖g − g∗‖n ≤ ‖h− h
∗‖∞ + ‖g − g∗‖∞ ≤ 2(r + U) =: σ ,

thus, C ⊂ BΛ,dx1:n
(f∗, σ) ⊂ Λ = C and

Px1:n
(∆
∗
n(C) > z/

√
n) = Px1:n

(
sup

f∈BΛ,dx1:n
(f∗,σ)

Zn,x1:n
(f) > z

)
. (B.17)

Thus, it remains to bound this latter probability. Fix x1:n ∈ Xn such that

Ex1:n
[exp((βK`(Y, c)

2)] ≤ Γc, for all c > 0 . (B.18)

Let us now apply Theorem B.4.1 to Wx1:n
= (W,W,Px1:n

) with Λ, (dk,x1:n
) and (Uk,x1:n

)

(k = 1, . . . , n), as defined above. To verify the uniform subgaussian property of the Lipschitz

coefficient of Uk,x1:n , note that for f, f ′ ∈ C, by Assumption 1(iii),

|Uk,x1:n
(f)− Uk,x1:n

(f ′)| = |∆k,x1:n
(f)−∆k,x1:n

(f ′)|

≤ |`(Yk, f(xk))− `(Yk, f ′(xk))|+ |Ex1:n
[`(Yk, f(xk))− `(Yk, f ′(xk))]|

≤ Kl(Yk, r + U)|f(xk)− f ′(xk)|+ Ex1:n [Kl(Yk, r + U)]|f(xk)− f ′(xk)| .

By Lemma B.1.1(i), Ex1:n
[Kl(Yk, r + U)] ≤ 1

β

√
Γr+U − 1 and so by part (ii) of the same

lemma, Kl(Yk, r+U) +Ex1:n [Kl(Yk, r+U)] is subgaussian, with parameters β′ and Γ′ only

depending on r + U .
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Therefore, from Theorem B.4.1 we conclude that there exists C1, C2, η > 0 such that for

any t > 0 satisfying ηt2/σ2 ≥ H(1;σ), t > C1σ and t > C2

∫ 1

0

√
H(u;σ) du, it holds that

Px1:n

(
sup
f∈C
|Zn,x1:n

(f)| ≥ t

)
= Px1:n

(
sup

f∈BΛ,dx1:n
(f∗,σ)

|Zn,x1:n
(f)| ≥ t

)
≤ 2 exp

(
−αt

2

σ2

)
.

(B.19)

It still remains to check that H(1, σ) and
∫ 1

0

√
H(u;σ) du are finite (otherwise the re-

sult is vacuous). By definition, H(u;σ) = H(u,BΛ,dx1:n
(f∗, σ), dx1:n

) = H(u, C, dx1:n
) =

H(u, C, ‖·‖n). Hence, by Lemma B.1.2,
∫ 1

0
H1/2(u;σ) du ≤ 2CH + 2CG(U). Noting that

H(u;σ) is monotonically decreasing in u, we calculate H1/2(1;σ) ≤
∫ 1

0
H1/2(u;σ) du ≤

2CH + 2CG(U) and so H(1;σ) ≤ (2CH + 2CG(U))2 < ∞. We conclude that (B.19) holds

for any t ≥ tmin := max{C1σ,C2(2CH + 2CG(U)), (2CH + 2CG(U))ση−1/2}.

Since by Assumption 1(iii), (B.18) holds [PX ]-almost surely, combining (B.15), (B.17)

and (B.19), we get

P
(

∆
∗
n(C) ≥ t/

√
n
)
≤ 2 exp

(
−αt

2

σ2

)
. (B.20)

Inverting this inequality, we see that for any 0 < δ < 1 such that log(2/δ) ≥ t2minα/σ
2, with

probability at least 1− δ,

∆
∗
n(C) ≤ σ

√
log 2

δ

αn
,

finishing the proof.

B.5 Proof of Theorem 3.6.2

Theorem 3.6.2. Let φ = (φ1, . . . , φn) : Rn → Rn, denote {(φ1(a1), . . . , φn(an)) : a ∈ A}

by φ ◦ A for A ⊂ Rn. Assume that all the component functions φi are L-Lipschitz over A.

Then, R(φ ◦A) ≤ LR(A).

Proof. We follow the proof of Theorem 11.9 in [Rakhlin and Sridharan, 2014] and write

nR(φ ◦A) = E

[
sup
a∈A

n∑
i=1

σiφi(ai)

]

=
1

2

{
E

[
sup
a∈A

n−1∑
i=1

σiφi(ai) + φn(an)|σn = 1

]

+ E

[
sup
b∈A

n−1∑
i=1

σiφi(bi)− φn(bn)|σn = −1

]}

=
1

2

{
E

[
sup
a,b∈A

n−1∑
i=1

σi(φi(ai) + φi(bi)) + (φn(an)− φn(bn))

]}

≤ 1

2

{
E

[
sup
a,b∈A

n−1∑
i=1

σi(φi(ai) + φi(bi)) + L|an − bn|

]}
.
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Now assume that some (a∗, b∗) achieves the supremum (the proof when the supremum is not

achieved is easy once we know how to prove the statement for the case when the supremums

involved are all achieved). If a∗n ≥ b∗n, the absolute value can be removed. Otherwise, (b∗, a∗)

will achieve the same supremum, and again the absolute value can be removed. Thus, the

last expression is bounded by

1

2

{
E

[
sup
a,b∈A

n−1∑
i=1

σi(φi(ai) + φi(bi)) + L(an − bn)

]}

=
1

2

{
E

[
sup
a∈A

n−1∑
i=1

σiφi(ai) + Lan|σn = 1

]
+ E

[
sup
b∈A

n−1∑
i=1

σiφi(bi)− Lbn|σn = −1

]}

= E

[
sup
a∈A

n−1∑
i=1

σiφi(ai) + Lσnan

]
.

Continuing this way,

E

[
sup
a∈A

n−1∑
i=1

σiφi(ai) + Lσnan

]
≤ E

[
sup
a∈A

n−2∑
i=1

σiφi(ai) + L(σn−1an−1 + σnan)

]

≤ LE

[
sup
a∈A

n∑
i=1

σiai

]
,

thus finishing the proof.
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Chapter 4

Online Linear Prediction

We switch to the domain of online learning in this chapter. Much work has been devoted

recently to studying learning algorithms in the online learning framework [Cesa-Bianchi and

Lugosi, 2006]. This framework usually makes no probabilistic assumptions about the data

generating mechanism.However, by following a minimax approach, results proven, at least

initially, were rather conservative and the algorithm designs also failed to take advantage

of more regular, “nice” data. Recently, the design of adaptive algorithms that perform

better in the presence of “nice” data has received an increasing attention. In this chapter,

we study one of the simplest but fundamental setting, online linear prediction, together

with the simplest possible online learning method, “Follow the Leader” (FTL) algorithm.

Our algorithmcentric study reveals interesting previously unknown features of data that

can help to make FTL perform exceptionally well. A lower bound is presented to show that

our characterization is tight. One problem with FTL is that it fails to meet the worst-cse

guarantee that other algorithms can achieve. To remedy this, we present adaptive algorithms

that simultaneously enjoys the worst-case guarantees and the bound available for FTL.

This chapter is organized as follows: We introduce the background and existing results

in Section 4.1. Preliminaries and problem setup are given in Section 4.2. A non-stochastic

analysis of the FTL algorithm is presented in Section 4.3. In particular our main result is

presented in Section 4.3.1 which shows that FTL achieves fast learning rate in the online

prediction problem on a curved constraint set. Section 4.3.2 is devoted to a matching

asymptotic lower bound, showing that our previous result is tight. Section 4.3.3 is devoted

to the case when the constraint set is a polytope (thus non-curved). We then propose some

adaptive algorithms in Section 4.4. Lastly, Section 4.5 presents some experimental results.

The chapter is concluded in Section 4.6.

The results of this chapter have appeared in our NIPS paper [Huang et al., 2016].
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4.1 Introduction

The online learning framework makes minimal assumptions about the data generating mech-

anism, while still allowing one to replicate results of the statistical framework through

online-to-batch conversions [Cesa-Bianchi et al., 2004]. However, the potential downside of

such an approach is that if the data-generating mechanism is treated as an adversary, as

is done more often than not, the results will have a worst-case flavour. It also encourages

the design of algorithms that, while meeting the strong worst-case guarantee, fail to take

advantage of “nicer” data. Also, it is hard to argue that data resulting from passive data

collection, such as weather data, would ever be adversarially generated (though it is equally

hard to defend that such data satisfies the type of stochastic assumptions often used in

theoretical studies). Realizing this issue, during recent years, much work has been devoted

to understanding what regularities and how can lead to faster learning speed. For example,

much work has been devoted to showing that faster learning speed (smaller “regret”) can be

achieved in the online convex optimization setting with various additional assumptions that

can be exploited in an adaptive manner, such as: (i) the loss functions are “curved” such

as when the loss functions are strongly convex or exp-concave; (ii) the losses show small

variations; (iii) the best prediction in hindsight has a small total loss [Merhav and Feder,

1992, Freund and Schapire, 1997, Gaivoronski and Stella, 2000, Cesa-Bianchi and Lugosi,

2006, Hazan et al., 2007, Bartlett et al., 2007, Kakade and Shalev-Shwartz, 2009, Orabona

et al., 2012, Rakhlin and Sridharan, 2013, van Erven et al., 2015, Foster et al., 2015].

In this chapter we contribute to this growing literature by studying online linear pre-

diction and the follow the leader (FTL) algorithm. Online linear prediction is arguably the

simplest yet most fundamental of all the learning settings. It lies at the heart of online

convex optimization, while it also serves as an abstraction of core learning problems such as

prediction with expert advice. FTL, the online analogue of empirical risk minimization of

statistical learning, is the simplest learning strategy, one can think of. Although the linear

setting of course removes the possibility of exploiting the curvature of losses, as we will

see, there are multiple ways online learning problems can present data that allows for small

regret, even for FTL. As is it well known, in the worst case, FTL suffers a linear regret

(e.g., Example 2.2 of Shalev-Shwartz [2012]), which is why FTL is sometimes discarded.

The approach taken here is to acknowledge this, but also to take a more thorough look at

FTL to see what FTL can offer in non-worst-case scenarios.

Our motivation comes from the simple observation that, for prediction over the simplex,

when the loss vectors are selected independently of each other from a distribution with a

bounded support with a nonzero mean, FTL quickly locks onto selecting the loss-minimizing

vertex of the simplex, achieving finite expected regret. In this case, FTL is arguably an

excellent algorithm. In fact, FTL is shown to be the minimax optimizer for the binary
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losses in the stochastic expert setting in the paper of Kot lowski [2016]. Thus, we ask

the question of whether there are other regularities that allow FTL to achieve nontrivial

performance guarantees. Our main result shows that when the decision set (or constraint

set) has a sufficiently “curved” boundary (equivalently, if this set is strongly convex) and

the average linear loss is bounded away from 0, FTL is able to achieve logarithmic regret

even in the adversarial setting, thus opening up a new way to prove fast rates not based on

the curvature of losses, but on that of the boundary of the constraint set and non-singularity

of the linear loss. In a matching lower bound we show that our regret bound is essentially

unimprovable. We also show an alternate bound for polytope constraint sets, which allows

us to prove that (under certain technical conditions) for stochastic problems the expected

regret of FTL will be finite. To finish, we use the so-called (A, B)-prod algorithm of Sani

et al. [2014] to design an algorithm that adaptively interpolates between the worst-case

O(
√
n log n) regret and the smaller regret bounds, which we prove here for “easy data.”

We also show that if the constraint set is the unit ball, both the “follow the regularized

leader” (FTRL) algorithm and a combination of FTL and shrinkage, which we call “follow

the shrunken leader” (FTSL), achieve logarithmic regret for easy data. Simulation results

on artificial data complement the theoretical findings.

While we believe that we are the first to point out that the curvature of the constraint

set W can help in speeding up learning, this effect is known in convex optimization since

at least the work of Levitin and Polyak [1966], who showed that exponential rates are

attainable for strongly convex constraint sets if the norm of the gradients of the objective

function admit a uniform lower bound. More recently, Garber and Hazan [2015] proved an

O(1/n2) optimization error bound (with problem-dependent constants) for the Frank-Wolfe

algorithm for strongly convex and smooth objectives and strongly convex constraint sets.

The effect of the shape of the constraint set was also discussed by Abbasi-Yadkori [2010]

who demonstrated O(
√
n) regret in the linear bandit setting. While at a high level these

results are similar to ours, our proof technique is rather different than that used there.

4.2 Preliminaries, online learning and the follow the
leader algorithm

We consider the standard framework of online convex optimization, where a learner and an

environment interact in a sequential manner in n rounds, as shown in Fig. 4.1. Here, W is

a non-empty, compact convex subset of Rd and L is a set of convex functions, mapping W

to the reals. The elements of L are called loss functions. The performance of the learner is

measured in terms of its regret,

Rn =
n∑
t=1

`t(wt)− min
w∈W

n∑
t=1

`t(w) .
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1: for t = 1 to n do
2: Learner predicts wt ∈ W ;
3: Environment picks `t ∈ L;
4: Learner suffers `t(wt) and

learns `t.
5: end for

Figure 4.1: Online Learning

The simplest possible case, which will be the

focus of this chapter, is when the losses are linear,

i.e., when `t(w) = 〈ft, w〉 for some ft ∈ F ⊂ Rd.

Hence, in what follows we let `t(w) = 〈ft, w〉. We

will study the regret of the so-called “Follow The

Leader” (FTL) learner, which for the first round

picks w1 ∈ W in an arbitrary manner, while in

round t ≥ 2 , FTL picks

wt = argmin
w∈W

t−1∑
i=1

`i(w) .

When W is compact, the optimal w of minw∈W
∑t−1
i=1〈w, ft〉 is attainable, which we will

assume henceforth. If multiple minimizers exist, we simply fix one of them as wt. We will

also assume that F , which holds the loss vectors ft ∈ Rd, is non-empty, compact and convex.

4.2.1 Support functions

Let Θt = − 1
t

∑t
i=1 fi be the negative average of the first t vectors of (ft)

n
t=1, ft ∈ F . For

convenience, we define Θ0 := 0. Thus, for t ≥ 2,

wt = argmin
w∈W

t−1∑
i=1

〈w, fi〉 = argmin
w∈W

〈w,−Θt−1〉 = argmax
w∈W

〈w,Θt−1〉 .

Let Φ(Θ) = maxw∈W〈w,Θ〉 denote the so-called support function of W. The support

function, being the maximum of linear and hence convex functions, is itself convex. Further

Φ is positive homogenous: for a ≥ 0 and θ ∈ Rd, Φ(aθ) = aΦ(θ). Thus the epigraph

epi(Φ) =
{

(θ, z) | z ≥ Φ(θ), z ∈ R, θ ∈ Rd
}

of Φ is a cone, since for any (θ, z) ∈ epi(Φ) and

a ≥ 0, az ≥ aΦ(θ) = Φ(aθ), hence (aθ, az) ∈ epi(Φ) also holds.

The differentiability of the support function is closely tied to whether in the FTL algo-

rithm the choice of wt is uniquely determined:

Proposition 4.2.1. LetW 6= ∅ be convex and closed. Fix Θ and let Z := {w ∈ W | 〈w,Θ〉 = Φ(Θ)}.

Then, ∂Φ(Θ) = Z and, in particular, Φ(Θ) is differentiable at Θ if and only if maxw∈W〈w,Θ〉

has a unique optimizer. In this case, ∇Φ(Θ) = argmaxw∈W〈w,Θ〉.

The proposition follows from Danskin’s theorem when W is compact (e.g., Proposition

B.25 of Bertsekas 1999), but a simple direct argument can also be used to show that it also

remains true even when W is unbounded. By Proposition 4.2.1, when Φ is differentiable at

Θt−1, wt = ∇Φ(Θt−1).
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Proof of Proposition 4.2.1. We need to show that Z = ∂ϕ(Θ) where recall that

∂ϕ(Θ) =
{
u ∈ Rd |ϕ(Θ) + 〈u, · −Θ〉 ≤ ϕ(·)

}
=
{
u ∈ Rd |ϕ(Θ) ≤ 〈u,Θ〉+ ϕ(·)− 〈u, ·〉

}
.

Since Z ⊂ W , if w ∈ Z, ϕ(Θ′) ≥ 〈w,Θ′〉 for any Θ′ by the definition of ϕ. Hence,

ϕ(Θ) = 〈w,Θ〉 ≤ 〈w,Θ〉+ ϕ(Θ′)− 〈w,Θ′〉 for any Θ′, implying that w ∈ ∂ϕ(Θ).

On the other hand, assume w ∈ ∂ϕ(Θ). Then ϕ(Θ) ≤ 〈w,Θ〉 since ϕ(0) = 〈w, 0〉 = 0.

Since W is closed, Z is also closed. Therefore, if w 6∈ Z, the strict separation theorem

(applied to {w}, a convex compact set, and Z, a convex closed set) implies that there exists

ρ ∈ Rd such that 〈z, ρ〉 < 〈w, ρ〉 for all z ∈ Z. Let Θ′ = Θ + ρ. Then,

ϕ(Θ′) = max
u∈W
〈u,Θ〉+ 〈u, ρ〉 < ϕ(Θ) + 〈w,Θ′ −Θ〉 ≤ 〈w,Θ′〉 ≤ ϕ(Θ′),

a contradiction. Hence, w ∈ Z.

4.2.2 Positive principal curvature

Before presenting our main result, we define some basic notions from differential geometry

related to the curvature (all differential geometry concept and results that we need can be

found in Section 2.5 of Schneider, 2014).

Given a C2 (twice continuously differentiable) planar curve γ in R2, there exists a

parametrization with respect to the curve length s, such that its derivative γ′(s) satisfies

‖γ′(s)‖ = ‖ (x′(s), y′(s)) ‖ =
√
x′(s)2 + y′(s)2 = 1. Under the curve length parametrization,

the curvature of γ at γ(s) is the length of its second derivative ‖γ′′(s)‖. Define the unit nor-

mal vector n(s) as the unit vector that is perpendicular to γ′(s).1 Note that n(s) ·γ′(s) = 0.

Thus 0 = (n(s) · γ′(s))
′

= n′(s) · γ′(s) + n(s) · γ′′(s), and ‖γ′′(s)‖ = ‖n(s) · γ′′(s)‖ =

‖n′(s) · γ′(s)‖ = ‖n′(s)‖. Therefore, the curvature of γ at point γ(s) is the length of the

differential of its unit normal vector.

Denote the boundary ofW by bd(W). We shall assume thatW is C2, that is, bd(W) is a

twice continuously differentiable submanifold of Rd. We denote the tangent plane of bd(W)

at point w by TwW. Now there exists a unique unit vector at w that is perpendicular

to TwW and points outward of W. In fact, one can define a continously differentiable

normal unit vector field on bd(W), uW : bd(W) → Sd−1, the so-called Gauss map, which

maps a boundary point w ∈ bd(W) to the unique outer normal vector to W at w, where

Sd−1 =
{
x ∈ Rd | ‖x‖2 = 1

}
denotes the unit sphere in d-dimensions. The differential of

the Gauss map, ∇uW(w), defines a linear endomorphism of TwW. Moreover, ∇uW(w) is

a self-adjoint operator, with nonnegative eigenvalues. The differential of the Gauss map,

∇uW(w), describes the curvature of bd(W) via the second fundamental form. In particular,

1There exist two unit vectors that are perpendicular to γ′(s) for each point on γ. Pick the ones that are
consistently oriented.
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the principal curvatures of bd(W) at w ∈ bd(W) is defined as the eigenvalues of ∇uW(w).

Perhaps a more intuitive, yet equivalent definition, is that the principal curvatures are the

eigenvalues of the Hessian of f = fw in the parameterization t 7→ w + t − fw(t)uW(w) of

bd(W) which is valid in a small open neighborhood of w, where fw : TwW → [0,∞) is a

suitable convex, nonnegative valued function that also satisfies fw(0) = 0 and where TwW,

a hyperplane of Rd, denotes the tangent space of W at w, obtained by taking the support

plane H of W at w and shifting it by −w. Thus, the principal curvatures at some point

w ∈ bd(W) describe the local shape of bd(W) up to the second order. In this chapter, we

are interested in the minimum principal curvature at w ∈ bd(W), which can be intepreated

as the minimum curvature at w over all the planar curves γ ∈ bd(W) that go through w.

A related concept that has been used in convex optimization to show fast rates is that

of a strongly convex constraint set [Levitin and Polyak, 1966, Garber and Hazan, 2015]:

W is λ-strongly convex with respect to the norm ‖·‖ if, for any x, y ∈ W and γ ∈ [0, 1],

the ‖·‖-ball with origin γx + (1 − γ)y and radius γ(1 − γ)λ ‖x− y‖2 /2 is included in W.

That is, for any z ∈ Rd with ‖z‖ = 1, γx + (1 − γ)y + γ(1 − γ)λ2 ‖x− y‖
2
z ∈ W . Let

Br(x) =
{
y ∈ Rd | ‖x− y‖2 ≤ r

}
denote the Euclidean ball of radius r centered at x. The

next proposition shows that a convex body W ∈ C2 is λ-strongly convex with respect to

‖·‖2 if and only if the principal curvatures of the surface bd(W) are all at least λ.

Proposition 4.2.2. Let W ⊂ Rd be a C2 convex body with support function ϕ, and let λ

be an arbitrary positive number. Then the following statements are equivalent:

(i) The smallest principal curvature of W is at least λ.

(ii) W = ∩θ∈Sd−1B1/λ(wθ − θ/λ) where wθ ∈ ∂ϕ(θ) ⊂ bd(W).

(iii) W is λ-strongly convex.

Condition (ii), which is actually the definition of Polovinkin [1996] for strongly convex

sets, means that W can be obtained as the intersection of closed balls of radius 1/λ, such

that there is one ball for every boundary point w and tangent hyperplane P where the ball

touches P in w. Note that a ball with radius 1/λ satisfies all conditions: (i) and (ii) by

definition, while (iii) holds, e.g., by Example 13 of Journée et al. [2010].

Proof. We show that (i) implies (ii), (ii) implies (iii), and (iii) implies (i).

We start by showing that (i) implies (ii). First note that all principal curvatures of the

d-dimensional ball B = B1/λ(0) with radius 1/λ (centered at the origin) are λ. Therefore,

(i) and Theorem 3.2.9 of Schneider [2014] implies that there is a convex body M such that

W+M = B, where for two sets, S1, S2 ⊂ Rd, S1+S2 is defined as {s1 + s2 | s1 ∈ S1, s2 ∈ S2}.

For any θ ∈ Sd−1, let mθ ∈ argmaxm∈M〈m, θ〉. Then clearly wθ + mθ maximizes 〈b, θ〉 for

b ∈ W +M. Therefore, W +mθ is a subset of B and touches it at wθ +mθ, or equivalently
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Figure 4.2: The local coordinate system at p.

W ⊂ B −mθ and they touch each other, and a tangent hyperplane with normal vector θ,

in wθ. This proves that (i) implies (ii).

Next we prove that (ii) implies (iii). Assuming (ii) holds, let w ∈ W be any point in the

interior of W, and let p ∈ bd(W) be the closest boundary point to w, and recall that TpW

is the tangent space of W at p. By construction, B‖w−p‖2(w) touches the boundary of W

at p (in the sense that they do not intersect, but they can have multiple common points),

and so w − p is orthogonal to TpW. Therefore, B‖w−p‖2(w) also touches the boundary of

the ball B = B1/λ(p + w−p
λ‖w−p‖2 ), which contains W by assumption (ii). Now consider any

two points x, y ∈ W and γ ∈ [0, 1] such that w = γx+ (1− γ)y. Then the ball with radius

λγ(1 − γ)‖x − y‖22/2 centered at w is contained in B, since B is λ-strongly convex. But

then its radius is at most ‖p−w‖2, and so it is also contained in W. This shows that W is

λ-strongly convex, thus (iii) holds. To finish the proof of the proposition, assume (iii). To

prove that (i) holds, we have to show, that for any point p on bd(W) and for any unit vector

v ∈ TpW, the curvature of the boundary along v is at least λ. Let P be the hyperplane

spanned by v and the outer normal vector u of W at point p, and consider the planar curve

γ defined by bd(W) ∩ P . Using v as the axis of a local coordinate system, a point w(s) on

the curve γ in the neighbourhood of p can be expressed as w(s) = p + sv − f(s)u for an

appropriate function f , as illustrated in Fig. 4.2.

Note that f ′(0) = 0, and by Proposition 2.1 of Pressley [2010], the curvature of γ at p

can be obtained as
f ′′(s)

(1 + f ′(s)2)
3/2

∣∣∣∣∣
s=0

= f ′′(0) .

Now since w(s), w(−s) ∈ W for a sufficiently small s, the strong convexity of W applied

to w(s) and w(−s) with γ = 1/2 implies that q = w(s)+w(−s)
2 + λ

8 ‖w(s) − w(−s)‖22u ∈ W .
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Substituting the definition of w(s) and w(−s), we get

q = p− u
[
f(s) + f(−s)

2
− λ

8

(
4s2 + (f(s)− f(−s))2

)]
.

Therefore, q ∈ W implies f(s) + f(−s) ≥ λs2, and so

f ′′(0) = lim
s→0

f(s)−f(0)
s − f(0)−f(−s)

s

s
=
f(s) + f(−s)

s2
≥ λ.

Thus (i) holds, finishing the proof of the proposition.

4.3 Non-stochastic analysis of FTL

We start by rewriting the regret of FTL in an equivalent form, which shows that we can

expect FTL to enjoy a small regret when successive weight vectors move little. A noteworthy

feature of the next proposition is that rather than bounding the regret from above, it gives

an equivalent expression for it.

Proposition 4.3.1. The regret Rn of FTL satisfies

Rn =
n∑
t=1

t 〈wt+1 − wt,Θt〉 .

The result is a direct corollary of Lemma 9 of McMahan [2010], which holds for any

sequence of losses, even in the lack of convexity. It is also a tightening of the well-known

inequality Rn ≤
∑n
t=1 `t(wt)−`t(wt+1), which again holds for arbitrary loss sequences (e.g.,

Lemma 2.1 of Shalev-Shwartz [2012]). To keep the thesis self-contained, we give an elegant,

short direct proof, based on the summation by parts formula:

Proof. The summation by parts formula states that for any u1, v1, . . . , un+1, vn+1 reals,∑n
t=1 ut (vt+1 − vt) = (ut+1vt+1 − u1v1) −

∑n
t=1(ut+1 − ut) vt+1. Applying this to the

definition of regret with ut := wt,· and vt+1 := tΘt, we get

Rn = −
n∑
t=1

〈wt, tΘt − (t− 1)Θt−1〉+ 〈wn+1, nΘn〉

= −

{
hhhhhh〈wn+1, nΘn〉 − 0−

n∑
t=1

〈wt+1 − wt, tΘt〉

}
+
hhhhhh〈wn+1, nΘn〉.

Our next proposition gives another formula that is equal to the regret. Although this

formula is not directly needed for the rest of the chapter, it provides interesting insights: as

opposed to the previous result, it is independent of wt, and directly connects the sequence

(Θt)t to the geometric properties ofW through the support function Φ. A similar expression

for a general ”Follow the Regularized Leader” algorithm can also be founded in the work

of Abernethy et al. [2014]. For this proposition we will momentarily assume that Φ is

differentiable at (Θt)t≥1; a more general statement will follow later.
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Proposition 4.3.2. If Φ is differentiable at Θ1, . . . ,Θn,

Rn =
n∑
t=1

tDΦ(Θt,Θt−1) , (4.1)

where DΦ(θ′, θ) = Φ(θ′)−Φ(θ)−〈∇Φ(θ), θ′− θ〉 is the Bregman divergence of Φ and we use

the convention that ∇Φ(0) = w1.

Proof. Let v = argmaxw∈W〈w, θ〉, v′ = argmaxw∈W〈w, θ′〉. When Φ is differentiable at θ,

DΦ(θ′, θ) = Φ(θ′)− Φ(θ)− 〈∇Φ(θ), θ′− θ〉

= 〈v′, θ′〉− 〈v, θ〉 − 〈v, θ′− θ〉 = 〈v′− v, θ′〉 .
(4.2)

Therefore, by Proposition 4.3.1,

Rn =
n∑
t=1

t〈wt+1 − wt,Θt〉 =
n∑
t=1

tDΦ(Θt,Θt−1).

When Φ is non-differentiable at some of the points Θ1, . . . ,Θn, the equality in the

above proposition can be replaced with inequalities. Defining the upper Bregman diver-

gence DΦ(θ′, θ) = supw∈∂Φ(θ) Φ(θ′)− Φ(θ)− 〈w, θ′ − θ〉 and the lower Bregman divergence

DΦ(θ′, θ) similarly with inf instead of sup,

n∑
t=1

tDΦ(Θt,Θt−1) ≤ Rn ≤
n∑
t=1

tDΦ(Θt,Θt−1) . (4.3)

While Proposition 4.3.2 and Eq. (4.3) are insightful, we will only use Proposition 4.3.1 in

the rest of this chapter.

4.3.1 Constraint sets with positive curvature

The previous results show in an implicit fashion that the curvature of W controls the regret.

Our next result explicitly connects the principal curvatures of bd(W) to the regret of FTL

and shows that FTL enjoys logarithmic regret for highly curved surfaces, as long as ‖Θt‖2
is bounded away from zero.

Theorem 4.3.1. Let W ⊂ Rd be a C2 convex body2 with d ≥ 2. Let M = maxf∈F ‖f‖2
and assume that Φ is differentiable at (Θt)t. Assume that the principal curvatures of the

surface bd(W) are all at least λ0 for some constant λ0 > 0 and Ln := min1≤t≤n ‖Θt‖2 > 0.

Choose any w1 ∈ bd(W). Then

Rn ≤
2M2

λ0Ln
(1 + log(n)) .

2Following Schneider [2014], a convex body of Rd is any non-empty, compact, convex subset of Rd.
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As we will show later in an essentially matching lower bound, this bound is tight, showing

that the forte of FTL is when Ln is bounded away from zero and λ0 is large. Note that

the bound is vacuous as soon as Ln = O(log(n)/n) and is worse than the minimax bound

of O(
√
n) when Ln = o(log(n)/

√
n). One possibility to reduce the bound’s sensitivity to

Ln is to use the trivial bound 〈wt+1−wt,Θt〉 ≤ LW = L supw,w′∈W ‖w − w′‖2 for indices t

when ‖Θt‖ ≤ L. Then, by optimizing the bound over L, one gets a data-dependent bound

of the form infL>0

(
2M2

λ0L
(1 + log(n)) + LW

∑n
t=1 t I (‖Θt‖ ≤ L)

)
, which is more complex,

but is free of Ln and thus reflects the nature of FTL better. Note that in the case of

stochastic problems, where f1, . . . , fn are independent and identically distributed (i.i.d.)

with µ := −E [Θt] 6= 0, the probability that ‖Θt‖2 < ‖µ‖2 /2 is exponentially small in t.

Thus, selecting L = ‖µ‖2 /2 in the previous bound, the contribution of the expectation of the

second term is O(‖µ‖2W ), giving an overall bound of the form O( M2

λ0‖µ‖2
log(n) + ‖µ‖2W ).

After the proof we will provide some simple examples that should make it more intuitive

how the curvature of W helps keeping the regret of FTL small.

Proof. Fix θ1, θ2 ∈ Rd and let

w(1) = argmax
w∈W

〈w, θ1〉, and w(2) = argmax
w∈W

〈w, θ2〉.

Note that if θ1, θ2 6= 0 then w(1), w(2) ∈ bd(W). Below we will show that

〈w(1) − w(2), θ1〉 ≤
1

2λ0

‖θ2 − θ1‖22
‖θ2‖2

. (4.4)

Proposition 4.3.1 suggests that it suffices to bound 〈wt+1 − wt,Θt〉. By Equation (4.4), we

see that it suffices to bound how much Θt moves. A straightforward calculation shows that

Θt cannot move much: for any norm ‖·‖ on F , we have

‖Θt −Θt−1‖ =

∥∥∥∥∥ 1

t− 1

t−1∑
i=1

fi −
1

t

t∑
i=1

fi

∥∥∥∥∥ =

∥∥∥∥∥
t−1∑
i=1

(
1

t− 1
− 1

t

)
fi −

1

t
ft

∥∥∥∥∥
≤

∥∥∥∥∥
t−1∑
i=1

(
1

t− 1
− 1

t

)
fi

∥∥∥∥∥+

∥∥∥∥1

t
ft

∥∥∥∥ =

∥∥∥∥∥
t−1∑
i=1

1

t(t− 1)
fi

∥∥∥∥∥+

∥∥∥∥1

t
ft

∥∥∥∥
=

1

t

∥∥∥∥∥ 1

t− 1

t−1∑
i=1

fi

∥∥∥∥∥+
1

t
‖ft‖ ≤

2

t
M . (4.5)

where M = maxf∈F ‖f‖ is a constant that depends on F and the norm ‖·‖.

Combining Equation (4.4) with Proposition 4.3.1 and Equation (4.5), we get

Rn =
n∑
t=1

t〈wt+1 − wt,Θt〉 ≤
n∑
t=1

t

2λ0

‖Θt −Θt−1‖22
‖Θt−1‖2

≤ 2M2

λ0

n∑
t=1

1

t‖Θt−1‖2
≤ 2M2

λ0Ln

n∑
t=1

1

t
≤ 2M2

λ0Ln
(1 + log(n)) .

To finish the proof, it thus remains to show Equation (4.4).
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The following elementary lemma relates the cosine of the angle between two vectors θ1

and θ2 to the squared normalized distance between the two vectors, thereby reducing our

problem to bounding the cosine of this angle. For brevity, we denote by cos(θ1, θ2) the

cosine of the angle between θ1 and θ2.

Lemma 4.3.3. For any non-zero vectors θ1, θ2 ∈ Rd,

1− cos(θ1, θ2) ≤ 1

2

‖θ1 − θ2‖22
‖θ1‖2‖θ2‖2

. (4.6)

Proof. Note that ‖θ1‖2‖θ2‖2 cos(θ1, θ2) = 〈θ1, θ2〉. Therefore, Equation (4.6) is equivalent to

2‖θ1‖2‖θ2‖2 − 2〈θ1, θ2〉 ≤ ‖θ1 − θ2‖22, which, by algebraic manipulations, is itself equivalent

to 0 ≤ (‖θ1‖2 − ‖θ2‖2)2.

w(1)

θ̃1

w(2)

θ̃2

θ̂2

P

γ(s)

Figure 4.3: Illustration of the construction used in the proof of Equation (4.4).

With this result, we see that it suffices to upper bound cos(θ1, θ2) by 1 − λ0〈w(1) −

w(2), θ1
‖θ1‖2 〉. To develop this bound, let θ̃i = θi

‖θi‖2 for i = 1, 2. The angle between θ1 and θ2

is the same as the angle between the normalized vectors θ̃1 and θ̃2. To calculate the cosine

of the angle between θ̃1 and θ̃2, let P be a plane spanned by θ̃1 and w(1)−w(2) and passing

through w(1) (P is uniquely determined if θ̃1 is not parallel to w(1) − w(2); if there are

multiple planes, just pick any of them). Further, let θ̂2 ∈ Sd−1 be the unit vector along the

projection of θ̃2 onto the plane P , as indicated in Fig. 4.3. Clearly, cos(θ̃1, θ̃2) ≤ cos(θ̃1, θ̂2).

Consider a curve γ(s) on bd(W) connecting w(1) and w(2) that is defined by the in-

tersection of bd(W) and P and is parametrized by its curve length s so that γ(0) = w(1)

and γ(l) = w(2), where l is the length of the curve γ between w(1) and w(2). Let uW(w)

denote the outer normal vector to W at w as before, and let uγ : [0, l]→ Sd−1 be such that

uγ(s) = θ̂ where θ̂ is the unit vector parallel to the projection of uW(γ(s)) on the plane P .

By definition, uγ(0) = θ̃1 and uγ(l) = θ̂2. Note that in fact γ exists in two versions since

W is a compact convex body, hence the intersection of P and bd(W) is a closed curve. Of

these two versions we choose the one that satisfies that 〈γ′(s), θ̃1〉 ≤ 0 for s ∈ [0, l].3 Given

3γ′ and u′γ denote the derivatives of γ and u, respectively, which exist since W is C2.
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the above, we have

cos(θ̃1, θ̂2) = 〈θ̂2, θ̃1〉 = 1+ 〈θ̂2 − θ̃1, θ̃1〉 = 1+
〈∫ l

0

u′γ(s) ds, θ̃1

〉
= 1+

∫ l

0

〈u′γ(s), θ̃1〉 ds. (4.7)

Note that γ is a planar curve on bd(W), thus its curvature λ(s) satisfies λ(s) ≥ λ0 for

s ∈ [0, l]. Also, for any w on the curve γ, γ′(s) is a unit vector parallel to P . Moreover,

u′γ(s) is parallel to γ′(s) and λ(s) = ‖u′γ(s)‖2. Therefore,

〈u′γ(s), θ̃1〉 = ‖u′γ(s)‖2〈γ′(s), θ̃1〉 ≤ λ0〈γ′(s), θ̃1〉,

where the last inequality holds because 〈γ′(s), θ̃1〉 ≤ 0. Plugging this into Equation (4.7),

we get the desired

cos(θ̃1, θ̂2) ≤ 1 + λ0

∫ l

0

〈γ′(s), θ̃1〉 ds = 1 + λ0

〈∫ l

0

γ′(s) ds, θ̃1

〉
= 1− λ0〈w(1) − w(2), θ̃1〉 .

Reordering and combining with Equation (4.6) we obtain

〈w(1) − w(2), θ̃1〉 ≤
1

λ0

(
1− cos(θ̃1, θ̂2)

)
≤ 1

λ0
(1− cos(θ1, θ2))

≤ 1

2λ0

‖θ1 − θ2‖22
‖θ1‖2‖θ2‖2

.

Multiplying both sides by ‖θ1‖2 gives Equation (4.4), thus, finishing the proof.

The next proposition provides some examples to illustrate how principal curvature be-

haves.

Proposition 4.3.4. The smallest principal curvature of some common convex bodies are

as follows:

(i) The smallest principal curvature λ0 of the Euclidean ball of radius r,W = {w | ‖w‖2 ≤ r},

satisfies λ0 = 1
r .

(ii) Let Q be a positive definite matrix. If W =
{
w |w>Qw ≤ 1

}
then λ0 = λmin/

√
λmax,

where λmin and λmax are the minimal, respectively, maximal eigenvalues of Q.

(iii) More generally, let φ : Rd → R be a C2 convex function. Then, forW = {w |φ(w) ≤ 1},

λ0 = minw∈bd(W) minv : ‖v‖2=1,v⊥φ′(w)
v>∇2φ(w)v
‖φ′(w)‖2 .

We only prove part (iii), since it implies part (ii), which implies (i). Polovinkin [1996]

also derived part (ii) for the strong convexity definition (ii) of Proposition 4.2.2.

Proof. Fix w ∈ bd(W). Note that φ′(w) is a normal vector of bd(W) at w for bd(W), thus

TwW = {v : v ⊥ φ′(w)}. Then the Gauss map uW of W satisfies uW(w) = φ′(w)
‖φ′(w)‖2 for

w ∈ bd(W).
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Next we compute the so-called Weingarten map, Ww(v) : TwW → TwW, which, by

definition, is the differential of uW(w) restricted to TwW. Note that the Weingarten map

is a linear map. We have that for v ∈ TwW,

Ww(v) =
duW
dw

(v) =
∇φ2(w)v

‖φ′(w)‖2
− φ′(w)>∇2φ(w)φ′(w)v

‖φ′(w)‖32
=
∇φ2(w)v

‖φ′(w)‖2
,

where the last equality is due to φ′(w)v = 0.

By Schneider [2014, page 105], the eigenvalues of the Weingarten map Ww(v) are exactly

the principal curvature of W at w. Therefore, the smallest principal curvature at w is

minv : ‖v‖2=1,v⊥φ′(w)
v>∇2φ(w)v
‖φ′(w)‖2 . Taking minimum over all w ∈ bd(W) finishes the proof.

4.3.2 An asymptotic lower bound

The result in this section is an asymptotic lower bound for the linear game, showing that

FTL achieves the optimal rate under the condition that mint ‖Θt‖2 ≥ L > 0.

Theorem 4.3.2. Let λ, L ∈ (0, 1). Assume that {(1,−L), (−1,−L)} ⊂ F and let

W =

{
(x, y) ∈ R2 : x2 +

y2

λ2
≤ 1

}
,

as shown in Fig. 4.4, be an ellipsoid with principal curvature h. Then, for any learning

strategy, there exists a sequence of losses in F such that Rn = Ω (log(n)/(Lh)) and ‖Θt‖2 ≥

L for all t.

x

y

1

L

O-1

-1

1

(-1,-L) (1,-L)

Figure 4.4: The con-
straint set W of Theo-
rem 4.3.2.

Note that by Proposition 4.3.4 (ii), since that λmax = 1
λ2

and λmin = 1, the principal curvature of W is λmin√
λmax

= λ.

In fact, it is not too hard to extend Theorem 4.3.2 for any

set W such that there is w ∈ bd(W) where the curvature is h,

and the curvature is a continuous function in a neighbourhood

of w over the boundary bd(W). The constants in the bound

would then depend on how fast the curvature changes within

this neighbourhood.

Proof. We define a random loss sequence, and we will show

that no algorithm on this sequence can achieve an o(log n/(hL)

regret. Let P be a random variable with Beta(K,K) distribution for some K > 1 + 1
h2L2 ,

and, given P , assume that Xt, t ≥ 1 are i.i.d. Bernoulli random variables with parameter P .

Let ft = Xt(1,−L) + (1−Xt)(−1,−L) = (2Xt − 1,−L). Thus, the second coordinate of ft

is always −L, and so ‖Θt‖2 =
∥∥∥ 1
t

∑t
i=1 fi

∥∥∥
2
≥ L. Furthermore, the conditional expectation

of the loss vector is fp
·
= E [ft|P = p] = (2p− 1,−L).

Note that 2Xt−1 = ft,1 for all t; thus the conditional expectation of P , given f1, . . . , ft−1,

can be determined by the well-known formula P̂t−1 = E [P | f1 . . . ft−1] =
K+

∑t−1
i=1 Xi

2K+t−1 . Given
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p, denote the optimizer of fp by wp, that is, wp = argminw∈W 〈w, fp〉. Then the Bayesian

optimal choice in round t is

argmin
w∈W

E
[
[
〈
w, fP

〉∣∣ f1 . . . ft−1

]
= argmin

w∈W

〈
w,E

[
fP
∣∣ f1 . . . ft−1

]〉
= argmin

w∈W

〈
w, f P̂t−1

〉
= wP̂t−1 , (4.8)

where the first equality follows by linearity of the inner product, the second since fp is a

linear function of p and the third by the definition of wp.

Thus, denoting by Wt the prediction of an arbitrary algorithm in round t, the expected

regret can be bounded from below as

E [Rn] = E

[
max
w∈W

n∑
t=1

〈Wt − w, ft〉

]
= E

[
E

[
max
w∈W

n∑
t=1

〈Wt − w, ft〉

∣∣∣∣∣P
]]

≥ E

[
E

[
n∑
t=1

〈
Wt − wP , ft

〉∣∣∣∣∣P
]]

= E

[
n∑
t=1

E
[〈
Wt − wP , ft

〉∣∣P, f1, . . . , ft−1

]]
. (4.9)

Further because of the independence of the fs given P , E
[〈
wP , ft

〉∣∣P, f1, . . . , ft−1

]
=〈

wP ,E [ft|P, f1, . . . , ft−1]
〉

=
〈
wP ,E [ft|P ]

〉
=
〈
wP , fP

〉
. Also since Wt is chosen based on

f1, . . . , ft−1 (but not on P ),

E [ 〈Wt, ft〉|P, f1, . . . , ft−1] =E [E [ 〈Wt, ft〉|P, f1, . . . , ft−1,Wt]|P, f1, . . . , ft−1]

=E [ 〈Wt,E [ft|P, f1, . . . , ft−1,Wt]〉|P, f1, . . . , ft−1]

=E
[〈
Wt, f

P
〉∣∣P, f1, . . . , ft−1

]
.

Hence the RHS of Eq. (4.9) can be rewritten as

E

[
n∑
t=1

E
[〈
Wt − wP , fP

〉∣∣ f1, . . . , ft−1

]]
≥ E

[
n∑
t=1

min
w∈W

E
[〈
w − wP , fP

〉∣∣ f1, . . . , ft−1

]]

= E

[
n∑
t=1

E
[〈
wP̂t−1 − wP , fP

〉∣∣∣ f1, . . . , ft−1

]]
(4.10)

=
n∑
t=1

E
[〈
wP̂t−1 − wP , fP

〉]
,

where Equation (4.10) holds by Equation (4.8). We will need several lemmas to continue

our calculation. Their proofs are postponed to Section 4.7.

Lemma 4.3.5. Under the assumptions of Theorem 4.3.2, for any 0 < p1, p2 < 1,

〈wp2 − wp1 , fp1〉 ≥ hL

2

(
2p2−2p1

hL

)2√
1 +

(
1−2p1

hL

)2 (
1 +

(
1−2p2

hL

)2) .
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Recall that P̂t =
K+

∑t
i=1 Xi

2K+t , and so

P̂t − P =
K

2K + t
(1− 2P ) +

t

2K + t
(
St
t
− P ), (4.11)

where St =
∑t
i=1Xi.

Lemma 4.3.6. For any u > 0,

P
[
|P̂t − P | >

K

2K + t
|1− 2P |+ t

2K + t
u

∣∣∣∣P] ≤ 2 exp(−tu2) .

Lemma 4.3.7. For any t ≥ 0,

E
[

(P − P̂t)2
∣∣∣P] =

K2(1− 2P )2

(2K + t)2
+
tP (1− P )

(2K + t)2
.

Now to continue our proof, by Lemma 4.3.5 we have

n∑
t=1

E
[〈
wP̂t−1 − wP , fP

〉]
≥ hL

2

n∑
t=1

E


(

2P̂t−1−2P
hL

)2

√
1 +

(
1−2P
hL

)2(
1 +

(
1−2P̂t−1

hL

)2
)


=
2

hL

n∑
t=1

E

 1√
1 +

(
1−2P
hL

)2E
 (P̂t−1 − P )2

1 +
(

1−2P̂t−1

hL

)2

∣∣∣∣∣∣∣P



≥ 2

hL

n∑
t=1

E

 1√
1 +

(
1−2P
hL

)2E
 (P̂t−1 − P )2

1 + 2
(

1−2P
hL

)2
+ 2

(
2P−2P̂t−1

hL

)2

∣∣∣∣∣∣∣P

 , (4.12)

where in the last step we used (a + b)2 ≤ a2 + b2. Let Gt be the event that |P̂t − P | ≤
K|1−2P |

2K+t + thL
2K+t . Note that Gt holds with probability at least 1− 2e−t(hL)2

by Lemma 4.3.6.

Then, lower bounding the first term by 0, the RHS of Equation (4.12) can be lower bounded

by

2

hL

n−1∑
t=0

E

 1√
1 +

(
1−2P
hL

)2E
 (P̂t − P )2

1 + 2
(

1−2P
hL

)2
+ 2

(
2P−2P̂t
hL

)2 I(Gt)

∣∣∣∣∣∣∣P



≥ 2

hL

n−1∑
t=0

E

 1√
1 +

(
1−2P
hL

)2 E
[

(P̂t − P )2I(Gt)
∣∣∣P](

1 + 2
(

1−2P
hL

)2
+ 2

(
2K

2K+t
|1−2P |
hL + 2t

2K+t

)2
)


≥ 2

hL

n−1∑
t=0

E

 1√
1 +

(
1−2P
hL

)2 E
[

(P̂t − P )2I(Gt)
∣∣∣P](

9 + 4
(

1−2P
hL

)2
+ 8 |1−2P |

hL

)
 .
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Combining the above, and using (P̂t − P )2 ≤ 1 together with P (Gct ) ≤ 2e−t(hL)2

, we get

E [Rn]

≥ 2

hL

n−1∑
t=0

E

 1√
1 +

(
1−2P
hL

)2 E
[

(P̂t − P )2
∣∣∣P]− P (Gct )(

9 + 4
(

1−2P
hL

)2
+ 8 |1−2P |

hL

)


≥ 2

hL

n−1∑
t=0

E

 1√
1 +

(
1−2P
hL

)2 E
[

(P̂t − P )2
∣∣∣P](

9 + 4
(

1−2P
hL

)2
+ 8 |1−2P |

hL

)
− 2

9
e−th

2L2


≥ 2

hL

− 2

9(1− e−h2L2)
+
n−1∑
t=0

E

 1√
1 +

(
1−2P
hL

)2 E
[

(P̂t − P )2
∣∣∣P](

9 + 4
(

1−2P
hL

)2
+ 8 |1−2P |

hL

)
 . (4.13)

Now, by Lemma 4.3.7, we have

E
[

(P̂t − P )2
∣∣∣P] =

K2(1− 2P )2

(2K + t)2
+
tP (1− P )

(2K + t)2
.

Combining this with Equation (4.13) and introducing the constant

C = E

 1√
1 +

(
1−2P
hL

)2 P (1− P )(
9 + 4

(
1−2P
hL

)2
+ 8 |1−2P |

hL

)


we obtain, for any K > 0,

lim inf
n→∞

E [Rn]

log n

≥ lim inf
n→∞

2

hL log n

[
− 2

9(1− e−h2L2)
+
n−1∑
t=1

C

(
t

(2K + t)2
− K2(1− 2P )2

P (1− P )(2K + t)2

)]
=

2C

hL
.

(4.14)

It remains to calculate a constant lower bound for C that is independent of h and L.

Denote |1−2P |
hL by Y . Then 0 ≤ P (1−P ) = 1−Y 2h2L2

4 ≤ 1/4. Define Ĝ to be the event when

|Y | ≤ 1. Since P has Beta(K,K) distribution, E [P ] = 1
2 and Var(P ) = 1

8K . Therefore, by

Chebyshev’s inequality,

P
(
Ĝc
)

= P
(∣∣∣∣P − 1

2

∣∣∣∣ > hL

2

)
≤ 1

2Kh2L2
,

and thus,

C = E
[

1√
1 + Y 2

1− Y 2h2L2

4(9 + 4Y 2 + 8Y )

]
≥ E

[
1√

1 + Y 2

1− Y 2h2L2

4(9 + 4Y 2 + 8Y )
I(Ĝ)

]
≥ 1

84
√

2
E
[
(1− Y 2h2L2)I(Ĝ)

]
≥ 1

84
√

2

(
E
[
1− Y 2h2L2

]
− P

(
Ĝc
))

≥ 1

84
√

2

(
1− E

[
(1− 2P )2

]
− 1

2Kh2L2

)
>

1

84
√

2

1

2
,

for K > 1 + 1
h2L2 . Hence,

lim inf
n→∞

E [Rn]

log n
≥ 1

84
√

2

1

hL
.

The result is completed by noting that the worst-case regret is at least as big as the expected

regret, thus, for every n, there exist a P and a sequence of loss vectors f1, . . . , fn such that

the regret Rn is at least Ω( logn
hL ).
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4.3.3 Other regularities

So far we have looked at the case when FTL achieves low regret due to the curvature of

bd(W). The next result characterizes the regret of FTL when W is a polytope, which has

a flat, non-smooth boundary and thus Theorem 4.3.1 is not applicable. For this statement

recall that given some norm ‖ · ‖, its dual norm is defined by ‖w‖∗ = sup‖v‖≤1〈v, w〉.

Theorem 4.3.3. Assume that W is a polytope and that Φ is differentiable at Θi, i =

1, . . . , n. Let wt = argmaxw∈W〈w,Θt−1〉 and W = supw1,w2∈W ‖w1 − w2‖∗. Also, we let

F = supf1,f2∈F ‖f1 − f2‖. Then the regret of FTL is

Rn ≤W
n∑
t=1

t I(wt+1 6= wt)‖Θt −Θt−1‖ ≤ FW
n∑
t=1

I(wt+1 6= wt) .

Note that when W is a polytope, wt is expected to “snap” to some vertex of W. Hence,

we expect the regret bound to be non-vacuous, if, e.g., Θt “stabilizes” around some value.

Some examples after the proof will illustrate this.

Proof. Let v = argmaxw∈W〈w, θ〉, v′ = argmaxw∈W〈w, θ′〉. Similarly to the proof of Theo-

rem 4.3.1,

〈v′ − v, θ′〉 = 〈v′, θ′〉 − 〈v′, θ〉+ 〈v′, θ〉 − 〈v, θ〉+ 〈v, θ〉 − 〈v, θ′〉

≤ 〈v′, θ′〉 − 〈v′, θ〉+ 〈v, θ〉 − 〈v, θ′〉 = 〈v′ − v, θ′ − θ〉

≤W I(v′ 6= v)‖θ′ − θ‖,

where the first inequality holds because 〈v′, θ〉 ≤ 〈v, θ〉. Therefore, by Eq. (4.5),

Rn =

n∑
t=1

t 〈wt+1 − wt,Θt〉 ≤W
n∑
t=1

t I(wt+1 6=wt)‖Θt −Θt−1‖

≤ FW
n∑
t=1

I(wt+1 6=wt) .

Remark 4.3.8. Theorem 4.3.3 bounds the regret of FTL by the number of switches of the

maximizers
∑n
t=1 I(wt 6= wt−1).

As noted before, since W is a polytope, wt is (generally) attained at the vertices. In this

case, the epigraph of Φ is a polyhedral cone. Then, the event when wt+1 6= wt, i.e., when

the “leader” switches corresponds to when Θt and Θt−1 belong to different linear regions

corresponding to different linear pieces of the graph of Φ.

We now spell out a corollary for the stochastic setting. In particular, FTL will often

enjoy a constant regret in this case:
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Corollary 4.3.9 (Stochastic setting). Assume that W is a polytope and that (ft)1≤t≤n is

an i.i.d. sequence of random variables such that E [fi] = µ and ‖fi‖∞ ≤ M . Let W =

supw1,w2∈W ‖w1 − w2‖1. Further assume that there exists a constant r > 0 such that Φ is

differentiable for any ν such that ‖ν − µ‖∞ ≤ r. Then,

E [Rn] ≤ 2MW (1 + 4dM2/r2) .

To minimize the upper bound while meeting the conditons, r can be selected to be the

radius of the largest ball such that the optimal decisions for expected losses µ and ν (i.e.,

the maximizers defining Φ(−µ) and Φ(−ν)) belong to the same face of W.

Proof. Let V = {ν | ‖ν − µ‖∞ ≤ r}. Note that the epigraph of the function Φ is a polyhedral

cone. Since Φ is differentiable in the interior of V , {(θ,Φ(θ)) | θ ∈ V } is a subset of a linear

subspace. Therefore, for −Θt,−Θt−1 ∈ V , wt+1 = wt. Hence, by Theorem 4.3.3,

E [Rn] ≤ 2MW

n∑
t=1

P ({−Θt,−Θt−1} 6⊂ V ) ≤ 4MW

(
1 +

n∑
t=1

P (−Θt /∈ V )

)
.

On the other hand, note that ‖fi‖∞ ≤M . Hence,

P (−Θt /∈ V ) = P

(∥∥∥∥∥1

t

t∑
i=1

fi − µ

∥∥∥∥∥
∞

≥ r

)

≤
d∑
j=1

P

(∣∣∣∣∣1t
t∑
i=1

fi,j − µj

∣∣∣∣∣ ≥ r
)
≤ 2de−

tr2

2M2 ,

where the last inequality is due to Hoeffding’s inequality. Now, using that for α > 0,∑n
t=1 exp(−αt) ≤

∫ n
0

exp(−αt)dt ≤ 1
α , we get E [Rn] ≤ 2MW (1 + 4dM2/r2).

The condition that Φ is differentiable in a neighbourhood of µ is equivalent to that Φ is

differentiable at µ. By Proposition 4.2.1, this condition requires that at µ, maxw∈W〈w, θ〉

has a unique optimizer. Note that the volume of the set of vectors θ with multiple optimizers

is zero.

4.4 Adaptive algorithms

While as shown in Theorem 4.3.1, FTL can exploit the curvature of the surface of the

constraint set to achieve O(log n) regret, it requires the curvature condition and mint ‖Θt‖2
being bounded away from zero. When these conditions are not met, FTL may even suffer

linear regret. On the other hand, many algorithms, such as the “follow the regularized

leader” (FTRL) algorithm [see, e.g., Shalev-Shwartz, 2012], are known to achieve a regret

guarantee of O(
√
n) even in the worst case (assuming bounded loss vector and bounded W).

This raises the question whether one can have an algorithm that can achieve constant or

O(log n) regret in the respective settings of Corollary 4.3.9 or Theorem 4.3.1, while it still
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Algorithm 6 Follow The Shrunken Leader (FTSL)

1: Predict w1 = 0;
2: for t = 2, ..., n− 1 do
3: FTL: Compute w̃t = argminw∈W 〈w,Ft−1〉
4: Shrinkage: Predict wt = ‖Ft−1‖2√

‖Ft−1‖22+t+2
w̃t

5: end for
6: FTL: Compute w̃n = argminw∈W 〈w,Fn−1〉
7: Shrinkage: Predict wn = ‖Fn−1‖2√

‖Fn−1‖22+n
w̃n

maintains O(
√
n) regret for worst-case data. One way to design an adaptive algorithm is to

use the (A, B)-prod algorithm of Sani et al. [2014], leading to the following result:

Proposition 4.4.1. Consider (A, B)-prod of Sani et al. [2014], where algorithm A is chosen

to be FTRL with an appropriate regularization term, while B is chosen to be FTL. Then the

regret of the resulting hybrid algorithm H enjoys the following guarantees:

• If FTL achieves constant regret as in the setting of Proposition 4.3.9, then the regret

of H is also constant.

• If FTL achieves a regret of O(log n) as in the setting of Theorem 4.3.1, then the regret

of H is also O(log n).

• Otherwise, the regret of H is at most O(
√
n log n).

In the next section we show that if the constraint set is the unit ball, it is possible to

design adaptive algorithms directly.

4.4.1 Adaptive Algorithms for the Unit Ball Constraint Set

In this section we provide some interesting results about adaptive algorithms for the case

when W is the unit ball in Rd (naturally, the results easily generalize to any ball centered

at the origin). First, we show that a variant of FTL using shrinkage as regularization has

O(log(n)) regret when ‖Θt‖2 ≥ L > 0 for all t, but it also has O(
√
n) worst case guarantee.

Furthermore, we show that the standard FTRL algorithm is adaptive if the constraint set

is the unit ball and the loss vectors are stochastic. Throughout the section we will use the

notation Ft = −(t− 1)Θt =
∑t−1
i=1 fi.

Follow the Shrunken Leader

In this section we are going to analyze a combination of the FTL algorithm and the idea

of shrinkage often used for regularization purposes in statistics. We assume that W ={
x ∈ Rd | ‖x‖2 ≤ 1

}
is the unit ball and, without loss of generality, we further assume that

‖f‖2 ≤ 1 for all f ∈ F .
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The Follow The Shrunken Leader (FTSL) algorithm is given in Algorithm 6. The main

idea of the algorithm is to predict a shrunken version of the FTL prediction, in this way

keeping it away from the boundary of W. The next theorem shows that the right amount

of shrinkage leads to a robust, adaptive algorithm.

Theorem 4.4.1. Consider the FTSL algorithm, the following hold:

• If there exists L such that ‖Θt‖2 ≥ L > 0 for any t, then the regret of FTSL is

O(log(n)/L).

• Otherwise, the regret of FTSL is at most O(
√
n).

Proof. By the definition of Ft and W, w̃t = −Ft−1/‖Ft−1‖2. Let σn = ‖Fn−1‖2√
‖Fn−1‖22+n

. Our

proof follows the idea of the proof of Theorem 6 by Abernethy et al. [2008]. We compute

the upper bound on the value of the game for each round backwards for t = n, n− 1, . . . , 1,

by solving the optimal strategies for ft. The worst-case regret of FTSL is by definition

Vn = max
f1,...,fn

n∑
t=1

〈wt, ft〉 − min
w∈W
〈w,Fn〉

= max
f1,...,fn−1

n−1∑
t=1

〈wt, ft〉+ max
fn
‖Fn−1 + fn‖2 + 〈fn, wn〉︸ ︷︷ ︸

=:Un

We first prove that Un, the second term above, is bounded from above by
√
‖Fn−1‖22 + n.

To see this, let fn = anF̃n−1 + bnΩn−1 where F̃n−1 is the unit vector parallel to Fn−1 and

Ωn−1 is a unit vector orthogonal to Fn−1. Since ‖fn‖2 ≤ 1, we have a2
n + b2n ≤ 1. Thus,

thanks to Fn−1 + fn = (‖Fn−1‖2 + an)F̃n−1 + bnΩn−1 and w̃n = −F̃n−1,

Un = max
fn

√
‖Fn−1‖22 + 2an‖Fn−1‖2 + a2

n + b2n − anσn

≤ max
a

√
‖Fn−1‖22 + 2a‖Fn−1‖2 + n− aσn

=
√
‖Fn−1‖22 + n,

where the last equality follows since the maximum is attained at a = 0. A similar statement

holds for the other time indices: for any t ≥ 1,

max
ft

√
‖Ft−1 + ft‖22 + t+ 1 + 〈ft, wt〉 ≤

√
‖Ft−1‖22 + t+

1√
t
. (4.15)
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Before proving this inequality, let us see how it implies the second statement of the theorem:

Vn ≤ max
f1,...,fn−1

n−1∑
t=1

〈wt, ft〉+
√
‖Fn−1‖22 + n

≤ max
f1,...,fn−2

n−2∑
t=1

〈wt, ft〉+
√
‖Fn−2‖22 + n− 1 +

1√
n

≤ . . .

≤ max
f1

〈w1, f1〉+
√
‖F1‖22 + 2 +

1√
3

+ . . .+
1√
n

≤ 1 +
√

3 +
n∑
t=3

1√
t

= O(
√
n).

Moreover, if ‖Θt‖2 ≥ L for 1 ≤ t ≤ n, a stronger version of Equation (4.15) also holds:

max
ft

√
‖Ft−1 + ft‖22 + t+ 1 + 〈ft, wt〉 ≤

√
‖Ft−1‖22 + t+

1

(t− 1)L
. (4.16)

This implies the first statement of the theorem, since

Vn ≤ max
f1,...,fn−1

n−1∑
t=1

〈wt, ft〉+
√
‖Fn−1‖22 + n

≤ max
f1,...,fn−2

n−2∑
t=1

〈wt, ft〉+
√
‖Fn−2‖22 + n− 1 +

1

(n− 1)L

≤ . . .

≤ 1 +
n−1∑
t=1

1

tL
= O(log(n)/L).

To finish the proof, it remains to show Eqs. (4.15) and (4.16). As before, let ft =

atF̃t−1 + btΩt−1 where F̃t−1 is the unit vector parallel to Ft−1 and Ωt−1 is a unit vector

orthogonal to Ft−1. Again, since ‖ft‖2 ≤ 1, observe that a2
t + b2t = ‖ft‖2 ≤ 1. Now, let

σt = ‖Ft−1‖2√
‖Ft−1‖22+t+2

. Then, for any t ≥ 1,

∆t = max
ft

√
‖Ft‖22 + t+ 1− atσt −

√
‖Ft−1‖22 + t

= max
ft

√
‖Ft−1‖22 + 2at‖Ft−1‖2 + a2

t + b2t + t+ 1− atσt −
√
‖Ft−1‖22 + t

≤ max
at

√
‖Ft−1‖22 + 2at‖Ft−1‖2 + t+ 2− atσt −

√
‖Ft−1‖22 + t

=
√
‖Ft−1‖22 + t+ 2−

√
‖Ft−1‖22 + t

=
2√

‖Ft−1‖22 + t+ 2 +
√
‖Ft−1‖22 + t

(4.17)

≤ 1√
t
.

This proves Equation (4.15). Moreover, if ‖Ft−1‖2 = ‖(t−1)Θt−1‖2 ≥ (t−1)L, by Equation

(4.17) we obtain

∆t ≤
2√

‖Ft−1‖22 + t+ 2 +
√
‖Ft−1‖22 + t

≤ 1

‖Ft−1‖2
≤ 1

(t− 1)L
,

proving Equation (4.16).
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FTRL for the case of the unit ball constraint set

This section is to show that in the case whenW is the unit ball in `2 norm, FTRL regularized

with R(w) = 1
2‖w‖

2 is adaptive in the sense that its regret improves dramatically in the

benign stochastic setting. To fix the notation, in round t, FTRL predicts

wt = argmin
w∈W

ηt〈Ft−1, w〉+R(w),

if t > 1, while we let w1 = 0. It is known that FTRL with ηt = 1/
√
t− 1 is guaranteed to

achieve O(
√
n) regret in the adversarial setting, see, e.g., Shalev-Shwartz [2012]. It remains

to prove that FTRL indeed achieves a fast rate in the stochastic setting.

Theorem 4.4.2. Assume that the sequence of loss vectors, f1, . . . , fn ∈ Rd satisfies ‖ft‖2 ≤

1 almost surely and E [ft] = µ for all t with some ‖µ‖2 > 0. Then the regret of FTRL with

ηt = 1/
√
t− 1 satisfies that

E [Rn] ≤ 8

‖µ‖22
+ ‖µ‖22 +O(

log n

‖µ‖2
).

Proof. Using R(w) = 1
2‖w‖

2 as its regularization, in round t > 1 FTRL predicts

wt = argmin
w∈W

ηt〈Ft−1, w〉+R(w) =

{
1√
t−1

Ft−1, if ‖Ft−1‖ ≤
√
t− 1;

Ft−1

‖Ft−1‖ , otherwise.
(4.18)

For any 1 ≤ t ≤ n, denote the event ‖Ft‖ ≥
√
t by Et. Note that if ‖Ft−1‖ ≥

√
t− 1, FTRL

predicts exactly the same wt as FTL. Denote the total loss of FTL in n rounds by LFTLn .

Thus, the regret of FTRL is

E [Rn] = E

[
n∑
t=1

〈ft, wt〉 − min
w∈W

n∑
t=1

〈ft, w〉

]

= E

[
n∑
t=1

〈ft, wt〉 − LFTLn

]
+ E

[
LFTLn − min

w∈W

n∑
t=1

〈ft, w〉

]

≤ 2
n∑
t=1

P (Ect ) +O(
log n

‖µ‖2
), (4.19)

where, to obtain the last inequality, we applied Equation (4.18) to the first term, while the

second term is O(log n) by the discussion following Theorem 4.3.1. It remains to bound the

first term, 2
∑n
t=1 P (Ect ) in Eq. (4.19). For any t > 4

‖µ‖22
,

P
(
‖Ft‖2 ≤

√
t
)
≤ P

(
‖Ft‖2 <

t

2
‖µ‖2

)
≤

d∑
i=1

P
(
|Ft,i| <

t

2
|µi|
)

≤
d∑
i=1

P
(
|Ft,i − tµi| >

t

2
|µi|
)
≤ 2

d∑
i=1

e−
µ2
i
4 t,
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where the last inequality follows by Hoeffding’s inequality. Thus,

n∑
t=1

P (Ect ) =

d4/‖µ‖22e−1∑
t=1

P (Ect ) +
n∑

t=d4/‖µ‖22e

P (Ect )

≤ 4

‖µ‖22
+ 2

d∑
i=1

n∑
t=0

e−
µ2
i
4 t

≤ 4

‖µ‖22
+ 2

d∑
i=1

1

1− e−
µ2
i
4

≤ 4

‖µ‖22
+ 2

d∑
i=1

µ2
i

4
=

4

‖µ‖22
+
‖µ‖22

2
.

where in the last inequality we used 1/(1− e−a) ≤ a which holds for any a ≥ 0. Therefore,

if ‖µ‖ > 0, the regret of FTRL satisfies

E [Rn] ≤ 8

‖µ‖22
+ ‖µ‖22 +O(

log n

‖µ‖2
).

4.5 Experimental results

We performed three simulations to illustrate the differences between FTL, FTRL with the

regularizer R(w) = 1
2 ‖w‖

2
2 and the adaptive algorithm (A, B)-prod (AB) using FTL and

FTRL as its candidates. We will call this latter algorithm AB(FTL,FTRL).

For the experiments the constraint set W was chosen to be a slightly elongated ellipsoid

in the 4-dimensional Euclidean space, with volume matching that of the 4-dimensional

unit ball. The actual ellipsoid is given by W =
{
w ∈ R4 |w>Qw ≤ 1

}
where Q is chosen

“randomly” to be

Q =


4.3367 3.6346 −2.2250 3.5628
3.6346 3.9966 −2.3613 3.2817
−2.2250 −2.3613 2.0589 −2.1295
3.5628 3.2817 −2.1295 3.4206

 .

We experimented with 3 types of data to illustrate the behavior of the different algo-

rithms: stochastic, “half-adversarial”, and “worst-case” data (worst-case for FTL), as will

be explained below. The first two datasets are random, so the experiments were repeated

100 times, and we report the average regret with its standard deviation; the worst case data

is deterministic, so there no repetition was needed. For each experiment, we set n = 2500.

The regularization coefficient for FTRL, and the learning rate for AB were chosen based on

their theoretical bounds minimizing the worst-case regret.

Stochastic data. In this setting we used the following model to generate ft: Let (f̂t)t

be an i.i.d. sequence drawn from the 4-dimensional standard normal distribution, and let
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f̃t = f̂t/
∥∥∥f̂t∥∥∥

2
. Then, ft is defined as ft = f̃t + Le1 where e1 = (1, 0, . . . , 0)>. Therefore,

E
[∥∥∥ 1

t

∑t
s=1 fs

∥∥∥
2

]
→ L as t→∞. In the experiments we picked L ∈ {0, 0.1}.

The results are shown in Fig. 4.5. On the left-hand side we plotted the regret against

the logarithm of the number of rounds, while on the right-hand side we plotted the regret

against the square root of the number of rounds, together with the standard deviation of the

results over the 100 independent runs. As can be seen from the figures, when L = 0.1, the

growth-rate of the regret of FTL is indeed logarithmic, while when L = 0, the growth-rate

is Θ(
√
n). In particular, when L = 0.1, FTL enjoys a major advantage compared to FTRL,

while for L = 0, FTL and FTRL perform essentially the same (in this special case, the

regret of FTL will indeed be O(
√
n) as wt will stay bounded but ‖Θt‖ = O(1/

√
t)). As

expected, AB(FTL,FTRL), gets the better of the two regrets with little to no extra penalty.
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Figure 4.5: Experimental results for stochastic data.

“Half-adversarial” data The half-adversarial data used in this experiment is the optimal

solution for the adversary in the linear game whenW is the unit ball [Abernethy et al., 2008].

This data is generated as follows: The sequence f̂t for t = 1, . . . , n is generated randomly

in the (d − 1)-dimensional subspace S = span{e2, . . . , ed} (here ei is the ith unit vector in

Rd) as follows: f̂1 is drawn from the uniform distribution on the unit sphere of S (actually

Sd−2). For t = 2, . . . , n, f̂t is drawn from the uniform distribution on the unit sphere of

the intersection of S and the hyperplane perpendicular to
∑t−1
i=1 f̂i and going through the

origin. Then, ft = Le1 +
√

1− L2f̂t for some L ≥ 0.

The results are reported in Fig. 4.6. When L = 0, the regret of both FTL and FTRL

grows as O(
√
n). When L = 0.1, FTL achieves O(log n) regret, while the regret of FTRL
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appears to be O(
√
n). AB(FTL,FTRL) closely matches the regret of FTL.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

 sqrt(n) 

 L=0

 R
e
g
re

t

−1 0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

 log(n)

 L = 0

 R
e
g
re

t

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

 sqrt(n)

 L=0.1

 R
e
g
re

t

−1 0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

 log (n)

 L = 0.1

 R
e
g
re

t

 

 

 FTL

 FTRL

 AB

Figure 4.6: Experimental results for “half-adversarial” data.

Worst-case data We also tested the algorithms on data where FTL is known to suffer

linear regret, mainly to see how well AB(FTL,FTRL) is able to deal with this setting. In

this case, we set ft,i = 0 for all t and i ≥ 2, while for the first coordinate, f1,1 = 0.9, and

ft,1 = 2(t mod 2)− 1 for t ≥ 2.

The results are reported in Fig. 4.7. It can be seen that the regret of FTL is linear (as

one can easily verify theoretically), and AB(FTL,FTRL) succeeds to adapt to FTRL, and

they both achieve a much smaller O(
√
n) regret.
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Figure 4.7: Experimental results for the worst-case data.
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The unit ball We close this section by comparing the performance of our adaptive al-

gorithms on the unit ball, namely, FTL, FTSL, FTRL, and AB(FTL, FTRL). All these

algorithms are parametrized as above. The problem setup is similar to the stochastic data

setting and the worst-case data setting. Again, we consider a 4-dimensional setting, that is,

W is the unit ball in R4 centered at the origin. The worst-case data is generated exactly

as above, while the generation process of the stochastic data is slightly modified to increase

the difference between FTRL and FTL: we sample the i.i.d. vectors f̂t from a zero-mean

normal distribution with independent components whose variance is 1/16, and let f̃t = f̂t

if ‖f̂t‖2 ≤ 1 and f̃t = f̂t/
∥∥∥f̂t∥∥∥

2
when

∥∥∥f̂t∥∥∥
2
> 1 (i.e., we only normalize if f̂t falls outside of

the unit ball). The reason of this modification is to encourage the occurrence of the event

‖Ft−1‖2 <
√
t− 1. Recall that when ‖Ft−1‖2 ≥

√
t− 1, the prediction of FTRL matches

that of FTL, so we are trying to create some data where their behavior is actually different.

As a result, we will be able to observe that the predictions of FTL and FTRL are different

in the early rounds. Finally, as before, we let ft = f̃t + Le1, and set the time horizon to

n = 20, 000.

The results of the simulation of the stochastic data setting are shown in Figure 4.8. In

the case of L = 0.1, FTRL suffers more regret at the beginning for some rounds, but then

succeeds to match the performance of FTL. The results of the simulation of the worst-case

data setting are shown in Figure 4.9, where FTSL has similar performance as FTRL.

Figure 4.8: Experimental results for stochastic data when W is the unit ball.
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Figure 4.9: Experimental results for the worst-case data when W is the unit ball.

4.6 Conclusion

FTL is a simple method that is known to perform well in many settings, while existing

worst-case results fail to explain its good performance. While taking a thorough look at

why and when FTL can be expected to achieve small regret, we discovered that the curvature

of the boundary of the constraint and having average loss vectors bounded away from zero

help keep the regret of FTL small. These conditions are significantly different from previous

conditions on the curvature of the loss functions which have been considered extensively

in the literature. It would be interesting to further investigate this phenomenon for other

algorithms or in other learning settings.

4.7 Technical lemmas for Theorem 4.3.2

We present the proofs for several technical lemmas used in the proof of Theorem 4.3.2.

Lemma 4.3.5. Under the assumptions of Theorem 4.3.2, for any 0 < p1, p2 < 1,

〈wp2 − wp1 , fp1〉 ≥ hL

2

(
2p2−2p1

hL

)2√
1 +

(
1−2p1

hL

)2 (
1 +

(
1−2p2

hL

)2) .
Proof. It is easy to see that for any p, wp is on the boundary of W, that is, wp =

argminw∈W 〈w, fp〉 = (cos(ϕp), h sin(ϕp)) for some ϕp ∈ [0, 2π] that changes smoothly with

p. Then 〈wp, fp〉 = (2p − 1) cos(ϕp) − Lh sin(ϕp), and so taking the derivative of the loss

w.r.t. ϕp, it is easy to verify that tan(ϕp) = Lh
1−2p and sin(ϕp) = Lh√

(Lh)2+(1−2p)2
> 0. Thus,
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1− 2p1 = Lh cos(ϕp1 )
sin(ϕp1 ) . To simplify notation, let ϕ1 = ϕP1 and ϕ2 = ϕP2 . Then,

〈wP2 − wP1 , fP1〉 =

〈(
cosϕ2 − cosϕ1

h (sinϕ2 − sinϕ1)

)
,

( −hL cosϕ1

sinϕ1

−L

)〉
= −hL

(
(cos(ϕ2)− cos(ϕ1))

cos(ϕ1)

sin(ϕ1)
+ (sin(ϕ2)− sin(ϕ1))

)
=
−hL

sin(ϕ1)

(
cos(ϕ2) cos(ϕ1)− cos2(ϕ1)

+ sin(ϕ1) sin(ϕ2)− sin2(ϕ1)
)

=
hL

sin(ϕ1)
(1− cos(ϕ2) cos(ϕ1)− sin(ϕ1) sin(ϕ2))

=
hL

sin(ϕ1)
(1− cos(ϕ1 − ϕ2))

=
hL

sin(ϕ1)

(
1

2
(cos(ϕ1 − ϕ2)− 1)

2
+

1

2
sin2(ϕ1 − ϕ2)

)
(4.20)

≥ hL

2 sin(ϕ1)
sin2(ϕ1 − ϕ2)

=
hL

2
sin(ϕ1) sin2 ϕ2 (cot(ϕ1)− cot(ϕ2))

2
. (4.21)

The proof is finished by substituting cot(ϕi) = 1−2Pi
hL , sin(ϕ1) = 1√

1+( 1−2P1
Lh )

2
and sin2(ϕ2) =

1

1+( 1−2P2
Lh )

2 .

Lemma 4.3.6. For any u > 0,

P
[
|P̂t − P | >

K

2K + t
|1− 2P |+ t

2K + t
u

∣∣∣∣P] ≤ 2 exp(−tu2) .

Proof. From Eq. (4.11) and the triangle inequality, |P̂t−P | ≤ K
2K+t |1−2P |+ t

2K+t |
St
t −P |,

and so

P
[
|P̂t − P | >

K

2K + t
|1− 2P |+ t

2K + t
u

∣∣∣∣P] ≤ P
[∣∣∣∣Stt − P

∣∣∣∣ > u

∣∣∣∣P] ≤ 2 exp(−tu2),

where the last inequality is thanks to that conditioned on P , X1, . . . , Xt are independent

Bernoulli random variables with expectation P , thus it holds by Hoeffding’s inequality (see,

e.g., [Cesa-Bianchi and Lugosi, 2006, Corollary A.1]).

Lemma 4.3.7. For any t ≥ 0,

E
[

(P − P̂t)2
∣∣∣P] =

K2(1− 2P )2

(2K + t)2
+
tP (1− P )

(2K + t)2
.

Proof. Starting from Eq. (4.11), we have

E
[

(P − P̂t)2
∣∣∣P] =

K2(1− 2P )2

(2K + t)2
+

1

(2K + t)2
E
[

(St − tP )
2
∣∣∣P]

=
K2(1− 2P )2

(2K + t)2
+
tP (1− P )

(2K + t)2
,

where the first equality is due to E [St − Pt|P ] = 0, and the last equality is due to that

conditioned on P , St has a Binomial distribution with parameters t and P .
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Chapter 5

Conclusions and Future Works

In this thesis, we explore the instance-dependent analyses of some learning algorithms in

various learning settings. Instead of starting with the stochastic assumptions or overly con-

servative worst-case examples when analyzing the learning algorithms, we propose to start

with minimal statistical assumptions and focus on catching what properties of data essen-

tially affect the performance of the learning algorithms. Such instance-dependent results

are usually more expressive and lead to a better understanding of the successes and failures

of the learning algorithms.

In the first part of thesis we present an analysis of the task of Independent Compo-

nent Analysis (ICA) with no stochastic assumptions on the data. We develop the first ICA

algorithm in the literature that can recover noisy signals with polynomial computational

complexity and provable performance guarantees on the reconstruction error. Several im-

portant features of the data are proposed to characterize the “niceness” of the data and the

instance-dependent performance guarantee of our algorithm. Originated from a determin-

istic analysis, our results can recover the usual statistical results in the classic ICA setting,

and also extend to deterministic source signals (and potentially other type of source signals)

with approximately independent empirical distributions. It remains future work to improve

the dependence of the performance on the condition number of the mixing matrix A and

the dimension d. Such improvement is necessary for the algorithm to be applied to high

dimensional data.

The second contribution of this thesis is an instance-dependent generalization bound for

the empirical risk minimization algorithm (ERM) on the partially linear model. Based on

a surprising example that ERM achieves infinite expected risk/loss on a perfectly innocent

looking least-square linear regression problem, we found that the performance of ERM is

highly related to E
[
λ̂−1

min

]
, the expectation of the inverse of the minimal positive eigenvalue

of the empirical Grammian matrix. We developed a high probability finite-sample bound for

this setting, which again showed a dependence on E
[
λ̂−1

min

]
. Our result partially explains

the success of ERM on the partially linear model. On the other hand, understanding
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the behaviour of this quantity for different distributions remains an important problem to

study the finite-sample performance of ERM on (partially) linear model. Also, while a high-

probability generalization bound has been provided, the question what data is “nice” such

that an finite excess risk bound exists remains open.

The last main topic of this thesis is an analysis of the simple “Follow the Leader” (FTL)

algorithm in the online learning setting. Although existing worst-case results of FTL imply

that FTL may suffer linear regret, we discover several key features of the data that make

it possible for FTL to achieve fast rates. One of these is the magnitude of the average loss

vector. We prove that the performance of FTL inversely depends on this magnitude, and an

asymptotic lower bound shows that this dependence is essential. Lastly we propose various

adaptive algorithms that can achieve fast rates when this magnitude is large, while still

guaranteed to achieve the standard learning rate in the worst-case. As for future work, it

is also interesting to see how our approach can be applied to achieve improvement in other

setting, e.g. for strictly convex losses. It is also interesting to convey similar idea in the

linear bandit problem to bridge results between the stochastic and the adversarial settings.

Lastly, there are also some general open questions for the proposed “instance-dependent”

analysis framework. While the performances of the learning algorithms are shown to essen-

tially depend on some instance-dependent quantities, it remains open how one can compute

(or estimate) these quantities in practice, e.g. in the ICA task in Chapter 2 or in the on-

line linear prediction problem in Chapter 4. In the case when these quantities (or their

good estimates) are not available, it also remains open how to develop adaptive algorithms

in general, preparing for the worst case. Finally, while we succeed in developing instance-

dependent upper bound for the learning algorithms and learning problems, the development

of instance-and-algorithm-dependent lower bounds seem to be more challenging and as for

now remain for future work.
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