
Bandit Convex Optimization with
Biased Noisy Gradient Oracles

by

Xiaowei Hu

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Xiaowei Hu, 2017

Abstract

Optimizing an objective function over convex sets is a key problem in many dif-

ferent machine learning models. One of the various kinds of well studied objective

functions is the convex function, where any local minimum must be the global mini-

mum over the domain. To find the optimal point that minimize the objective convex

function, a natural choice for the search direction is the negative gradient. The

resulting algorithm, usually called the gradient descent method, is widely used to

approach convex optimization problems. Given the entire objective function or the

first-order information (gradient), it is straightforward to do the line search follow-

ing the chosen direction. However, another scenario exists where the algorithm has

no access to such entire function or the first-order information, except evaluation of

some queried points. Then there comes the bandit optimization problem, which is

also known as zeroth-order or derivative-free optimization.

Algorithms for bandit convex optimization often rely on constructing noisy gra-

dient estimates, which are then used in appropriately adjusted first-order algorithms,

like gradient descent, replacing actual gradients. Depending on the properties of the

function to be optimized and the nature of “noise” in the bandit feedback, the bias

and variance of gradient estimates exhibit various tradeoffs. For example, the gra-

dient estimate with a small bias tends to have a large variance, while the estimate

with a small variance could have a large bias. Considering that both the bias and

variance of the gradient estimate might jeopardize the optimization algorithm. It

is worthwhile to measure their influences in a quantitative pattern, and study if the

ii

optimization error basing on a certain gradient estimate can be further improved.

This thesis proposes a novel framework that replaces the specific gradient es-

timation methods with an abstract oracle. The oracle directly interacts with the

algorithm, outputting biased, noisy gradient estimates satisfying some predefined

properties. In this way, we abstract tradeoffs of the bias and variance, skipping the

details of constructing gradient estimates. With the help of the new framework we

unify previous works, reproducing their results in a clean and concise fashion, prov-

ing the upper bound of the optimization error with the Mirror Descent algorithm.

Meanwhile, perhaps more importantly, the framework also allows us to show a

lower bound of the optimization error, which can match the corresponding upper

bound under certain conditions. This formally demonstrates that, to achieve the op-

timal root-n rate for the bandit convex optimization, either the algorithms that use

existing gradient estimators, or the proof techniques used to analyze them, have to

go beyond what exists today.

iii

Preface

This thesis is an original work by Xiaowei Hu. Parts of it were published in the

Proceedings of the Nineteenth International Conference on Artificial Intelligence

and Statistics (AISTATS), volume 51 of JMLR: W&CP, Cadiz, Spain, May 9–11

(Hu, Prashanth L.A., György, and Szepesvári, 2016).

iv

Acknowledgements

I would like to sincerely thank my great supervisors Csaba Szepesvári and An-

drás György for their insightful advice and patient support. Their enthusiasm in

research has always encouraged me to move forward and explore my interests. I

am also grateful for all my friends and colleagues, who have made my experiences

in Edmonton extremely worthwhile and memorable.

v

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Motivation and Related Work . 3
1.3 Contributions and the Gradient Oracle Model 5
1.4 Organization . 6

2 Gradient Oracle Models 8
2.1 Notations . 8
2.2 Type-I and Type-II Oracles . 9
2.3 Reduction Between Two Types of Oracles 11
2.4 Previous Work . 13

3 Main Results 16
3.1 Upper Bounds of the Minimax Error 17
3.2 Proofs of the Upper Bounds . 19

3.2.1 Stochastic Optimization 19
3.2.2 Online Optimization . 22
3.2.3 The Mirror Descent Lemma 25

3.3 Lower Bounds of the Minimax Error 28
3.4 Proofs of the Lower Bounds . 29

3.4.1 Smooth Convex Functions 29
3.4.2 Strongly Convex + Smooth Functions 41

3.5 Application to the Averaging Algorithm 43

4 Gradient Estimation Methods 47
4.1 One-point Feedback . 48
4.2 Two-point Feedback . 50
4.3 Proofs for Gradient Estimates . 52

5 Application to Stochastic Convex Optimization 58

6 Application to Online Convex Optimization 61

7 Conclusions 63

Bibliography 65

vi

List of Tables

3.1 Summary of upper and lower bounds on the minimax optimization
error for different smooth function classes and gradient oracles for
the settings of Theorem 1 and Theorem 2. 16

4.1 Gradient oracles for different function classes and noise categories. 50

vii

List of Figures

1.1 The interaction of the algorithm and the environment in bandit op-
timization. 2

1.2 The Gradient Oracle Model: interaction of algorithms with the gra-
dient oracle and the environment. 5

3.2 The construction of algorithm A∗i used in the proof of Lemma 3. . . 38

viii

Chapter 1

Introduction

Bandit optimization schemes, also known as derivative-free or zeroth-order opti-

mization, have a long history in machine learning. In the earlier work (Nemirovskii

and Yudin, 1983), an overview of both first-order and zeroth-order methods was

given for convex optimization problems. In the zeroth-order setting, only func-

tional (zeroth-order) information is available — rather than first-order gradient in-

formation. Such procedures are desirable when explicit gradient calculations may

be impossible or computationally unfeasible. Applications of bandit problems in-

clude online auction, controlling an unknown system, and many examples provided

by simulation-based optimization (Spall, 2005). Additionally, in graphical model

inference (Wainwright and Jordan, 2008), the objective function can be defined in

a variational way so that the explicit differentiation is difficult.

Despite the long history and abundant study in bandit optimization problems,

a precise understanding of their convergence behavior remains elusive. This thesis

presents and analyzes a novel framework with biased, noisy gradient oracles, which

enable us to study the performance of a certain kind of methods, where the algo-

rithms observe noisy point-evaluations of the objective function and use these to

construct gradient estimates. We will see how the performance will be influenced

and whether the optimal rate can be achieved under this framework.

In this chapter, we state our problem in Section 1.1. Relevant work is reviewed

in Section 1.2, which also explains the motivation of our work. Our contributions

are presented in Section 1.3, as well as a brief discussion of the gradient oracle

model. Section 1.4 summarizes the organization of the thesis.

1

Observation

Query

Environment

(state)

Yt = f(Xt) + ⇠t

Xt

f

Agent

Figure 1.1: The interaction of the algorithm and the environment in bandit opti-
mization.

1.1 Problem Statement

We consider bandit convex optimization in the stochastic setting as well as online

setting.

In the stochastic bandit convex optimization problem, the environment chooses

a single fixed objective function f : K → R, where K ⊂ Rd is a non-empty

closed convex set. In each round t, the algorithm queries at the point Xt ∈ K, and

observes the noisy evaluation of f(Xt). The goal of the algorithm is to minimize

the optimization error

∆n = E
[
f(X̂n)

]
− inf

x∈K
f(x) ,

where X̂n ∈ K is chosen by the algorithm after n rounds, and n is given to the

algorithm at the beginning of the game.

In the online bandit convex optimization problem, a sequence of loss functions

f1, . . . , fn are chosen by the environment. In round t, the algorithm queries at

Yt ∈ K1, and suffers the loss ft(Yt). The goal in online BCO is to minimize the

expected regret

Rn = E

[
n∑
t=1

ft(Yt)

]
− inf

x∈K

n∑
t=1

ft(x) .

1For simplicity, in some cases we allow ft to be defined outside of K and allow Yt to be in a
small vicinity of K.

2

Note that in bandit optimization, the algorithm can only observe noisy samples from

the objective function, instead of accessing the full gradient or function.

In this work, we would like to bound the optimization error (or regret) in a

minimax fashion. The study of bounds under certain types of assumptions is not

unprecedented. In fact, both upper bounds and lower bounds are widely studied

under different models and environment settings. It is known that the optimization

error of a convex Lipschitz function after n rounds of queries scales as O(
√
d2/n)

(Shamir, 2012). Yet, to the best of our knowledge, at present time there is no algo-

rithm that comes even close to obtaining the desired dependence on the dimension

while simultaneously having theO(
√

1/n) convergence rate. Among various kinds

of algorithms, we are particularly interested in “gradient”-based algorithms (Flax-

man et al., 2005), where the gradient estimate is constructed basing on noisy bandit

feedback, and then substitutes the true gradient in some gradient descent algorithms.

In Section 1.2 we will discuss why we choose to study the “gradient”-based algo-

rithm, and give an overview of the background and state of the art of the bandit

convex optimization problem.

1.2 Motivation and Related Work

For a general convex objective function, the minimax rate for bandit convex op-

timization in both stochastic settings (optimization error) and online settings (ex-

pected regret) is known to be Θ(
√
n). The lower bound is given by Shamir, 2012.

The existence of such a upper bound is proved by Bubeck et al., 2015 with a non-

constructive algorithm.

To achieve the optimal rate, many algorithms have been proposed, which mainly

fall into two categories: One is ellipsoid methods, the other is “gradient”-based

methods. Ellipsoid methods are able to achieve the optimal square-root rate in

terms of time complexity, whereas has very large dependency on the dimensions,

such as O(
√
d33/n) (Agarwal et al., 2013) and O(

√
d14/n) (Liang et al., 2014).

These methods are generally based on a random walk on the epigraph of the func-

tion. They suffer from the high dimension and are not actually used in practice. As

3

to the “gradient”-based method, the gradient here is quoted because the algorithm

actually uses an estimate of the gradient, rather than getting the first-order informa-

tion directly from the environment. Not surprisingly, the performance of this kind

of algorithms depends heavily upon the bias and variance of the gradient estimate.

Recall that in each round the algorithm queries at X and receives a noisy func-

tion value Z = F (X, ξ), where ξ is the noise from a given set or distribution. Ne-

mirovskii and Yudin, 1983 (Chapter 9.3) developed a randomized sampling strategy

that estimate the gradient ∇F (X, ξ) via randomized evaluations of function values

at points on the surface of an L2-sphere center at X . Flaxman et al., 2005 built

on this approach and established the upper bound as O(4
√
d2/n) for bandit convex

optimization in the online setting.

Although convergence rates of “gradient” methods for general convex func-

tions are sub-optimal, they can be improved under certain assumptions. For the

smooth function, the upper bound is improved to O(3
√
d2/n) (Saha and Tewari,

2011). For the smooth and strongly convex function, the upper bound is shown to

be O(
√
d2/n) (Hazan and Levy, 2014), which already matches the lower bound.

The difficulties inherent from estimating gradient using only a single function eval-

uation can also be alleviated when the function F (·, ξ) can be evaluated at multiple

points, as noted by Agarwal et al., 2010 and Nesterov and Spokoiny, 2011. In par-

ticular, when the noise can be kept fixed between queries, the optimization error can

be optimal (Duchi et al., 2015). This is because the gradient estimation can benefit

from the controlled noise, and present better bias-variance tradeoff. 2

Now we see that there remains a big gap for bandit convex optimization in

the general sense, without assuming the strong convexity of objective functions or

controlled noise in the feedback. One of the appealing questions may rise up: Can

we do better with a clever gradient method? Current work has demonstrated the

sub-optimal upper bounds of gradient methods, whereas the lower bounds are still

missing. One may assume to get the optimal rate by designing an algorithm that

makes better use of the gradient estimate. However, if we could find the matching

lower bounds with regards to upper bounds, this assumption must be invalided. In

2We will discuss gradient estimation with controlled noise later in Chapter 4.

4

Algorithm Oracle Environment

x, �

G, Y

f

Figure 1.2: The Gradient Oracle Model: interaction of algorithms with the gradient
oracle and the environment.

the next section, we will introduce how we figure out the lower bound with the help

of the gradient oracle model, which is one of the main contributions of this work.

1.3 Contributions and the Gradient Oracle Model

This thesis studies the convex optimization problem in a novel framework of Gra-

dient Oracle Models, for both stochastic and online settings. In the oracle-based

framework, the algorithm, upon selecting point Xt, receives a noisy and potentially

biased estimate Gt ∈ Rd of the gradient3 of the loss function f from the gradient

oracle. To control the bias and the variance, the algorithm can choose a tolerance

parameter δt > 0 (in particular, we allow the algorithms to choose the tolerance

parameter sequentially). A smaller δt results in a smaller “bias” 4, while typically

with a smaller δt, the “variance” of the gradient estimate increases. In the online

setting, the oracle also gives a response point Yt in the vicinity of the query point

Xt, which serves as the point where the cost is incurred.

The main feature of the model is that the information flow between the algo-

rithm and the environment (holding f , or f1:n) is mediated by a stochastic gradient

estimation oracle. In this way, we extract the bias-variance tradeoff from gradient

estimation techniques extensively used in the literature, mostly for the case when

the gradient is estimated only based on noisy observations of the objective function

(Katkovnik and Kulchitsky, 1972; Kushner and Clark, 1978; Spall, 1992, 1997;

Dippon, 2003; Bhatnagar et al., 2013; Duchi et al., 2015). As we shall see, numer-

ous “gradient” approaches to bandit optimization and online learning essentially

3More generally, an estimate of a subgradient of f , in case f is not differentiable at Xt
4For the precise meaning of bias, we will consider two definitions, see Section 2.2.

5

using gradient estimates and first-order methods fit in this framework (Polyak and

Tsybakov, 1990; Flaxman et al., 2005; Abernethy et al., 2008; Agarwal et al., 2010;

Nesterov and Spokoiny, 2011; Agarwal et al., 2013; Hazan and Levy, 2014).

In addition to reproducing existing results in a unified approach, perhaps more

importantly, we provide lower bounds on the minimax optimization error (or regret)

for several oracle models. In particular, for optimizing smooth, convex functions,

we have matching lower and upper bounds. For instance, under the type-I oracle5,

the minimax optimization error for L-smooth, convex functions is

∆∗,type−I
FL,0,n (c1, c2) = Θ

(√
dC

q
2p+q

1 C
p

2p+q

2 n−
p

2p+q

)
,

where the bias of the gradient estimate is bounded by c1 = C1δ
p, the variance is

bounded by c2 = C2δ
−q, C1, C2, p, q are some constants relative to the properties

of gradient estimates. In Chapter 4, we will see using the state-of-the-art gradient

estimation techniques, we can obtain p = 2, q = 0 for controlled noise, and p =

2, q = 2 for uncontrolled noise. This reproduce the optimal rate Θ(
√

1/n) for

controlled noise (Duchi et al., 2015), and shows that if the noise is uncontrolled,

gradient methods can not surpass the sub-optimal rate Θ(3
√

1/n).

Note that our oracle model does not capture the full strength of the gradient

estimates used in previous work, but it fully describes the properties of the estimates

that so far have been used in their analysis. As a consequence, our lower bounds

show that the known minimax regret of
√
n (Bubeck et al., 2015; Bubeck and Eldan,

2015; Shamir, 2012) of online and stochastic bandit convex optimization cannot be

shown to hold for any algorithm that uses current gradient estimation procedures,

unless the proof exploited finer properties of the gradient estimators than used in

prior works. In particular, our lower bounds even invalidate the claimed (weaker)

upper bound of Dekel et al. (2015) (see Section 3.5).

1.4 Organization

The thesis is organized as follows: We formally define the biased, noisy gradi-

ent oracle model in Chapter 2. Upper and lower bounds under this framework are
5Detailed definitions will be given in Section 2.2

6

provided in Chapter 3. Theorems and proofs are presented for different settings, in-

cluding stochastic versus online optimization, smooth versus strongly convex func-

tions, and type-I versus type-II oracles. Chapter 4 is devoted to describing gradient

estimation methods. In addition to general propositions, some widely used exam-

ples of estimates are illustrated, which can apply to stochastic and online BCO in

Chapter 5 and 6. We close the thesis by summarizing conclusions in Chapter 7.

7

Chapter 2

Gradient Oracle Models

This chapter gives a detailed description to the biased, noisy gradient oracle model,

which will be used to derive the optimization error and regret later. Section 2.1

defines all the notations and concepts we will use in the following chapters. Sec-

tion 2.2 proposes two types of oracles to catch properties of different gradient esti-

mation methods listed in Chapter 4. The relationship of the two types of oracle are

explained in Section 2.3, where we will see one type of oracles actually can be re-

duced to another under some mild assumptions. In Section 2.4, we review previous

work on gradient oracle models and highlight the novel features of our work.

2.1 Notations

Capital letters will denote random variables. For i ≤ j positive integers, we use the

notation ai:j to denote the sequence (ai, ai+1, . . . , aj).

We let ‖·‖ denote some norm on Rd, whose dual is denoted by ‖·‖∗. LetK ⊂ Rd

be a non-empty closed convex set.

Given the function f : K → R which is differentiable in K◦, 1 f is said to be

µ-strongly convex w.r.t. a norm ‖ · ‖ (µ ≥ 0) if

Df (x, y) ≥ µ
2
‖x− y‖2

for all x ∈ K , y ∈ K◦, where Df (x, y)
.
= f(x) − f(y) − 〈∇f(y), x − y〉 is the

Bregman divergence associated with f between points x and y. Similarly, f is µ-

strongly convex w.r.t. a functionR ifDf (x, y) ≥ µ
2
DR(x, y) for all x ∈ K , y ∈ K◦,

1For A ⊂ Rd, A◦ denotes the interior of A.

8

where K◦ ⊆ dom(R) and R is differentiable over K◦. A function f is L-smooth

w.r.t. a norm ‖ · ‖ for some L > 0 if

Df (x, y) ≤ L
2
‖x− y‖2

for all x ∈ K , y ∈ K◦. This condition is equivalent to that ∇f is L-Lipschitz, that

is, ‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖ (Nesterov, 2004, Theorem 2.1.5).

We let FL,µ,R(K) denote the class of functions that are µ-strongly convex w.r.t.

R and L-smooth w.r.t. some norm ‖·‖ on the set K (typically, we will assume

that R is also strongly convex w.r.t. ‖·‖). Note that FL,µ,R(K) includes functions

whose domain is larger than or equal to K. We also let FL,µ(K) be FL,µ,R(K)

with R(·) = 1
2
‖·‖2

2. Then, the set of convex and L-smooth functions with domain

including K is FL,0(K).

Besides the standard O(·) notation, we will also use Õ(·): For a positive val-

ued function f : N → R+, Õ(f) contains any g : N → R+ such that g =

O(logp(n)f(n)) for some p > 0. (As usual, we abuse notation by writing g = O(f)

instead of g ∈ O(f).)

Finally, we will denote the indicator function of an event E by I {E}, that is

I {E} = 1 if E holds and equals zero otherwise.

2.2 Type-I and Type-II Oracles

We will use two classes of oracles. In both cases, the oracles are specified by

two functions c1, c2 : [0,∞) → [0,∞), which will be assumed to be continuous,

monotonously increasing (resp., decreasing) with

lim
δ→0

c1(δ) = 0 and lim
δ→0

c2(δ) = +∞ .

Typical choices for c1, c2 are c1(δ) = C1δ
p, c2(δ) = C2δ

−q with p, q > 0.

Our type-I oracles are defined as follows:

Definition 1 ((c1, c2) type-I oracle) We say that γ is a (c1, c2) type-I oracle forF ,

if for any function f ∈ F , x ∈ K, 0 < δ ≤ 1, γ returns G ∈ Rd and Y ∈ K random

elements such that ‖x− Y ‖ ≤ δ almost surely (a.s.) and the following hold:

9

1. ‖E [G]−∇f(x)‖∗ ≤ c1(δ) (bias); and

2. E
[
‖G− E [G]‖2

∗
]
≤ c2(δ) (variance). 2

The upper bound on δ is arbitrary: by changing the norm, any other value can also

be accommodated. Also, the upper bound only matters when K is bounded and the

functions in F are defined only in a small vicinity of K.

The second type of oracles considered is as follows:

Definition 2 ((c1, c2) type-II oracle) We say that γ is a (c1, c2) type-II oracle for

F , if for any function f ∈ F , x ∈ K, 0 < δ ≤ 1, γ returns G ∈ Rd and Y ∈ K
random elements such that ‖x− Y ‖ ≤ δ a.s. and the following hold:

1. There exists f̃ ∈ F such that
∥∥f̃ − f∥∥∞ ≤ c1(δ) and E [G] = ∇f̃(x) (bias);

and

2. E
[
‖G− E [G]‖2

∗
]
≤ c2(δ) (variance). 2

We will denote the set of type-I (type-II) oracles satisfying the (c1, c2)-requirements

given a function f ∈ F by Γ1(f, c1, c2) (resp., Γ2(f, c1, c2)).

Note that while a type-I oracle returns a biased, noisy gradient estimate for f ,

a type-II oracle returns an unbiased, noisy gradient estimate for some function f̃

which is close to f . Note that f̃ is allowed to change with the inputs (not only by

f , but also with x and δ) in the definition. In fact, the oracles (in both cases) can

have a memory of previous queries and depending on the memory can respond to

the same inputs (x, δ, f) with a differently constructed pair.2 The oracles that we

use will nevertheless be memoryless.

As noted above, even a memoryless type-II oracle can respond such that f̃ de-

pends on x or δ. A type-II oracle is called a uniform type-II oracle if f̃ only depends

on f (and possibly the history of previous queries), but not on x and δ. The type-II

oracles that will be explicitly constructed will all be uniform.

We call an oracle (type-I or II) unbiased if E [Y] = x in the above definitions.

Note that if the oracle is unbiased and the loss function is smooth, an algorithm
2For oracles with memory, in the definition (and in the proofs provided later in the paper) the

expectation should be replaced with an expectation that is conditioned on the past.

10

does not loose too much from suffering loss at Y instead of the query point x since

in this case E [f(Y)]− f(x) ≤ E
[
〈∇f(x), Y − x〉+ L

2
‖Y − x‖2] ≤ Lδ2/2.

Examples of specific oracle constructions will be given in Chapter 4. We also

note that for type-II oracles we only need properties of the function class which

the surrogate function f̃ belongs to, the assumption f ∈ F is only included to

simplify the definition (e.g., some oracles work for non-convex functions f for

which a suitable convex surrogate and the associated oracle exists).

2.3 Reduction Between Two Types of Oracles

As the next result shows, type-I and II oracles are closely related. In particular, a

type-I oracle is also a type-II oracle (although not a uniform type-II oracle). On the

other hand, type-II oracles need to satisfy an alternative condition to become type-I

oracles as the closeness of f̃ and f is insufficient to conclude anything about the

distance of their gradients:

Proposition 1 Definition 1 is a sufficient condition for Definition 2, given a bounded

K. In particular, letting R = supy∈K ‖y‖, for any f, c1, c2 such that f + 〈c, ·〉 ∈ F
for any ‖c‖∗ ≤ c1(1), it holds that Γ1(f, c1, c2) ⊂ Γ2(f,Rc1, c2). Furthermore, if∥∥f̃ − f∥∥∞ ≤ c1(δ) is replaced by

∥∥∇f̃ −∇f∥∥∗ ≤ c1(δ) (2.1)

in Definition 2 (for all x ∈ K and 0 < δ ≤ 1), then any oracle satisfying this

modified definition is also a (c1, c2) type-I oracle. 2

PROOF The second part of the claim is immediate from the definitions, hence it

remains to prove the first part. Let γ be a (c1, c2) type-I oracle. Fix x, δ, f and let

the oracle’s response be G, Y . Define f̃ : K → R by

f̃(y) = E [f(y) + 〈G−∇f(x), y〉] ,

where the expectation is over the randomness of G (note that f̃ depends on x and

δ). Then, ∇f̃(y) = ∇f(y) − ∇f(x) + E [G] and thus substituting x for y we get

11

that ∇f̃(x) = E [G]. Further, using ‖E [G]−∇f(x)‖∗ ≤ c1(δ), we have, for any

y ∈ K,

|f̃(y)− f(y)| = |E [〈G−∇f(x), y〉]| ≤ ‖E [G]−∇f(x)‖∗ ‖y‖ ≤ Rc1(δ) .

showing that γ is also an (Rc1, c2) Type-II oracle, since f̃ ∈ F by the conditions of

the proposition. �

While in the online convex optimization setting algorithms are compared based

on their minimax regret in the stochastic convex optimization setting, they are com-

pared based on their minimax error (sometimes, also called as the “simple regret”).

Both are defined with respect to a class of loss functions F , and the bias/variance

control functions c1, c2. The worst-case regret of algorithm A interacting with

(c1, c2) type-I oracles for the function class F is defined as

RAF ,n(c1, c2) = sup
f1:n∈Fn

sup
γt∈Γ1(ft,c1,c2)

1≤t≤n

RAn (f1:n, γ1:n)

where RAn (f1:n, γ1:n) denotes the expected regret of A (against f1:n, γ1:n), and the

minimax expected regret for (F , c1, c2) with type-I oracles is defined as

R∗F ,n(c1, c2) = inf
A
RAF ,n(c1, c2),

where A ranges through all algorithms that interact with the loss sequence f1:n =

(f1, . . . , fn) through the oracles γ1:n (in round t, oracle γt is used). The minimax

regret for type-II oracles is defined analogously.

In the stochastic BCO setting, the worst case error is defined through

∆AF ,n(c1, c2) = sup
f∈F

sup
γ∈Γ1(f,c1,c2)

∆An (f, γ) , (2.2)

where ∆An (f, γ) is the optimization error thatA suffers after n rounds of interaction

with f through (a single) γ as described earlier, and the minimax error is defined as

∆∗F ,n(c1, c2) = inf
A

∆AF ,n(c1, c2),

where, again,A ranges through all algorithms that interact with f through an oracle.

The minimax error for type-II oracles is defined analogously.

12

Consider now the case when the setK is bounded and, in particular, assume that

K is included in the unit ball w.r.t. ‖·‖. Assume further that the function set F is

invariant to linear shifts (that is for any f ∈ F , w ∈ Rd, x 7→ f(x) + 〈x,w〉 is also

in F). Let ∆type−I
n and ∆type−II

n denote the appropriate minimax errors for the two

types of oracles. Then, by the construction in Proposition 1,

∆type−I
F ,n (c1, c2) ≤ ∆type−II

F ,n (Rc1, c2) . (2.3)

Note that R may depend on the dimension d, e.g., for K = [−1, 1]d, R =
√
d

when using the Euclidean norm. To clarify the different c1 used by type-I and II

oracles, we will present the upper and lower bounds separately for the two oracle

types, although the type-I upper bound can actually be derived from type-II (and the

type-II lower bound can be derived from type-I). Also note that for either type of

oracles, ∆∗F ,n(c1, c2) ≤ R∗F ,n(c1, c2)/n. This follows by the well known construc-

tion that turns an online convex optimization methodA for regret minimization into

an optimization method by running the method and at the end choosing X̂n as the

average of the points X1, . . . , Xn queried by A during the n rounds. Indeed, then

f(X̂n) ≤ 1
n

∑n
t=1 f(Xt) by Jensen’s inequality, hence the average regret of A will

upper bound the error of choosing X̂n at the end. A consequence of this relation is

that a lower bound for ∆∗F ,n(c1, c2) will also be a lower bound for R∗F ,n(c1, c2)/n

and an upper bound on R∗F ,n(c1, c2) leads to an upper bound on ∆∗F ,n(c1, c2). This

explains why we allowed taking supremum over time-varying oracles in the defi-

nition of the regret and why we used a static oracle for the optimization error: to

maximize the strength of the bounds we obtain.

2.4 Previous Work

Gradient oracles have been considered in a number of papers before: Several previ-

ous works assume that the accuracy requirements hold with probability one (d’Aspremont,

2008; Baes, 2009; Devolder et al., 2014) or consider adversarial noise (Schmidt

et al., 2011). Gradient oracles with stochastic noise, which is central to our de-

velopment, were also considered (Juditsky and Nemirovski, 2011; Honorio, 2012;

Dvurechensky and Gasnikov, 2015); however, these papers assume that the bias

13

and the variance are controlled separately, and consider the performance of special

algorithms (in some cases in special setups). A full comparison between these ora-

cle models is given by Devolder et al. (2014). For illustration, here we only review

the model of this latter paper as a typical example of these previous works.

The model of Devolder et al. (2014) assumes a first-order approximation to

the function with parameters (δ, L). In particular, given (x, δ, L) and the convex

function f , the oracle gives a pair (t, g) ∈ R×Rd such that t+ 〈g, · − x〉 is a linear

lower approximation to f(·) in the sense that

0 ≤ f(y)− {t+ 〈g, y − x〉} ≤ L

2
‖y − x‖2 + δ .

Devolder et al. (2014) argue that this notion appears naturally in several optimiza-

tion problems and study whether the so-called accelerated gradient techniques are

still superior to their non-accelerated counterparts (and find a negative answer). The

authors study both lower and upper rates of convergence, similarly to our paper.

A major difference between the previous and our settings is that we allow

stochastic noise (and bias), which the algorithms can control, while the oracle in

these previous paper must guarantee that the accuracy requirements hold in each

time step with probability one. This is a much stronger requirement, which may be

impossible to satisfy in some problems, such as when the only information avail-

able about the functions is noise contaminated. Some works, such as Schmidt et al.

(2011) allow arbitrary sequences of errors and show error bounds as a function of

the accumulated errors.

Our proof technique is actually essentially the same (as can be expected). How-

ever, the noisy case requires special care. For example, Proposition 3 of Schmidt

et al. (2011) bounds the optimization error for the smooth, convex case by

O(1/n2(‖x1 − x∗‖2 + A2
n)) ,

where An = O(
∑n

t=1 t ‖et‖), et being the error of the approximate gradient. This

expression becomes Θ(1
n2

∑n
t=1 t

2) ≈ n assuming that errors’ noise level is a pos-

itive constant (in all our result, this holds). This clearly shows that the noisy case

requires (somewhat) special treatment. Similar, but simpler noisy oracle models

14

were introduced (Juditsky and Nemirovski, 2011; Honorio, 2012; Dvurechensky

and Gasnikov, 2015), but these models lack the bias-variance tradeoff central to

this paper (i.e., they assume the variance and bias can be controlled independently

of each other). The results in these papers are upper bounds on the error of certain

gradient methods (also to some very specific problem for Honorio (2012)), and they

correspond to the bounds we obtained with q = 0.

15

Chapter 3

Main Results

This chapter has the most essential contributions of our work. Upper and lower

bounds are presented for both stochastic BCO (optimization error) and online BCO

(expected regret). We have structured the analysis in such a way that the role of

objective functions and gradient estimates becomes clearer in our results, i.e., F
specifies the class of objective functions, the type-I or II oracle illustrates the prop-

erties and bias-variance tradeoff of gradient estimates. Table 3.1 summarizes the

upper and lower bounds1 for two specific choices of p and q (relevant to applica-

tions in Chapter 5 and Chapter 6). These bounds can be inferred from the results

in Theorems 1 and 2.2 In Section 3.5, we apply our gradient oracle model to give a
1Note that when R is the squared norm and K is the hypercube (as in the lower bounds), D =

Θ(d) in the upper bounds and also that C1, C2 may hide dimension-dependent quantities for the
common gradient estimators, as will be discussed later.

2While it appears that for the strongly convex case the error becomes smaller with a larger di-
mension, in most applications C1, C2 will hide dimension dependent constants, and the lower bound

Type-I Oracle Convex + Smooth Strongly Convex + Smooth

Upper bound Lower bound Upper bound Lower bound

δ-bias, δ−2-variance (
C2

1C2D
2

n

)1/4 (
C2

1C2d
2

n

)1/4 (
C2

1C2D

n

)1/3 (
C2

1C2

n

)1/2

(p = 1, q = 2)

δ2-bias, δ−2-variance (
C1C2

√
D3

n

)1/3 (
C1C2

√
d3

n

)1/3 (
C1C2

√
D

n

)1/2 (
C1C2

n

)2/3

(p = 2, q = 2)

Table 3.1: Summary of upper and lower bounds on the minimax optimization er-
ror for different smooth function classes and gradient oracles for the settings of
Theorem 1 and Theorem 2.

16

Algorithm 1 Mirror Descent with Type-I/II Oracle.
Input: Closed convex set K 6= ∅, regularization function R : dom(R) → R,
K◦ ⊂ dom(R), tolerance parameter δ, learning rates {ηt}n−1

t=1 .
Initialize X1 ∈ K arbitrarily.
for t = 1, 2, · · · , n− 1 do

Query the oracle at Xt to receive Gt, Yt.
Set Xt+1 = argminx∈K [ηt〈Gt, x〉+DR(x,Xt)] .

Return: X̂n = 1
n

∑n
t=1Xt .

lower bound to the algorithm proposed in Dekel et al., 2015, which invalidates their

upper bounds and enhanced our statement about gradient methods.

3.1 Upper Bounds of the Minimax Error

First we give an upper bound for the mirror-descent algorithm shown as Algo-

rithm 1. In the algorithm, we assume that the regularizer function R is α-strongly

convex and the target function f is smooth or smooth and strongly convex. We give

results for polynomial oracles, that is, when c1 and c2 are polynomial functions (in

particular, monomial functions) of their argument. The reason, as we will see, is

that existing oracle constructions give rise to polynomial oracles for the function

classes that we consider.

Theorem 1 (Upper bound) Consider the class F = FL,0 of convex, L-smooth

functions whose domain includes the bounded, convex set K 6= ∅, K ⊂ Rd. As-

sume that the regularization functionR is α-strongly convex with respect to (w.r.t.)

some norm ‖·‖, and K◦ ⊆ dom(R). For any (c1, c2) type-I or any memoryless

uniform (c1, c2) type-II oracle with c1(δ) = C1δ
p, c2(δ) = C2δ

−q, p, q > 0, the

worst-case error (and hence the minimax error) of Algorithm 1 run with an appro-

priate parameter setting can be bounded as

∆MD,type−I
FL,0,n (c1, c2) ≤K1D

1
2C

q
2p+q

1 C
p

2p+q

2 n−
p

2p+q (3.1)

+
1

n

(
E
[
f(X1)− inf

x∈K
f(x)

]
+
DL

α

)
,

actually increases with the dimension increasing.

17

∆MD,type−II
FL,0,n (c1, c2) ≤K ′1D

p
2p+qC

q
2p+q

1 C
p

2p+q

2 n−
p

2p+q (3.2)

+
1

n

(
E
[
f(X1)− inf

x∈K
f(x)

]
+
DL

α

)
,

where D = supx,y∈KDR(x, y). For the class F = FL,µ,R of µ-strongly convex

(w.r.t.R) and L-smooth functions, with α > 2L/µ, we have

∆MD,type−I
FL,µ,R,n (c1, c2) ≤K2D

q
2(p+q)C

q
p+q

1 C
p
p+q

2

(
log n+ 1 + αµ

αµ−2L

n

) p
p+q

(3.3)

+
1

n
E
[
f(X1)− inf

x∈K
f(x)

]
.

∆MD,type−II
FL,µ,R,n (c1, c2) ≤K ′2C

q
p+q

1 C
p
p+q

2

(
log n+ 1 + αµ

αµ−2L

n

) p
p+q

(3.4)

+
1

n
E
[
f(X1)− inf

x∈K
f(x)

]
.

Above, the constants K1, K ′1, K2 and K ′2 depend on p, q, α, µ.3

If the oracle is unbiased (but may be non-uniform and may have memory) and

either (i) the oracle is of type-I or (ii) the oracle is of type-II and all functions in F
have bounded gradients4 then, for F ⊂ FL,0, the regret of Algorithm 1 run with an

appropriate parameter setting can be bounded as

1

n
RMD
F (c1, c2) = O

(
D

p̂
2p̂+q Ĉ

q
2p̂+q

1 C
p̂

2p̂+q

2 n−
p̂

2p̂+q

)
where p̂ = min{p, 2}, Ĉ1 = C1I {p ≤ 2}+ (L/4)I {p ≥ 2} for type-II oracles and

Ĉ1 = RC1I {p ≤ 2}+ (L/4)I {p ≥ 2} for type-I oracles where R = supx∈K ‖x‖.5

In the strongly convex case, that is, when F ⊂ FL,µ, an appropriate parameter

setting of Algorithm 1 yields a regret bound6

1

n
RMD
F (c1, c2) = O

(
Ĉ

q
p̂+q

1 C
p̂
p̂+q

2 n−
p̂
p̂+q (1 + log n)

p̂
p̂+q

)
.

2

3 In particular, K1 = 2
q

2(2p+q)

(
α−1 + 2α−

q
2(p+q)

)(
2p+q
2p

) p
2p+q

, K ′1 =

3
(
2 + 2

n

) q
2p+q α−

p
2p+q

(
2p+q
2p

) p
2p+q

, K2 = 2
q

2(p+q)α−
2p+q

2(p+q)µ−
p

p+q and K ′2 = 2
q

p+qα−
p

p+q µ−
p

p+q .
4This follows from the smoothness if, for example, the functions in f are bounded.
5The coefficient associated with the dominating term of the bound is 21+

q/2
2p̂+q (2p̂ +

q)(2p̂α)−
p̂

2p̂+q q−
q

2p̂+q .
6 The coefficient associated with the main term of the bound is (p̂+ q)p̂−

p̂
p̂+q q−

q
p̂+q (αµ)−

p̂
p̂+q .

18

The proof of this theorem follows the steps of the standard analysis of the mir-

ror descent algorithm and is provided in Section 3.2, mainly for completeness and

because it is somewhat cumbersome to extract from the existing results what prop-

erties of the oracles they use. Comparing the bounds on the optimization error and

the regret for the non-strongly convex case, note that p̂ plays the same role as p

and Ĉ1 as C1. The reason for the difference is that the extra loss introduced by

using Yt instead of Xt in the regret minimization case brings in an extra Lδ2/2 term

(as discussed at the introduction of unbiased oracles), and this term dominates the

C1δ
p bias term when p > 2, and increases its coefficient for p = 2; p̂ and Ĉ1 are

obtained as the exponent and the coefficient of the dominating term from these two.

On another note, the dependence on D for type-I oracles seems different for the

optimization and the regret minimization cases. However, by the strong convexity

of R, R ≤
√

2D/α (when R is also L′-smooth, R ≥
√

2D/L′, so R is of the

same order as
√
D); applying this inequality gives the same dependence on D for

both types of oracles (for p ≥ 2, the main term scales with a smaller power of D

for regret minimization due to the approximation issues discussed beforehand).

3.2 Proofs of the Upper Bounds

In this section we prove Theorem 1. First we derive the bounds for the optimization

settings and then for the regret.

3.2.1 Stochastic Optimization

The proof for the stochastic optimization scenario is based on Lemma 1 stated be-

low. This is essentially Theorem C.4 of Mahdavi (2014), and also identical to The-

orem 6.3 of Bubeck (2014), who cites Dekel et al. (2012) as the source. For com-

pleteness, the proof of the lemma is given in Section 3.2.3. The lemma is somewhat

more general than what we need (we will only need it for the case when βt = 0);

the general form is presented because its proof is not significantly different than the

simpler form and it may find other applications in the future.

Lemma 1 Let (Ft)t be a filtration such thatXt is Ft-measurable. LetGt = E [Gt|Ft]

19

and assume that the nonnegative real-valued deterministic sequence (βt)1≤t≤n is

such that
∥∥Gt −∇f(Xt)

∥∥
∗ ≤ βt holds almost surely. Further, assume that R

is α-strongly convex with respect to ‖·‖, D = supx,y∈KDR(x, y) < ∞, and let

ηt = α
at+L

for some increasing sequence (at)
n−1
t=1 of numbers. Then, the cumulative

loss of Algorithm 1 for a fixed convex and L-smooth function f can be bounded as

E

[
n∑
t=1

f(Xt)− f(x)

]
≤E [f(X1)− f(x)] +

√
2D
α

n−1∑
t=1

βt

+
D(an−1 + L)

α
+

n−1∑
t=1

σ2
t

2at
,

where σ2
t = E

[∥∥Gt −Gt

∥∥2

∗

]
is the “variance” of Gt.

If f is also µ-strongly convex with respect to R with µ > 2L/α, then letting

ηt =
2

µt
and at = αµt/2 − L > 0, the cumulative loss of Algorithm 1 can be

bounded as

E

[
n∑
t=1

f(Xt)− f(x)

]
≤ E [f(X1)− f(x)] +

√
2D
α

n−1∑
t=1

βt +
n−1∑
t=1

σ2
t

2at
. 2

Now we can easily prove the theorem. First we consider the case of smooth and

convex functions. We select

ηt = α/(at + L)

as in the lemma with at = atr for some 0 < r < 1. For type-I oracles, the

result immediately follows by substituting βt = C1δ
p, σ2

t = C2δ
−q, using that∑n−1

t=1 t
−r ≤ 1 +

∫ n
1
t−r ≤ n1−r/(1− r):

1

n
E

[
n∑
t=1

f(Xt)− inf
x∈K

n∑
t=1

f(x)

]

≤ 1

n

(
E
[
f(X1)− inf

x∈K
f(x)

]
+
DL

α

)
+

√
2D

α
C1δ

p +
Da

α
nr−1 +

C2δ
−q

2a(1− r)n
−r .

(3.5)

Choosing

r = p+q
2p+q

,

a = 2
q

2(2p+q)

(
2p+q

2p

) p
2p+q

D−
1
2C

q
2p+q

1 C
p

2p+q

2

δ = α
1

2(p+q)

(
2p+q

4p

) 1
2p+q

C
− 2

2p+q

1 C
1

2p+q

2 n−
1

2p+q ,

20

the last 3 terms in (3.5) are optimized to

K1D
1/2C

q/(2p+q)
1 C

p/(2p+q)
2 n−p/(2p+q) ,

with K1 = 2
q

2(2p+q)

(
α−1 + 2α−

q
2(p+q)

)(
2p+q

2p

) p
2p+q

. This implies (3.1).

For type-II oracles, from the bias condition in Definition 2 and using that the

oracle is memoryless and uniform, we get

1

n
E

[
n∑
t=1

f(Xt)− inf
x∈K

n∑
t=1

f(x)

]
≤ 1

n
E

[
n∑
t=1

f̃(Xt)− inf
x∈K

n∑
t=1

f̃(x)

]
+ 2C1δ

p .

Given Gt = E [Gt] = ∇f̃(Xt), where f̃ ∈ FL,0 is convex and smooth, the

result immediately follows by applying Lemma 1 to f̃ . Substituting βt = 0 (since

we have a type-II oracle), σ2
t = C2δ

−q, respectively, and using the bias condition

again, we obtain

1

n
E

[
n∑
t=1

f(Xt)− inf
x∈K

n∑
t=1

f(x)

]

≤ 1

n

(
E
[
f̃(X1)− inf

x∈K
f̃(x)

]
+
DL

α

)
+
Da

α
nr−1 +

C2δ
−q

2a(1− r)n
−r + 2C1δ

p

(3.6)

≤ 1

n

(
E
[
f(X1)− inf

x∈K
f(x)

]
+
DL

α

)
+
Da

α
nr−1 +

C2δ
−q

2a(1− r)n
−r +

(
2 +

2

n

)
C1δ

p .

(3.7)

Choosing

r = p+q
2p+q

,

a =
(
2 + 2

n

) q
2p+q

(
2p+q

2p

) p
2p+q (D

α

)− p+q
2p+q C

q
2p+q

1 C
p

2p+q

2

δ =
(
2 + 2

n

)− 2
2p+q

(
2p+q

2p

) 1
2p+q (D

α

) 1
2p+q C

− 2
2p+q

1 C
1

2p+q

2 n−
1

2p+q ,

the last 3 terms in (3.7) are optimized to

K ′1D
p/(2p+q)C

q/(2p+q)
1 C

p/(2p+q)
2 n−p/(2p+q) ,

where K ′1 = 3
(
2 + 2

n

) q
2p+q

(
2p+q

2p

) p
2p+q

α−
p

2p+q . This implies (3.2).

21

When f̃ ∈ FL,µ,R is L-smooth and µ-strongly convex, for ηt = 2/(µt) and

δp+q =
C2

(
logn+1+

αµ
αµ−2L

)
√

2DαµC1n
, we similarly obtain, for type-I oracle,

1

n
E

[
n∑
t=1

f(Xt)− inf
x∈K

n∑
t=1

f(x)

]
− 1

n
E
[
f(X1)− inf

x∈K
f(x)

]

≤
√

2D

α
C1δ

p +
C2δ

−q

αµn

n−1∑
t=1

1

t− 2L

αµ

≤
√

2D

α
C1δ

p +
C2

αµ
δ−q

log n+ 1 + αµ/(αµ− 2L)

n

≤ 2
q

2(p+q)α−
2p+q

2(p+q)µ−
p
p+qD

q
2(p+q)C

q
p+q

1 C
p
p+q

2

 log n+ 1 +
αµ

αµ− 2L

n


p
p+q

.

For type-II oracle, choosing δp+q =
C2

(
logn+1+

αµ
αµ−2L

)
2αµC1(n+1)

, we get

1

n
E

[
n∑
t=1

f(Xt)− inf
x∈K

n∑
t=1

f(x)

]
− 1

n
E
[
f(X1)− inf

x∈K
f(x)

]

≤ (2 +
2

n
)C1δ

p +
C2δ

−q

αµn

n−1∑
t=1

1

t− 2L

αµ

≤ (2 +
2

n
)C1δ

p +
C2

αµ
δ−q

log n+ 1 + αµ/(αµ− 2L)

n

≤ 2
q
p+qα−

p
p+qµ−

p
p+qK2C

q
p+q

1 C
p
p+q

2

 log n+ 1 +
αµ

αµ− 2L

n


p
p+q

,

where the bound is optimized in the last step via the choice of δ.

3.2.2 Online Optimization

The proof in this section follows closely the derivation of Saha and Tewari (2011).

First we consider the case of type-II oracles.

Let Ft denote the σ-algebra of all random events up until and including the

selection of Xt. Since the oracle is unbiased, that is, E [Yt|Ft] = Xt, we have

E
[
f̃t(Yt)− f̃t(Xt)|Ft

]
≤ E

[
〈∇f̃t(Xt), Yt −Xt〉+ L

2
‖Xt − Yt‖2|Ft

]
≤ Lδ2/2 .

(3.8)

22

This inequality, the definition of type-II oracles, and the convexity of f̃t implies, for

any x ∈ K,

E

[
n∑
t=1

ft(Yt)

]
−

n∑
t=1

ft(x) ≤ E

[
n∑
t=1

f̃t(Yt)−
n∑
t=1

f̃t(x)

]
+ 2nC1δ

p

≤ E

[
n∑
t=1

f̃t(Xt)−
n∑
t=1

f̃t(x)

]
+ 2nC1δ

p +
nLδ2

2

≤ E

[
n∑
t=1

〈∇f̃t(Xt), Xt − x〉
]

+ 2nC1δ
p +

nLδ2

2

(3.9)

= E

[
n∑
t=1

〈Gt, Xt − x〉
]

+ 2nC1δ
p +

nLδ2

2
. (3.10)

Instead of Lemma 2 used in the optimization proof, we apply the prox-lemma (see,

e.g., Beck and Teboulle, 2003; Nemirovski et al., 2009):

〈Gt, Xt − x〉 ≤
1

ηt

(
DR(x,Xt)−DR(x,Xt+1)

)
+ ηt
‖Gt‖2

∗
2α

. (3.11)

Summing up the above bound for all t, the divergence terms telescope, since

n−1∑
t=1

1

ηt
(DR(x,Xt)−DR(x,Xt+1))

=DR(x,X1)
1

η1

+DR(x,X2)

(
1

η2

− 1

η1

)
+ . . .

+DR(x,Xn−1)

(
1

ηn−1

− 1

ηn−2

)
− 1

ηn−1

DR(x,Xn)

≤D
η1

+D
n−1∑
t=2

(
1

ηt
− 1

ηt−1

)
=

D

ηn−1

, (3.12)

where the inequality results from the fact that {ηt} is non-increasing.

To bound the last term in (3.11), we use the assumption ‖∇f̃(x)‖∗ ≤M for all

x ∈ K to obtain

E
[
‖Gt‖2

∗ |Ft
]
≤ 2E

[∥∥∥Gt −∇f̃t(Xt)
∥∥∥2

∗
+
∥∥∥∇f̃t(Xt)

∥∥∥2

∗

∣∣∣Ft] ≤ 2(M2 + C2δ
−q),

(3.13)

23

Combining the latter with (3.10), (3.11), and (3.12), we obtain, for any x ∈ K,

E

[
n∑
t=1

ft(Yt)

]
−

n∑
t=1

ft(x) ≤ D

ηn−1

+
n∑
t=1

ηt
M2 + C2δ

−q

α
+ 2nC1δ

p +
nLδ2

2
.

(3.14)

Setting the parameters

δ = (
q

2p′
)

2
2p̂+q (

C2D

αĈ2
1

)
1

2p̂+qn−
1

2p̂+q ,

where p̂ = min{p, 2}, Ĉ1 = C1I {p ≤ 2}+(L/4)I {p ≥ 2} (i.e., p̂ is the dominating

exponent from δp and δ2, and Ĉ1 is the coefficient of the dominating term),

ηt = D
p̂+q
2p̂+q (

q

2p̂
)

q
2p̂+q (

C2

α
)−

p̂
2p̂+q Ĉ

− q
2p̂+q

1 n−
p̂+q
2p̂+q .

When ft ∈ FL,0 for all t, it gives that

1

n

(
E

[
n∑
t=1

ft(Yt)

]
− inf

x∈K

n∑
t=1

ft(x)

)
= O

(
Ĉ

q
2p̂+q

1 (C2D)
p̂

2p̂+qn−
p̂

2p̂+q

)
(3.15)

where the coefficient of the main term equalsK = 21+
q/2

2p̂+q (2p̂+q)(2p̂α)−
p̂

2p̂+q q−
q

2p̂+q .

When the set of functions is also strongly convex, in (3.9) we can use strong

convexity instead of linearization:

f̃(Xt)−f̃(x) ≤ 〈∇f̃t, Xt−x〉−
µ

2
DR(x,Xt) = E [〈Gt, Xt − x〉|Ft]−

µ

2
DR(x,Xt) .

Combining this with (3.11) and (3.13) gives the well-known variant of (3.14) for

strongly convex loss functions (Bartlett et al., 2008) for the choice ηt = 2/(tµ):

E

[
n∑
t=1

ft(Yt)

]
−

n∑
t=1

ft(x) ≤
n∑
t=1

E [‖Gt‖2
∗]

tαµ
+ 2nC1δ

p +
nLδ2

2

≤ maxt E [‖Gt‖2
∗]

αµ
(1 + log n) + 2nC1δ

p +
nLδ2

2

≤ 2(M2 + C2δ
−q)

αµ
(1 + log n) + 2nC1δ

p +
nLδ2

2
.

Setting δ = (C2q(1+logn)

αµĈ1p̂n
)

1
p̂+q , we obtain

1

n

(
E

[
n∑
t=1

f̃t(Yt)

]
− inf

x∈K

n∑
t=1

f̃t(x)

)
= O

(
Ĉ

q
p̂+q

1 C
p̂
p̂+q

2 n−
p̂
p̂+q (1 + log n)

p̂
p̂+q

)
,

(3.16)

24

where the coefficient of the leading term is K ′ = (p̂+ q)p̂−
p̂
p̂+q q−

q
p̂+q (αµ)−

p̂
p̂+q .

For a type-I oracle, we need a slightly different derivation. Using the oracle’s

definition, similarly to (3.10), we get for evry x ∈ K,

E

[
n∑
t=1

ft(Yt)

]
−

n∑
t=1

ft(x) ≤ E

[
n∑
t=1

ft(Xt)−
n∑
t=1

ft(x)

]
+
nLδ2

2

≤ E

[
n∑
t=1

〈∇ft(Xt), Xt − x〉
]

+
nLδ2

2

= E

[
n∑
t=1

〈Gt, Xt − x〉+ 〈∇ft(Xt)−Gt, Xt − x〉
]

+
nLδ2

2

≤ E

[
n∑
t=1

〈Gt, Xt − x〉
]

+ C1δ
p

n∑
t=1

E [‖X1 − x‖] +
nLδ2

2

≤ E

[
n∑
t=1

〈Gt, Xt − x〉
]

+ 2nRC1δ
p +

nLδ2

2
, (3.17)

where the second to last inequality holds by the Cauchy-Schwarz inequality, and

in the last step we used our assumption that supx∈K ‖x‖ ≤ R. We now proceed

similarly to the type-II case, applying the prox-lemma (3.11), but bound the second

moment of Gt differently:

E
[
‖Gt‖2

∗ |Ft
]
≤ 2E

[
‖Gt − E [Gt|Ft]‖2

∗
]

+ 2 ‖E [Gt|Ft]−∇ft(Xt)‖2
∗

≤ 2(C2
1δ

2p + C2δ
−q), (3.18)

Combining this with (3.11), (3.12), and (3.17) yields

E

[
n∑
t=1

ft(Yt)

]
−

n∑
t=1

ft(x) ≤ D

ηn−1

+
C2

1δ
2p + C2δ

−q

α

n∑
t=1

ηt + 2nRC1δ
p +

nLδ2

2
.

Now, the main terms in the above inequality are identical to those of (3.14) ex-

cept that instead of C1 we have RC1 here. Thus, optimizing the parameters of

the algorithm for this case, (3.14) holds for non-strongly convex loss functions with

Ĉ1 = RC1I {p ≤ 2}+(L/4)I {p ≥ 2}. Similarly, (3.16) holds with the latter choice

of Ĉ1 for µ-strongly convex loss functions and type-I oracles.

3.2.3 The Mirror Descent Lemma

Before the proof, we introduce a well-known bound on the instantaneous linearized

"forward-peeking" regret of Mirror Descent.

25

Lemma 2 For any x ∈ K and any t ≥ 1,

〈Gt, Xt+1 − x〉 ≤
1

ηt
(DR(x,Xt)−DR(x,Xt+1)−DR(Xt+1, Xt)) ,

where Xt+1 is selected as in Algorithm 1. 2

PROOF The point Xt+1 is the minimizer of Ψt+1(x) = ηt〈Gt, x〉+DR(x,Xt) over

K. Since the gradient of Ψt+1(x) is

∇Ψt+1(x) = ηtGt +∇R(x)−∇R(Xt),

by the optimality condition, for any x ∈ K,

〈ηtGt +∇R(x)−∇R(Xt), x−Xt+1〉 ≥ 0 ,

which is equivalent to the result by substituting the definition of the Bregman diver-

gence DR. �

With this, we can turn to the proof of Lemma 1. From the smoothness and

convexity of f , and using the strong convexity ofR, we get

f(Xt+1)− f(x)

≤ f(Xt) + 〈∇f(Xt), Xt+1 −Xt〉+
L

2
‖Xt+1 −Xt‖2 −

{
f(Xt) + 〈∇f(Xt), x−Xt〉

}
= 〈∇f(Xt), Xt+1 − x〉+

L

2
‖Xt+1 −Xt‖2

≤ 〈∇f(Xt), Xt+1 − x〉+
L

α
DR(Xt+1, Xt) . (3.19)

Writing∇f(Xt) = (∇f(Xt)−Gt)+ξt+Gt where ξt = Gt−Gt is the “noise”, and

using the Cauchy-Schwartz inequality and the strong convexity ofR, we obtain

〈∇f(Xt), Xt+1 − x〉 = 〈(∇f(Xt)−Gt) + ξt +Gt, Xt+1 − x〉

≤ ‖Xt − x‖
∥∥∇f −Gt

∥∥
∗ + 〈ξt, Xt+1 − x〉+ 〈Gt, Xt+1 − x〉

≤ βt

√
2D

α
+ 〈ξt, Xt+1 − x〉+ 〈Gt, Xt+1 − x〉 .

After plugging this into (3.19), the plan is to take the conditional expectation of

both sides w.r.t. Ft. As Xt is Ft-measurable and E [ξt|Ft] = 0 by the definition of ξt

and Gt, we have

E [〈ξt, Xt+1 − x〉|Ft] = E [〈ξt, Xt − x〉|Ft]︸ ︷︷ ︸
=0

+E [〈ξt, Xt+1 −Xt〉|Ft] .

26

The second term inside the expectation can be bounded by the Fenchel-Young in-

equality and the strong convexity ofR as

〈ξt, Xt+1−Xt〉 ≤
1

2

(
‖ξt‖2

∗
at

+ at ‖Xt+1 −Xt‖2

)
≤ 1

2

(
‖ξt‖2

∗
at

+
2at
α
DR(Xt+1, Xt)

)
.

Applying Lemma 2 to bound 〈Gt, Xt+1− x〉, and putting everything together gives

E [f(Xt+1)− f(x)|Ft] ≤ βt

√
2D

α
+

1

2at
E
[
‖ξt‖2

∗ |Ft
]

+
1

ηt
(DR(x,Xt)−DR(x,Xt+1))

+

(
at + L

α
− 1

ηt

)
DR(Xt+1, Xt)︸ ︷︷ ︸

=0

. (3.20)

Finally, we sum up these inequalities for t = 1, . . . , n − 1. Since the divergence

terms telescope, recall (3.12), by the tower rule and using σ2
t = E

[
‖ξt‖2

∗
]
, we obtain

E

[
n∑
t=1

f(Xt)− f(x)

]
≤ E [f(X1)− f(x)] +

√
2D
α

n−1∑
t=1

βt +
D

ηn−1

+
n−1∑
t=1

σ2
t

2at

= E [f(X1)− f(x)] +
√

2D
α

n−1∑
t=1

βt +
D(an−1 + L)

α
+

n−1∑
t=1

σ2
t

2at
.

When f is L-smooth and µ-strongly convex, we can rewrite (3.19) as

f(Xt+1)− f(x)

≤ f(Xt) + 〈Ĝt, Xt+1 −Xt〉+
L

2
‖Xt+1 −Xt‖2 −

{
f(Xt) + 〈Ĝt, x−Xt〉+

µ

2
DR(x,Xt)

}
= 〈Ĝt, Xt+1 − x〉+

L

2
‖Xt+1 −Xt‖2 − µ

2
DR(x,Xt)

≤ 〈Ĝt, Xt+1 − x〉+
L

α
DR(Xt+1, Xt)−

µ

2
DR(x,Xt) .

Now, similarly to (3.20), we obtain

E [f(Xt+1)− f(x)|Ft] ≤ βt

√
2D

α
+

1

2at
E
[
‖ξt‖2

∗ |Ft
]

+

(
1

ηt
− µ

2

)
DR(x,Xt)−

1

ηt
DR(x,Xt+1)

+

(
L+ at
α
− 1

ηt

)
DR(Xt+1, Xt) .

27

Since
1

ηt
=

μt

2
=

L+ at
α

by definition, summing up theses inequalities for t =

1, 2, . . . , n− 1, we get

E

[
n∑

t=1

f(Xt)− f(x)

]
≤ E [f(X1)− f(x)] +

√
2D
α

n−1∑
t=1

βt +
n−1∑
t=1

σ2
t

2at
− 1

ηn−1

DR(x,Xn)

≤ E [f(X1)− f(x)] +
√

2D
α

n−1∑
t=1

βt +
n−1∑
t=1

σ2
t

2at
,

which finishes the proof.

3.3 Lower Bounds of the Minimax Error

We next state lower bounds for both convex as well as strongly convex function

classes. In particular, we observe that for convex and smooth functions the upper

bound for the mirror descent scheme matches the lower bound, up to constants,

whereas there is a gap for strongly convex+smooth functions. Filling the gap is left

for future work.

Theorem 2 (Lower bound) Let n > 0 be an integer, p, q > 0, C1, C2 > 0, K ⊂ Rd

convex, closed, with [+1,−1]d ⊂ K. Then, for any algorithm that observes n

random elements from a (c1, c2) type-I oracle with c1(δ) = C1δ
p, c2(δ) = C2δ

−q,

the minimax error (and hence the regret) satisfies the following bounds:

• FL,0(K) (Convex and smooth) w.r.t. the Euclidean norm ‖ · ‖2 with L ≥ 1
2

Δ∗,type−I
FL,0,n

(c1, c2) ≥ K3

√
dC

q
2p+q

1 C
p

2p+q

2 n− p
2p+q ,

Δ∗,type−II
FL,0,n

(c1, c2) ≥ K3d
p

2p+q C
q

2p+q

1 C
p

2p+q

2 n− p
2p+q ,

• FL,1(K) (1-strongly convex and smooth) with L ≥ 1

Δ∗,type−I
FL,1,n

(c1, c2) ≥ K4 C
2q

2p+q

1 C
2p

2p+q

2 n− 2p
2p+q .

Δ∗,type−II
FL,1,n

(c1, c2) ≥ K4 D
− q

2p+qC
2q

2p+q

1 C
2p

2p+q

2 n− 2p
2p+q .

Above, the constants K1 and K2 depend on p and q only.7 �

7 In particular, K3 = (2p+q)2

2q
q

2p+q (4p+q)
4p+q
2p+q

and K4 = 2
2p q
2p+q

(2p+q)3

q
2q

2p+q (6p+q)
6p+q
2p+q

.

28

By continuity, the above claim can be extended to cover the case of q = 0

(constant variance). For the special case of p = 0 and C1 > 0, which implies a

constant bias, it is possible to derive an Ω(1) lower bound by tweaking the proof.

On the other hand, the case of p = 0 and C1 = 0 (no bias) leads to an Ω(d/
√
n)

lower bound. The proof of the lower bound, presented in Section 3.4, is obtained in

the usual way by providing a family of functions and a type-I oracle such that any

algorithm suffers at least the stated error on one of the functions.

In particular, for FL,0 with L ≥ 1/2 we use

fv,ε(x) = ε (x− v) + 2ε2 ln
(

1 + e−
x−v
ε

)
,

with v = ±1, ε > 0, and x ∈ K ⊂ R for appropriate ε. Note that for any ε > 0,

fv,ε ∈ F1/2,0 \ ∪0<λ<1/2Fλ,0.

Remark 1 (Scaling) For any function class F , by the definition of the minimax

error (2.2), it is easy to see that

∆∗n(µF , c1, c2) = µ∆∗n
(
F , c1/µ, c2/µ

2
)
,

where µF denotes the function class comprised of functions in F , each scaled by

µ > 0. In particular, this relation implies that the bound for µ-strongly convex

function class is only a constant factor away from the bound for 1-strongly convex

function class. 2

3.4 Proofs of the Lower Bounds

In this section we present the proof of Theorem 2. Note that we will only prove

lower bounds with the type-I oracle. According to Proposition 1, lower bounds

for type-II can be directly attained by replacing C1 of type-I with C1/
√
d, given

[+1,−1]d ⊂ K.

3.4.1 Smooth Convex Functions

We will use a novel technique that will allow us to reduce the d-dimensional case

to the 1-dimensional case (see later). Thus, we start with the one-dimensional case.

29

Proof in one dimension: We first prove the theorem for F = FL,0(K) ∩ {f :

R→ R : dom(f) = K}, where by the assumptions of the theorem, L ≥ 1/2, K is

convex and [−1, 1] ⊂ K, thereby proving a slightly stronger result than stated. For

brevity, let ∆∗n denote the minimax error ∆∗n(F , c1, c2). Throughout the proof, a

d-dimensional normal distribution with mean µ and covariance matrix Σ is denoted

by N(µ,Σ).

We follow the standard proof technique of lower bounds: We define two func-

tions f+, f− ∈ F with associated type-I gradient oracles γ+, γ− such that the ex-

pected error of any deterministic algorithm can be bounded from below for the case

when the environment is chosen uniformly at random from {(f+, γ+), (f−, γ−)}.
By Yao’s principle (Yao, 1977), the same lower bound applies to the minimax error

∆∗n even when randomized algorithms are also allowed.

The proof uses (c1, c2) type-I oracles which have no memory. In particular, we

restrict the class of oracles to those that on input (x, δ) return a random gradient

estimate

G(x, δ) = γ(x, δ) + ξ (3.21)

with some map γ : K× [0, 1)→ R, where ξ is a zero-mean normal random variable

with variance c2(δ) := C2δ
−q, satisfying the variance requirement, and drawn inde-

pendently every time the oracle is queried.8 The map γ, which will be chosen based

on f to satisfy the requirement on the bias. The Y value returned by the oracles is

made equal to x.

Next we define the two target functions and their associated oracles. With a

slight abuse of notation, we will use interchangeably the subscripts + (−) and +1

(−1) for any quantities corresponding to these two environments, e.g., f+ and f+1

(respectively, f− and f−1). For v ∈ {±1}, let

fv(x) := ε (x− v) + 2ε2 ln
(

1 + e−
x−v
ε

)
, x ∈ K . (3.22)

These functions, with the choice ε = 0.1, are shown in Fig. 3.1a. The idea un-

derlying these functions is that they approximate ε|x − v|, but with a prescribed

8The argument presented below is not hard to extend to the case when all observations are from
a bounded set, but this extension is left to the reader.

30

smoothness. The first and second derivatives of fv are

f ′v(x) = ε
1− e−x−vε
1 + e−

x−v
ε

, and f ′′v (x) =
2e−

x−v
ε(

1 + e−
x−v
ε

)2

(the functions were designed by choosing f ′v). From the above calculation, it is easy

to see that 0 ≤ f ′′(x) ≤ 1/2; thus fv is 1
2
-smooth, and so fv ∈ F .

For fv, v ∈ {−1,+1}, the gradient oracle we consider is defined as γv(x, δ) =

γv(x, δ) + ξδ with ξδ ∼ N(0, C2

δq
) selected independently for every query, where γv

is a biased estimate of the gradient f ′v. The derivatives of f+ and f− are shown in

Fig. 3.1a; we define the ”bias” in γv to move the gradients closer to each other:

The idea is to shift f ′+ and f ′− towards each other, with the shift depending on the

allowed bias c1(δ) = C1δ
p. In particular, since f ′+ ≤ f ′−, f ′+ is shifted up, while f ′−

is shifted down. However, the shifted up version of f ′+ is clipped for positive x so

that it never goes above the shifted down version of f ′−, cf. Fig. 3.1b. By moving

the curves towards each other, algorithms which rely on the obtained oracles will

have an increasingly harder time (depending on the size of the shift) to distinguish

whether the function optimized is f+ or f−. Since

0 ≤ f ′−(x)− f ′+(x) ≤ sup
x
f ′−(x)− inf

x
f ′+(x) = 2ε ,

we don’t allow shifts larger than ε (so no crossing over happens), leading to the

following formal definitions:

γ+(x, δ) =

{
f ′+(x) + min(ε, C1δ

p) , if x < 0 ;

min
{
f ′+(x) + min(ε, C1δ

p), f ′−(x)−min(ε, C1δ
p)
}
, otherwise ,

(3.23)

and

γ−(x, δ) =

{
f ′−(x)−min(ε, C1δ

p) , if x > 0 ;

max
{
f ′−(x)−min(ε, C1δ

p), f ′+(x) + min(ε, C1δ
p)
}
, otherwise .

(3.24)

We claim that the oracle γv based on these functions is indeed a (c1, c2) type-I

oracle, with c1(δ) = C1δ
p and c2(δ) = C2

δq
. The variance condition is trivial. To

31

-1 0 +1

f+

decreasing

when x<0f−

min
x<0

f+(x)

x

(a) Plot of f+ and f− with ε = 0.1

−4 −2 2 4
f ′+

f ′−

x

(b) Plot of f ′+ and f ′− with ε = 0.1. The
dashed lines show γv(·, δ) for C1δ

p = ε,
v ∈ {±1}.

see that c1(δ) = C1δ
p works, notice that γv(x, δ) = −γ−v(−x, δ) and f ′v(x) =

−f ′−v(−x). Thus, |γ+(x, δ)− f ′+(x)| = |γ−(−x, δ)− f ′−(−x)|, hence it suffices to

consider v = +1. The bias condition trivially holds for x < 0. For x ≥ 0, using that

f ′+(x) ≤ f ′−(x), we get f ′+(x)−min(ε, C1δ
p) ≤ γ+(x, δ) ≤ f ′+(x) + min(ε, C1δ

p),

showing |γ+(x, δ)− f ′+(x)| ≤ C1δ
p. Thus, γv is indeed an oracle with the required

properties.

To bound the performance of any algorithm in minimizing fv, v ∈ {±1}, notice

that fv is minimized at x∗v = v, with fv(v) = 2ε2 ln 2. Next we show that if x has

the opposite sign of v, the difference fv(x)− fv(x∗v) is “large”. This will mean that

if the algorithm cannot distinguish between v = +1 and v = −1, it necessarily

chooses a highly suboptimal point for either of these cases.

Since vfv is decreasing on {x : xv ≤ 0}, we have

Mv := min
x:xv≤0

fv(x)− fv(v) = fv(0)− fv(v) = ε

(
−v + 2ε ln

1 + e
v
ε

2

)
.

Let h(v) = −v + 2ε ln
1 + e

v
ε

2
. Simple algebra shows that h is an even function,

that is, h(v) = h(−v). Indeed,

h(v) = −v + 2 ε ln

(
e
v
ε
1 + e−

v
ε

2

)
= −v + 2 ε

v

ε
+ 2 ε ln

1 + e−
v
ε

2
= h(−v) .

Specifically, h(1) = h(−1) and thus

M+ = M− = ε

(
−1 + 2ε ln

1 + e
1
ε

2

)
.

From the foregoing, when xv ≤ 0 and ε <
1

4 ln 2
, we have

fv(x)− fv(x∗v) ≥ ε

(
−1 + 2ε ln

1 + e
1
ε

2

)
>
ε

2
.

32

Hence,

fv(x)− fv(x∗v) ≥
ε

2
I {xv < 0} . (3.25)

Given the above definitions and (3.25), by Yao’s principle, the minimax error

(2.2) is lower bounded by

∆∗n ≥ inf
A

E[fV (X̂n)− inf
x∈X

fV (x)] ≥ inf
A

ε

2
P(X̂nV < 0) , (3.26)

where V ∈ {±1} is a random variable, X̂n is the estimate of the algorithm after

n queries to the oracle γV for fV , the infimum is taken over all deterministic algo-

rithms, and the expectation is taken with respect to the randomness in V and the

oracle. More precisely, the distribution above is defined as follows:

Consider a fixed (c1, c2) type-I oracle γ satisfying (3.21) and a deterministic

algorithm A. Let xAt (respectively, δAt) denote the map from the algorithm’s past

observations that picks the point (respectively, accuracy parameter δ), which are

sent to the oracle in round t. Define the probability space (Ω,B, PA,γ) with Ω =

Rn×{−1, 1}, its associated Borel sigma algebra B, where the probability measure

PA,γ takes the form PA,γ := pA,γd(λ × m), where λ is the Lebesgue measure on

Rn, m is the counting measure on {±1} and pA,γ is the density function defined by

pA,γ(g1:n, v) =
1

2

(
pA,γ(gn | g1:n−1) · . . . · pA,γ(gn−1 | g1:n−2) · . . . · pA,γ(g1)

)
=

1

2

(
pN
(
gn − γ(xAn (g1:n−1), δAn (g1:n−1)), c2(δAn (g1:n−1))

)
×× pN

(
g1 − γ(xA1 , δ

A
1), c2(δA1)

))
,

where v ∈ {−1, 1} and pN (·, σ2) is the density function of a N(0, σ2) random

variable. Then the expectation in (3.26) is defined w.r.t. the distribution

P :=
1

2

(
PA,γ+I {v = +1}+ PA,γ−I {v = −1}

)
and V : Ω → {±1} is defined by V (g1:n, v) = v.9 Define P+(·) := P(· | V = 1),

9Here, we are slightly abusing the notation as P depends onA, but the dependence is suppressed.
In what follows, we will define several other distributions derived from P, which will all depend on
A, but for brevity this dependence will also be suppressed. The point where the dependence onA is
eliminated will be called to the reader’s attention.

33

P−(·) := P(· | V = −1). From (3.26), we obtain

∆∗n ≥ inf
A

ε

4

(
P+(X̂n < 0) + P−(X̂n > 0)

)
, (3.27)

≥ inf
A

ε

4
(1− ‖P+ − P−‖TV) , (3.28)

≥ inf
A

ε

4

(
1−

(
1

2
Dkl (P+||P−)

) 1
2

)
, (3.29)

where (3.27) uses the definitions of P+ and P−, ‖·‖TV denotes the total variation

distance, (3.28) follows from its definition, while (3.29) follows from Pinsker’s

inequality. It remains to upper bound Dkl (P+||P−).

Define Gt to be the tth observation ofA. Thus, Gt : Ω→ R, with Gt(g1:n, v) =

gt. Let P t
+(g1, . . . , gt) denote the joint distribution of G1, . . . , Gt conditioned on

V = +1. Let P t
+(· | g1, . . . , gt−1) denote the distribution of Gt conditional on

V = +1 and G1 = g1, . . . , Gt−1 = gt−1. Define P t
−j(· | g1, . . . , gt−1) in a similar

fashion. Then, by the chain rule for KL-divergences, we have

Dkl (P+||P−) =
n∑
t=1

∫
Rt−1

Dkl

(
P t

+(· | g1:t−1)||P t
−(· | g1:t−1)

)
dP t

+(g1:t−1). (3.30)

By the oracle’s definition on V = +1 we have

Gt ∼ N(γ+(xAt (G1:t−1), δAt (G1:t−1)), c2(δAt (G1:t−1))) ,

i.e., P t
+(· | g1:t−1) is the normal distribution with mean γ+(xAt (G1:t−1), δAt (G1:t−1))

and variance c2(δAt (G1:t−1)). Using the shorthands

xAt := xAt (g1:t−1) , δAt := δAt (g1:t−1) ,

we have

Dkl

(
P t

+(· | g1:t−1)||P t
−(· | g1:t−1)

)
=

(γ+(xAt , δ
A
t)− γ−(xAt , δ

A
t))2

2c2(δAt)
,

as the KL-divergence between normal distributions N(µ1, σ
2) and N(µ2, σ

2) is equal

to
(µ1 − µ2)2

2σ2
.

It remains to upper bound the numerator. For (x, δ) ∈ R× (0, 1], first note that

34

γ+(x, δ) ≤ γ−(x, δ). Hence,

|γ+(x, δ)− γ−(x, δ)| = γ−(x, δ)− γ+(x, δ)

< sup
x
γ−(x, δ)− inf

x
γ+(x, δ)

= lim
x→∞

γ−(x, δ)− lim
x→−∞

γ+(x, δ)

= ε− ε ∧ C1δ
p − (−ε+ ε ∧ C1δ

p)

= 2ε− 2ε ∧ C1δ
p

≤ 2(ε− C1δ
p)+ , (3.31)

where (u)+ = max(u, 0) is the positive part of u.

From the above, using the abbreviations xAt = xAt (g1:t−1) and δAt = δAt (g1:t−1)

(effectively fixing g1:t−1 for this step),

Dkl

(
P t

+(· | g1:t−1)||P t
−(· | g1:t−1)

)
<

2{(ε− C1(δAt)p)+}2 (δAt)q

C2

(3.32)

≤ sup
δ>0

2{(ε− C1δ
p)+}2 δq

C2

, (3.33)

where inequality (3.32) follows from (3.31). Notice that the right-hand side of the

above inequality does not depend on the algorithm anymore.

Now, observe that supδ>0{(ε − C1δ
p)+}2δq = sup(ε/C1)1/p≥δ>0(ε − C1δ

p)2δq.

From this we obtain

δ∗ =

(
εq

C1(2p+ q)

)1/p

. (3.34)

Note that C1δ
p
∗ ≤ ε, hence maxδ>0{(ε − C1δ

p)+}2δq = (ε − C1δ
p
∗)

2δq∗. Plugging

(3.33) into (3.30) and using this last observation we obtain

Dkl (P+||P−) ≤ 2n

C2

(ε− C1δ
p
∗)

2 δq∗ . (3.35)

Note that the above bound holds uniformly over all algorithms A. Substituting the

above bound into (3.29), we obtain

∆∗n ≥
ε

4

(
1−√n(ε− C1δ

p
∗)δ

q/2
∗√

C2

)
=
ε

4

(
1−√nK1ε

2p+q
2p

)
, (3.36)

where K1 = 2p√
C2(2p+q)

(
q

C1(2p+q)

) q
2p

.

35

By choosing ε =
(

2p√
nK1(4p+q)

) 2p
2p+q

, we see that

∆∗n ≥
2p+ q

4(4p+ q)

(
2p√

nK1(4p+ q)

) 2p
2p+q

=
(2p+ q)2

4q
q

2p+q (4p+ q)
4p+q
2p+q

C
q

2p+q

1 C
p

2p+q

2 n
− p

2p+q .

(3.37)

Now, when p = 1 and q = 2, the lower bound in (3.37) simplifies to

∆∗n ≥
1

3
√

3
C

1/2
1 C

1/4
2 n−1/4 .

On the other hand, for p = q = 2, we obtain

∆∗n ≥
9

20

(
1

25

)1/3

C
1/3
1 C

1/3
2 n−1/3 .

Generalization to d dimensions: To prove the d-dimensional result, we intro-

duce a new device which allows us to relate the minimax error of the d-dimensional

problem to that of the 1-dimensional problem. The main idea is to use separable

d-dimensional functions and oracles and show that if there exists an algorithm with

a small loss for a rich set of separable functions and oracles, then there exists good

one-dimensional algorithms for the one-dimensional components of the functions

and oracles.

This device works as follows: First we define one-dimensional functions. For

1 ≤ i ≤ d, let Ki ⊂ R be nonempty sets, and for each vi ∈ V := {±1}, let

f
(i)
v : Ki → R. Let K = ×di=1Ki and for v = (v1, . . . , vd) ∈ V d, let fv : K → R be

defined by

fv(x) =
d∑
i=1

f (i)
vi

(xi), x ∈ K . (3.38)

Without the loss of generality, we assume that infxi∈Ki f
(i)
vi (xi) = 0, and hence

infx∈×di=1Ki fv(x) = 0, so that the optimization error of the algorithm producing

X̂n ∈ K as the output is f (i)
v (X̂n,i) and fv(X̂n), respectively. We also define a

d-dimensional separable oracle γv as follows: The oracle is obtained from “com-

posing” the d one-dimensional oracles, (γ
(i)
vi)i. In particular, the ith component of

the response of γv given the history of queries (xt, δt, . . . , x1, δ1) ∈ (K × [0, 1))t is

36

defined as the response of γ(i)
vi given the history of queries (xt,i, δt, . . . , x1,i, δ1) ∈

(Ki × [0, 1))t. This definition is so far unclear about the randomization of the ora-

cles. In fact, it turns out that the one-dimensional oracles can even use the same ran-

domization (i.e., their output can depend on the same single uniformly distributed

random variable U), but they could also use separate randomization: our argu-

ment will not depend on this. Let Γ(i)(f
(i)
vi , c1, c2) denote a non-empty set of

(c1, c2) type-I oracles for objective function f (i)
vi : Ki → R, and let us denote by

Γsep(fv, c1, c2) the set of separable oracles for the function fv defined above. We

also define Fsep = {f : f(x) =
∑d

i=1 f
(i)
vi (xi), x ∈ K, vi ∈ Vi}, the set of compo-

nentwise separable functions. Note that when ‖·‖ = ‖·‖2 is used in the definition

of type-I oracles then Γsep(fv, c1/
√
d, c2/d) ⊂ Γ(fv, c1, c2).

Let an algorithm A interact with an oracle γ. We will denote the distribution of

the output X̂n of A at the end of n rounds by FA,γ (we fix n, hence the dependence

of F on n is omitted). Thus, the expected optimization error of A on a function f

with zero optimal value is

LA(f, γ) =

∫
f(x)FA,γ(dx) .

Note that this definition applies both in the one and the d-dimensional cases. For

v ∈ V d, we introduce the abbreviation

LA(v) = LA(fv, γv) .

We also define

L̃Ai (v) =

∫
f (i)
vi

(xi)FA,γv(dx)

so that

LA(v) =
d∑
i=1

L̃Ai (v) .

Also, for vi ∈ V and a one-dimensional algorithm A, we let

LAi (vi) = LA(f (i)
vi
, γ(i)

vi
) .

Note that while the domain of L̃Ai is V d, the domain of LAi is V , while both express

an expected error measured against f (i)
vi . In fact, L̃Ai depends on v because the

37

γ(i)vi

γ
(−i)
v∗−i

A⊕

Xt,i

δt

Xt,−i

δt

Gt,i

Gt,−i

Gt

Xt+1

δt+1

Figure 3.2: The construction of algorithm A∗i used in the proof of Lemma 3.

algorithm A uses the d-dimensional oracle γv, which depends on v (and not only

on vi) and thus algorithmA could use information returned by γ(j)
vj , j 6= i. In a way

our proof shows that using this information cannot help a d-dimensional algorithm

on a separable problem, a claim that we find rather intuitive, and which we now

formally state and prove.

Lemma 3 (“Cross-talk” does not help in separable problems) Let (fv)v∈V d , fv ∈
Fsep, (γv)v∈V d , γv ∈ Γsep(fv, c1, c2) be separable for some arbitrary functions c1, c2,

and let A be any d-dimensional algorithm. Then there exist d one-dimensional al-

gorithms, A∗i , 1 ≤ i ≤ d (using only one-dimensional oracles), such that

max
v∈V

LA(v) ≥ max
v1∈V1

L
A∗1
1 (v1) + · · ·+ max

vd∈Vd
L
A∗d
d (vd) . (3.39)

2

PROOF We will explicitly construct the one-dimensional algorithms, using A. The

difficulty is that A is d-dimensional, and the ith one-dimensional algorithms can

only interact with the one-dimensional oracle that depends on vi but does not de-

pend on v−i := (v1, . . . , vi−1, vi+1, . . . , vd). Hence, to use A we need to supply

some values v∗−i replacing v−i so that we can use the full d-dimensional oracle,

which A needs.

Before the construction, we need one more notational convention: Slightly

abusing notation, we let v = (vi, v−i) and when writing (vi, v−i) as the argument

of some function g, instead of g((vi, v−i)) we will write g(vi, v−i). The decompo-

sition of a vector into one component and all the others will also be used for other

d-dimensional vectors (not only for v ∈ V).

To define A∗i , consider the solution of the following max-min problem:

max
vi

min
v−i

L̃Ai (vi, v−i)) .

38

Let the optimal solution of this problem be denoted by (v̂∗i , v
∗
−i); we will use v∗−i

replacing the missing values v−i when we create a one-dimensional oracle from a

d-dimensional. We also collect (v̂∗i)i into the vector v̂∗ ∈ V d.

Now, algorithm A∗i is constructed as illustrated on Fig. 3.2. Fix vi ∈ Vi. Then,

algorithm A∗i interacts with oracle γ(vi)
vi as follows: In each round t, algorithm A∗i

produces a pair (Xt, δt) ∈ K × [0, 1). In particular, in the first round, X1, δ1 is the

output of A in the first round. In round t + 1, given the pair Xt, δt produced in the

previous round, the ith component ofXt and δt are fed to oracle γ(i)
vi (the ith compo-

nent of oracle γv), whose output we nameGt,i. The other components ofXt, namely

Xt,−i, together with δt are fed to oracle γ(−i)
v∗−i

which produces a d − 1-dimensional

vector of all but the ith component of γ(vi,v∗−i)
, which we call Gt,−i. The values Gt,i,

Gt,−i are put together to form the d-dimensional vector Gt = (Gt,i, Gt,−i), which

is fed to algorithm A. We then set (Xt+1, δt+1) to be equal to the output of A. At

the end of the n rounds, A is queried to produce X̂n, whose ith component, X̂n,i, is

returned as the output of A∗i .
By construction, LA

∗
i

i (vi) = L̃Ai (vi, v
∗
−i). Now, notice that

max
vi∈Vi

L̃Ai (vi, v
∗
−i) = L̃Ai (v̂∗i , v

∗
−i) ≤ L̃Ai (v̂∗i , v̂

∗
−i) = L̃Ai (v̂∗) ,

where the equality uses the definition of v̂∗i , while the inequality uses the definition

of v∗−i. Thus,

d∑
i=1

max
vi∈Vi

L
A∗i
i (vi) ≤

d∑
i=1

L̃Ai (v̂∗) = LA(v̂∗) ≤ max
v∈V

LA(v) ,

which was the claim to be proven. �

Now, let

F (i) = {fvi : vi ∈ V }, i = 1, . . . , d .

The next result follows easily from the previous lemma:

Lemma 4 Let ‖·‖ = ‖·‖2 in the definition of the type-I oracles. Then, we have that

∆∗Fsep,n(c1, c2) ≥
d∑
i=1

∆∗F(i),n(c1/
√
d, c2/d) .

2

39

PROOF By our earlier remark, Γsep(fv, c1/
√
d, c2/d) ⊂ Γ(f, c1, c2). Hence,

∆∗Fsep,n(c1, c2) = inf
A

sup
v∈V

sup
γ∈Γ(fv ,c1,c2)

∆An (fv, γ) ≥ inf
A

sup
v∈V

sup
γ∈Γsep(fv ,c1/

√
d,c2/d)

∆An (fv, γ) .

(3.40)

For each i = 1, . . . , d, pick γ(i)
vi ∈ Γ(fvi , c1/

√
d, c2/d) such that ∆∗n(F (i), c1/

√
d, c2/d) =

infA supvi∈Vi ∆An (fvi , γ
(i)
vi). For v ∈ V , let γv ∈ Γsep(fv, c1/

√
d, c2/d) be the oracle

whose “components” are γ(i)
vi , i = 1, . . . , d. Now, by Lemma 3,

sup
v∈V

∆An (fv, γv) ≥
d∑
i=1

inf
A

sup
vi∈Vi

∆An (f (i)
vi
, γ(i)

vi
) =

d∑
i=1

∆∗F(i),n(c1/
√
d, c2/d) .

This, together with supv∈V supγ∈Γsep(fv ,c1/
√
d,c2/d) ∆An (fv, γ) ≥ supv∈V ∆An (fv, γv)

and (3.40) gives the desired result. �

Main proof: LetK ⊂ Rd, such that×iKi ⊂ K, {±1} ⊂ Ki ⊂ R, Fd = FL,0(K),

where recall that L ≥ 1/2. For any 1 ≤ i ≤ d, xi ∈ Ki,

f (i)
vi

(xi) := ε (xi − vi) + 2ε2 ln
(

1 + e−
xi−vi
ε

)
. (3.41)

i.e., f (i)
vi is like in the one-dimensional lower bound proof (cf. equation 3.22). Note

that fv ∈ Fd since fv is separable, so its Hessian is diagonal and from our ear-

lier calculation we know that 0 ≤ ∂2

∂x2
i
f

(i)
vi (xi) ≤ 1/2. Let ∆

(d)∗
n denote the min-

imax error ∆∗Fd,n
(
C1δ

p, C2

δq

)
for the d-dimensional family of functions Fd. Let

F (i) = {f (i)
−1, f

(i)
+1}. As it was noted above, fv ∈ Fd for any v ∈ {±1}d. Hence,

by Lemma 4,

∆(d)∗
n ≥

d∑
i=1

∆∗F(i),n

(
C1√
d
δp,

C2

d
δ−q
)
. (3.42)

Derivation of rates:

Plugging the lower bound derived in (3.37) for the one-dimensional setting into the

bound in (3.42), we obtain a
√
d-times bigger lower bound for the d-dimensional

case for any p, q > 0:

∆(d)∗
n ≥

√
d

(2p+ q)2

2q
q

2p+q (4p+ q)
4p+q
2p+q

C
q

2p+q

1 C
p

2p+q

2 n
− p

2p+q . (3.43)

40

The above bound simplifies to the following for the case where p = 1 and q = 2:

∆(d)∗
n ≥2(C2

1C2)1/4

3
√

3

√
dn−1/4.

On the other hand, for the case p = q = 2, we obtain

∆(d)∗
n ≥ 9

10

(
C1C2

25

)1/3√
dn−1/3.

3.4.2 Strongly Convex + Smooth Functions

We follow the notational convention used earlier for convex functions in one dimen-

sion. Let F = FL,1(K), where L ≥ 1 and K contains ±1. We consider functions

fv, for v ∈ {−1,+1}, defined as

fv(x) :=
1

2
x2 − vεx , x ∈ K . (3.44)

It is easy to see that {f+, f−} ⊂ F .

Clearly, fv is minimized at x∗v = vε. By the definition of fv, we have

fv(x)− fv(x∗v) ≥
ε2

2
I {xv < 0} . (3.45)

We will consider the oracles γv defined as

γv(x) = x− vε+ vmin(ε, C1δ
p) + ξ, (3.46)

where ξ ∼ N(0, C2

δq
); as with fv, we will also use γ+ (γ−) to denote γ+1 (resp., γ−1).

The oracle is indeed a (c1, c2) type-I oracle, with c1(δ) = C1δ
p and c2(δ) = C2

δq
.

Using arguments similar to those in the proof of lower bound for convex func-

tions, we obtain

∆(1)∗
n := ∆∗n ≥ inf

A

ε2

2

(
1−

(
1

2
Dkl (P+||P−)

) 1
2

)
, (3.47)

Note that P+ (resp. P−) is P conditioned on the event V = +1 (resp. V = −1).

Observe that, for any x ∈ R, f ′−(x)− f ′+(x) = 2ε and hence

|γ+(x)− γ−(x)| = |f ′+(x)−min(ε, C1δ
p)− (f ′−(x) + min(ε, C1δ

p))| = 2(ε− C1δ
p)+.

(3.48)

41

From the foregoing,

Dkl

(
P t

+(· | g1:t−1)||P t
−(· | g1:t−1)

)
≤ 2{(ε− C1δ

p
t)

+}2δqt
C2

, (3.49)

where the inequality (3.49) follows from (3.48). Thus, we obtain

Dkl (P+||P−) ≤ 2n sup
δ>0

{(ε− C1δ
p)+}2δq

C2

. (3.50)

Substituting the above bound into (3.47), we obtain

∆(1)∗
n ≥ε

2

2

(
1−√n sup

δ>0

(ε− C1δ
p)+δq/2√
C2

)
. (3.51)

Derivation of the rates uniformly for all δ: As in the proof of the lower bound

for FL,0(K), we replace the positive part function in (3.51) and optimize over δ to

obtain that the right-hand side of (3.50) is optimized by

δ∗ =

(
εq

C1(2p+ q)

)1/p

. (3.52)

From the above, we have

∆(1)∗
n ≥ ε2

2

(
1−√n(ε− C1δ

p
∗)δ

q/2
∗√

C2

)
=
ε2

2

(
1−√nK1ε

p+
q
2
p

)
,

where K1 =
p√

C2(p+ q
2
)

(
q

2C1(p+ q
2
)

) q
2p

.

Plugging in ε =

(
4p

(6p+ q)
√
nK1

) 2p
2p+q

, we obtain

∆(1)∗
n ≥ 2

2p−q
2p+q

(2p+ q)3

q
2q

2p+q (6p+ q)
6p+q
2p+q

C
2q

2p+q

1 C
2p

2p+q

2 n−
2p

2p+q . (3.53)

Now, when q = 2 and p = 1, the lower bound in (3.53) simplifies to

∆(1)∗
n ≥ 1

2
C1C

1/2
2 n−1/2.

On the other hand, for p = q = 2, we obtain

∆(1)∗
n ≥ 27

(
2

77

) 1
3

C
2/3
1 C

2/3
2 n−2/3.

42

Generalization to d dimensions: Recall that in this result, ‖·‖ = ‖·‖2. The

proof in d dimensions for strongly convex functions is the same as that for the

case of smooth convex functions with the difference that we use (3.44) in defining

the functions f (i)
vi . Then, for any v ∈ {±1}d, fv ∈ FL,1(K). Indeed, fv(x) =∑d

i=1 f
(i)(xi), hence ∇2fv(x) = Id×d, where Id×d is the d × d identity matrix.

Thus, λmin(∇2fv(x)) = λmax(∇2fv(x)) = 1. From (3.42) and (3.53) we get

∆(d)∗
n ≥ ∆(1)∗

n . (3.54)

3.5 Application to the Averaging Algorithm

As mentioned in Chapter 1, our gradient oracle model can be applied to invalidate

the claim that the averaging gradient estimates can be used to improve the bias-

variance tradeoff. It is emphasized again that to achieve the optimal rate, algorithms

or proofs have to go beyond the current scope.

We consider the problem of iterative optimization of a convex function f : R→
[0,∞) using a gradient oracle. In every round, the optimizer can query the gradient

oracle gt at some point xt, and the goal of the algorithm is to find a point x∗T after

T steps such that x∗T is a function of x1, gt(x1), . . . , xT , gT and E [f(x∗T)− f(x∗)]

is small where x∗ is the minimizer of f , that is, f(x∗) = minx f(x). Assume

f(x) =
ε

2
(x − 1)2 and gt(x) = ε(x − 1) + C1δ

2 + ξt where ξt are zero-mean

iid random variables with variance C2/δ
2. Note that gt(x) − f ′(x) = C1δ

2 + ξt,

therefore, the bias of the gradient oracle is

E [gt(x)− f ′(x)] = C1δ
2,

while the variance of the oracle is

E
[
gt(x)− f ′(x)− C1δ

2
]

= Eξ2 = C2/δ
2.

Note that the above bias-variance bounds (with inequalities instead of equalities) are

used in bandit convex optimization in papers that consider gradient methods using

estimated gradients, including (Dekel et al., 2015), and they do not use anything

else about the gradient estimates.

43

Next we consider two algorithms, SGD with the gradient estimate gt and the

method using the average gradient estimate ḡt. With a slight abuse of notation, we

will write gt = gt(xt), and we define k+ = max{k, 1}.

Algorithm 1: xt+1 = xt − ηgt;

Algorithm 2: ḡt =
1

K + 1

∑t
s=(t−K)+ gs and xt+1 = xt − ηḡt.

Proposition 2 Assume Algorithm 1 or 2 is run to produce xt for t = 1, 2, Then

xt = w
(t)
0 x1 + 1− w(t)

0 −
C1δ

2

ε
(1− w(t)

0)− w(t)
1 ξ1 − w(t)

2 ξ2 − · · · − w(t)
t−1ξt−1 ,

(3.55)

for some weights w(t)
0 , . . . , w

(t)
t−1 satisfying w(t)

0 = 1− ε(w(t)
1 + · · ·+ w

(t)
t−1). 2

PROOF Assume Algorithm 1 is used. Then

xt+1 =(1− ηε)xt + ηε− ηC1δ
2 − ηξt

= (1− ηε)t x1 + ηε+ ηε (1− ηε) + · · ·+ ηε (1− ηε)t−1

− C1δ
2
(
η + η (1− ηε) + · · ·+ η (1− ηε)t−1)

− ηξt − η (1− ηε) ξt−1 − · · · − η (1− ηε)t−1 ξ1

= (1− ηε)t x1 + 1− (1− ηε)t − C1δ
2 1

ε

(
1− (1− ηε)t

)
− ηξt − η (1− ηε) ξt−1 − · · · − η (1− ηε)t−1 ξ1,

showing that the proposition holds withw(t+1)
0 = (1−ηε)t andw(t+1)

s = η(1−ηε)t−s

for s = 1, . . . , t.

To prove the proposition for Algorithm 2, we use induction. It is obvious that

(3.55) holds for t = 1 with w(1)
0 = 1. Assume that (3.55) holds for t = 1, 2, . . . , n,

we will prove that it is also true for t = n+ 1. Given the expression of xt, we have

gt = ε(xt − 1) + C1δ
2 + ξt

= εw
(t)
0 x1 − εw(t)

0 + C1δ
2w

(t)
0 − εw(t)

1 ξ1 − · · · − εw(t)
t−1ξt−1 + ξt .

44

Therefore,

ḡn =
1

K + 1

n∑
i=(n−K)+

gi

=
εx1 − ε+ C1δ

2

K + 1

n∑
j=(n−K)+

w
(j)
0 −

ε

K + 1

n−1∑
i=1

n∑
j=max{i+1,(n−K)+}

w
(j)
i ξi

+
1

K + 1

n∑
i=(n−K)+

ξi .

Then, following the algorithm, by the induction hypothesis we have

xn+1 = xn − ηḡn

=

w(n)
0 −

ηε

K + 1

n∑
j=(n−K)+

w
(j)
0

x1 + 1− w(n)
0 +

ηε

K + 1

n∑
j=(n−K)+

w
(j)
0

− C1δ
2

ε

1− w(n)
0 +

ηε

K + 1

n∑
j=(n−K)+

w
(j)
0


−

n−1∑
i=1

w(n)
i −

ηε

K + 1

n∑
j=max{i+1,(n−K)+}

w
(j)
i +

η

K + 1
I {i ≥ n−K}

 ξi −
η

K + 1
ξn.

Letting

w
(n+1)
0 = w

(n)
0 −

ηε

K + 1

n∑
j=(n−K)+

w
(j)
0 ,

w
(n+1)
i = w

(n)
i −

ηε

K + 1

n∑
j=max{i+1,(n−K)+}

w
(j)
i +

η

K + 1
I {i ≥ n−K} , i = 1, 2, · · · , n− 1 ,

w(n+1)
n =

η

K + 1
,

we get

xn+1 = w
(n+1)
0 x1 + 1− w(n+1)

0 − C1δ
2 1

ε
(1− w(n+1)

0)− w(n+1)
1 ξ1 − w(n+1)

2 ξ2 − · · · − w(n+1)
n ξn .

Now we only need to prove that w(n+1)
0 = 1 − ε∑n

i=1w
(n+1)
i . Given that w(j)

0 =

45

1− ε∑j−1
i=1 w

(j)
i for j = 1, 2, · · · , n, we have

n∑
i=1

w
(n+1)
i =

n−1∑
i=1

w
(n)
i +

η

K + 1

n+ 1− (n−K)+ − ε
n−1∑
i=1

n∑
j=max{i+1,(n−K)+}

w
(j)
i


=

1

ε

(
1− w(n)

0

)
+

η

K + 1

n∑
j=(n−K)+

w
(j)
0

=
1

ε

(
1− w(n+1)

0

)
.

Thereby, (3.55) also holds for t = n+ 1, finishing the proof. �

Now we assume that the sequence of estimates xt satisfies Proposition 2. Then,

letting wi = w
(T+1)
i , the final estimate xT+1 has the form

xT+1 = w0x1 + 1− w0 −
C1δ

2

ε
(1− w0)− w1ξ1 − w2ξ2 − · · · − wT ξT

where

w0 = 1− ε(w1 + · · ·+ wT).

Since {ξt} is independent, E [ξt] = 0, E [ξ2
t] =

C2

δ2
, the regret is

E [R] = E
[ε

2
(xT+1 − 1)2

]
= E

[
ε

2

(
w0x1 − w0 −

C1δ
2

ε
(1− w0)− w1ξ1 − w2ξ2 − · · · − wT ξT

)2
]

=
ε

2

(
(x1 − 1)− (εx1 − ε+ C1δ

2)(w1 + · · ·+ wT)
)2

+
ε

2

C2

δ2

(
w2

1 + · · ·+ w2
T

)
(3.56)

≥ ε

2

(
(x1 − 1)− (εx1 − ε+ C1δ

2)(w1 + · · ·+ wT)
)2

+
ε

2

C2

δ2

1

T
(w1 + · · ·+ wT)2

=
ε

2

(
(x1 − 1)2 − 2(x1 − 1)(εx1 − ε+ C1δ

2)W + [(εx1 − ε+ C1δ
2)2 + C2δ

−2T−1]W 2
)

where we introduced the shorthand notation W = w1 + · · · + wT . Using that

aW 2 + bW + c ≥ c− b2/(4a), we get

E [R] ≥ ε(x1 − 1)2

2

C2

C2 + δ2T (εx1 − ε+ C1δ2)2

≥ ε(x1 − 1)2

2

C2

C2 + 2(x1 − 1)2Tδ2ε2 + 2C2
1Tδ

6
.

Now, for Algorithm 2, using the parameter choice δ = T−
3
16 of Dekel et al.

(2015), we can choose ε = T−
5
16 , leading to the lower bound E [R] = Ω(T−5/16),

contradicting the upper bound O(T−3/8) of Dekel et al. (2015).

46

Chapter 4

Gradient Estimation Methods

A common popular idea in bandit convex optimization is to use the bandit feedback

to construct noisy (and biased) estimates of the gradient. In this chapter, we provide

a few examples for oracles that construct gradient estimates for function classes that

are increasingly general: from smooth, convex to non-differentiable functions.

Firstly, we will formally define the noise in the feedback. In the bandit setting,

the algorithm sequentially chooses the points X1, . . . , Xn ∈ K while observing

the loss function at these points in noise. In particular, in round t, the algorithm

chooses Xt based on the earlier observations Z1, . . . , Zt−1 ∈ R and X1, . . . , Xt−1,

after which it observesZt, whereZt is the value of f(Xt) (or more generally ft(Xt))

corrupted by “noise”.

Previous research considered several possible constraints connecting Zt and

f(Xt). One simple assumption is that {Zt−f(Xt)}t is an {Ft}t = {σ(X1:t, Z1:t−1)}t-
adapted martingale difference sequence (with favorable tail properties). A specific

case is when Zt − f(Xt) = ξt, where (ξt) is a sequence of independent and iden-

tically distributed (i.i.d.) variables. A stronger assumption, common in stochastic

programming, is that

Zt = F (Xt,Ψt), f(x) =

∫
F (x, ψ)PΨ(dψ) , (4.1)

where Ψt ∈ R is chosen by the algorithm and in particular the algorithm can draw

Ψt at random from PΨ. As in Duchi et al. (2015), we assume that the function

F (·, ψ) is Lψ-smooth PΨ-a.s. and the quantity LΨ =
√

E[L2
Ψ] is finite. Note that

the algorithm is aware of PΨ, but does not know how different values of ψ affect

47

the noise ξ(x, ψ) = F (x, ψ) − f(x). Nevertheless, as the algorithm can control ψ

and thus ξ, we refer to this as controlled noise setting and to the others as the case

of uncontrolled noise. As we will see, and is well known in the simulation opti-

mization literature (Kleinman et al., 1999; Duchi et al., 2015), this extra structure

allows the algorithm to reduce the variance of the noise of its gradient estimates by

reusing the same Ψt in consecutive measurements, while measuring the gradient at

the same point, an instance of the method of the method of common random vari-

ables. As creating an estimate from K points (which is equivalent to the so-called

“multi-point feedback setup” from the literature whereK points are queried in each

round) changes the number of rounds from n to n/K, which does not change the

convergence rate as long as K is fixed.

4.1 One-point Feedback

Given x ∈ K, 0 < δ ≤ 1, common gradient estimates that are based on a single

query to the function evaluation oracle (the so-called “one-point feedback”) take

the form
G =

Z

δ
V, where Z = f(x+ δU) + ξ , (4.2)

where (U, V, ξ) ∈ Rd × Rd × R are jointly distributed random variables, ξ is the

function evaluation noise whose distribution may depend on x+δU but E[ξ|V] = 0,

and G is the estimate of ∇f(x) (f : K → R).

In all oracle constructions we will use the following assumption:

Assumption 1 Let K ⊂ D◦ ⊂ Rd, where f : D → R. For any x ∈ K, x+ δU ∈ D
a.s., and E

[
‖V ‖2

∗
]
, E
[
‖U‖3] < +∞.

Note that here the function domainD can be larger than or equal to the setK, where

the algorithm chooses x. This is to ensure that the oracle will not receive invalid

inputs, that is, queries where f is not defined. When the functions are defined over

K only and K is bounded, the above constructions only work for δ small enough.

In this case, the best approach perhaps is to use Dikin ellipsoids to construct the

oracles, as done by Hazan and Levy (2014).

48

The next proposition, whose proof is based on ideas from Spall (1992) shows

that the above one-point gradient estimator leads to a type-I (and, hence, also type-

II) oracle.

Proposition 3 Let Assumption 1 hold and let γ be the one-point feedback oracle de-

fined in (4.2). Assume further that U is symmetrically distributed, V = h(U), where

h : Rd → Rd is an odd function, E [V] = 0, and E[V UT] = I . Then, in the uncon-

trolled noise case, γ is a (c1(δ), c2(δ)) type-I oracle given in Table 4.1, where C2 =

4E
[
‖V ‖2

∗
]

(ess supE[ξ2|V] + supx∈D f
2(x)), andC1 = L

2
E[‖V ‖∗ ‖U‖

2] when f ∈
FL,0 and C1 = B3

6
E
[
‖V ‖∗ ‖U‖

3] for f ∈ C3 where B3 = supx∈D ‖∇3f(x)‖T
where ‖·‖T denotes the implied norm for rank-3 tensors.

Another possibility is to use the so-called smoothing technique (Polyak and

Tsybakov, 1990; Flaxman et al., 2005; Hazan and Levy, 2014) to obtain type-II

oracles. Following the analysis in Flaxman et al. (2005), one gets the following

result, which improves the bias of the previous result from O(δ) to O(δ2) in the

smooth+convex case:

Proposition 4 Let Assumption 1 hold and let γ be the one-point feedback oracle

defined in (4.2). Define V = nW (U)
|∂W |
|W | , where W ⊂ Rn is a convex body with

boundary ∂W , U is uniformly distributed on ∂W , nW (U) denotes the normal vec-

tor of ∂W at U , and |·| denotes the appropriate volume. Let C2 > 0 be defined as in

Proposition 3. Then, if f is L0-Lipschitz, γ is a memoryless, uniform type-II oracle

with c1(δ) = C1δ, c2(δ) = C2/δ
2 where C1 = L0 supw∈W ‖w‖. Further, assuming

W is symmetric w.r.t. the origin, if f is L-smooth, then γ is a type-I (and type-

II oracle) with c1(δ) = C1δ
2, c2(δ) = C2/δ

2 where C1 = (L/|W |)
∫
W
‖w‖2dw,

and, if in addition f is also convex (i.e., f ∈ FL,0) then γ is a type-I oracle with

c1(δ) = C1δ
2/2 and c2(δ) = C2/δ

2. 2

Note that the improvement did not even require convexity. Also, the bias is smaller

for smoother functions, a property that will be enjoyed by all the gradient estima-

tors.

49

Noise → Controlled Uncontrolled
Function (see (4.1)) (see (4.4))

↓

Convex + Smooth (C1δ, C2)
Props 3,5: (C1δ,

C2
δ2)

Prop 4: (C ′1δ
2, C2

δ2)

f ∈ C3 (C1δ
2, C2

δ2) Props 3,5: (C1δ
2, C2

δ2)

Table 4.1: Gradient oracles for different function classes and noise categories.

4.2 Two-point Feedback

While the one-point estimators are intriguing, in the optimization setting one can

also always group two consecutive observations and obtain similar smoothing-type

estimates at the price of reducing the number of rounds by a factor of two only,

which does not change the rate of convergence. Next we present an oracle that uses

two function evaluations to obtain a gradient estimate. As will be discussed later,

this oracle encompasses several simultaneous perturbation methods (see Bhatnagar

et al., 2013): Given the inputs x ∈ K, 0 < δ ≤ 1, the gradient estimate is

G =
Z+ − Z−

2δ
V , (4.3)

where Z± = f(X±) + ξ±, X± = x± δU , U, V ∈ Rd, ξ± ∈ R are random, jointly

distributed random variables, U, V chosen by the oracle in the uncontrolled case

and chosen by the algorithm in the controlled case from some fixed distribution

characterizing the oracle (depending on F), and ξ± being the noise of the returned

feedback Z± at points X±. For the following proposition we consider 4 = 2 × 2

cases. First, the function is either assumed to be L-smooth and convex (i.e., the

derivative of f is L-Lipschitz w.r.t. ‖·‖∗), or it is assumed to be three times continu-

ously differentiable (f ∈ C3). The other two options are either the controlled noise

setting of (4.1), or, in the uncontrolled case, we make the alternate assumptions

E[ξ+ − ξ−|U, V] = 0 and

E[(ξ+ − ξ−)2|V] ≤ σ2
ξ <∞ . (4.4)

50

The following proposition, whose proof is based on (Spall, 1992, Lemma 1) and

(Duchi et al., 2015, Lemma 1), provides conditions under which the bias-variance

parameters (c1, c2) can be bounded as shown in Table 4.1:

Proposition 5 Let Assumption 1 hold and let γ be a two-point feedback oracle

defined by (4.3). Suppose furthermore that E[V UT] = I . Then γ is a type-I ora-

cle with the pair (c1(δ), c2(δ)) given by Table 4.1. For uncontrolled noise and for

controlled noise with f ∈ C3, C1 is as in Proposition 3 and C2 is 4C2 from Propo-

sition 3. For the controlled noise case with f ∈ FL,0, C1 = LΨ

2
E[‖V ‖∗ ‖U‖

2] and

C2 = 2B2
1 + L

2
Ψ

2
E
[
‖V ‖2

∗ ‖U‖
4], with B1 = supx∈K ‖∇f(x)‖∗. 2

Popular choices for U and V :

• If we set Ui to be independent, symmetric ±1-valued random variables and Vi =

1/Ui, then we recover the popular SPSA scheme proposed by Spall (1992). It is

easy to see that E [V UT] = I holds in this case. When the norm ‖·‖ is the 2-norm,

C1 = O(d2) and C2 = O(d). If we set ‖·‖ to be the max-norm, C1 = O(
√
d) and

C2 = O(d).

• If we set V = U with U chosen uniform at random on the surface of a sphere

with radius
√
d, then we recover the RDSA scheme proposed by Kushner and Clark

(1978, pp. 58–60). In particular, the (Ui) are identically distributed with E [UiUj] =

0 if i 6= j and E [UTU] = d, hence E [U2
i] = 1. Thus, if we choose ‖·‖ to be the

2-norm, C1 = O(d2) and C2 = O(d).

• If we set V = U with U the standard d-dimensional Gaussian with unit covariance

matrix, we recover the smoothed functional (SF) scheme proposed by Katkovnik

and Kulchitsky (1972). Indeed, in this case, by definition, E [V UT] = E [UUT] = I .

When ‖·‖ is the 2-norm, C1 = O(d2) and C2 = O(d). This scheme can also

be interpreted as a smoothing operation that convolves the gradient of f with a

Gaussian density.

51

4.3 Proofs for Gradient Estimates

In this section we present the proofs of the previous propositions for gradient esti-

mates.

Proof of Proposition 3 Case 1 (f ∈ C3):

We use the proof technique of Spall (1997). We start by bounding the bias. Since

by assumption E [ξ|V] = 0, we have

E
[
V

(
ξ

δ

)]
= 0 ,

implying that

E[G] = E
[
V

(
f(x+ δU)

δ

)]
.

By Taylor’s theorem, we obtain, a.s.,

f(x+ δU) = f(x) + δ UT∇f(x) +
δ2

2
UT∇2f(x)U +

δ3

2
R+(x, δ, U) (U,U, U),

where

R+(x, δ, U) =

∫ 1

0

∇3f(x+ s δU)(1− s)2ds. (4.5)

In the above,∇3f(·) is considered as a rank-3 tensor. LettingB3 = supx∈D ‖∇3f(x)‖,1

we have ‖R+(x, δ, U)‖ ≤ B3/3 a.s. Now,

E
[
V
f(x+ δU)

δ

]
= E

[
V
f(x)

δ

]
+ E

[
V U

T ∇f(x)
]

+ E
[
δ

2
V UT∇2f(x)U

]
+ E

[
δ2

2
V R+(x, δ, U)(U ⊗ U ⊗ U)

]
= ∇f(x) + E

[
δ2

2
V R+(x, δ, U)(U ⊗ U ⊗ U)

]
.

The final equality above follows from the facts that E [V] = 0, E [V UT] = I and for

any i, j = 1, . . . , d, E[ViU
2
j] = 0 since V is a deterministic odd function of U , with

U having a symmetric distribution. Using the fact that |R+(x, δ, U)(U⊗U⊗U)| ≤
‖R+(x, δ, U)‖ ‖U‖3, we obtain

‖E [G]−∇f(x)‖∗ ≤ C1 δ
2 ,

1Here, ‖·‖ is the implied norm: For a rank-3 tensor T , ‖T‖ = supx,y,z 6=0
|T (x,y,z)|
‖x‖‖y‖‖z‖ .

52

where C1 =
B3E[‖V ‖∗‖U‖3]

6
.

Let us now bound the variance of G: Using the identity E ‖X − E[X]‖2 ≤
4E ‖X‖2, which holds for any random variable X ,2 we bound E ‖G− EG‖2

∗ as

follows:

E ‖G− EG‖2
∗ ≤ 4E ‖G‖2

∗

= 4E

(
‖V ‖2

∗

((
ξ

δ

)2

+ 2

(
ξ

δ

)(
f(x+ δU)

δ

)
+

(
f(x+ δU)

δ

)2
))

= 4E

(
‖V ‖2

∗

(
ξ

δ

)2
)

+ 4E
(
‖V ‖2

∗
)(f(x+ δU)

δ

)2

(4.6)

≤ C2

δ2
,

whereC2 = 4E
[
‖V ‖2

∗
] (
σ2
ξ +B2

0

)
, where σ2

ξ = ess supE [ξ2|V] andB0 = supx∈D f(x).

The equality in (4.6) follows from E [ξ |V] = 0.

Therefore, for f ∈ C3, γ defined by (4.2) is a (C1δ
2, C2/δ

2) type-I oracle.

Case 2 (f is convex and L-smooth):

Since f is convex and L-smooth, for any 0 < δ < 1,

0 ≤ f(x+ δu)− f(x)

δ
− 〈∇f(x), u〉 ≤Lδ ‖u‖

2

2
.

Denoting φ(x, δ, u) := f(x+δu)−f(x)
δ

− 〈∇f(x), u〉, we have |φ(x, δ, u)| ≤ Lδ

2
‖u‖2.

Then, given E
[
V U>

]
= I , E [V] = 0, we obtain

‖E [G]−∇f(x)‖∗ =

∥∥∥∥E [f(x+ δU)

δ
V

]
− E

[
V U>∇f(x)

]∥∥∥∥
∗

=

∥∥∥∥E [V (f(x+ δU)

δ
−−U>∇f(x)

)]∥∥∥∥
∗

=

∥∥∥∥E [V (φ(x, δ, U) +
f(x)

δ

)]∥∥∥∥
∗

= ‖E [V φ(x, δ, U)]‖∗
≤ C1 δ , (4.7)

2When ‖·‖ is defined from an inner product, E ‖X − E[X]‖2 = E
[
‖X‖2

]
− ‖E [X]‖2 ≤

E
[
‖X‖2

]
also holds, shaving off a factor of four from the inequality below.

53

where C1 =
L

2
E
[
‖V ‖∗ ‖U‖

2]. The claim regarding the variance of G follows in a

similar manner as in Case 1, i.e., f ∈ C3.

Therefore, for f convex and L-smooth, γ defined by (4.2) is a (C1δ, C2/δ
2)

type-I oracle, where C1 is given by (4.7) and C2 as defined in Case 1.

Proof of Proposition 4 Before the proof, we introduce a fundamental theorem of

vector calculus, which is commonly known as the Gauss-Ostrogradsky theorem or

the divergence theorem . A special case of the theorem for real-valued functions in

Rn can be stated as follows.

Lemma 5 SupposeW ⊂ Rn is an open set with the boundary ∂W . At each point of

∂W there is a normal vector nW such that nW (i) has unit norm, (ii) is orthogonal

to ∂W , (iii) points outward from W . Suppose f : Rn → R is a function of class C1

defined at least on the closure of W , then we have∫
W

∇f dW =

∫
∂W

fnW d∂W . 2

PROOF Given that E
[
‖V ‖2

∗
]

and E [ξ2] are bounded, the variance of G remains the

same as stated in Proposition 3.

As to the bias, let f̃ be a smoothed version of f , i.e., ∀x ∈ K,

f̃(x) = E [f(x+ δV)] =

∫
v∈W

f(x+ δv)
dw

|W | ,

where the expectation is w.r.t. V , which is a random variable uniformly chosen

from W . The second equality interprets the expectation as integral. Now we want

to prove that for any given x ∈ K, G is an unbiased gradient estimate of f̃ at x.

Since U is uniformly distributed over ∂W , the expectation of G can be written as

E [G] =
|∂W |
|W |

∫
∂W

1

δ
f(x+ δU)nW (U)

dU

|∂W | =

∫
W

∇f(x+ δU)
dU

|W | ,

where the second equality follows from Lemma 5, by replacing the gradient of

f̂(u) =
1

δ
f(x + δu) with ∇f(x + δu). Then, the order of the gradient and the

integral can be exchanged, because
∫
W
f(x + δU) dU exists. Consequently, we

obtain E [G] = ∇f̃(x).

54

Moreover, f̃ and f are actually close. In particular, for any x ∈ K,

f̃(x)− f(x) =

∫
W

f(x+ δw)− f(x)
dw

|W | . (4.8)

When f is L0-Lipschitz, |f(x+ δw)− f(x)| ≤ L0δ ‖w‖, which combined with

(4.8) gives that γ is a type-II oracle with c1(δ) = C1δ, where C1 = L0 supw∈W ‖w‖.
When f is convex and L-smooth, 0 ≤ f(x + δw) − f(x) − 〈∇f(x), δw〉 ≤

L

2
δ2 ‖w‖2. Given that W is symmetric,

∫
W
〈∇f(x), δw〉 dw = 0. Hence, one can

easily get that γ is a type-II oracle with c1(δ) = C ′1δ
2, whereC ′1 =

L

2|W |
∫
W
‖w‖2 dw.

Finally, if f is L-smooth,∥∥∥∇f̃(x)−∇f(x)
∥∥∥
∗
≤
∫
W

‖∇f(x+ δw)−∇f(x)‖∗
dw

|W |

≤ Lδ2

∫
W

‖w‖2 dw

|W | = 2C ′1δ
2

with the same value of C ′1 as before. So γ is also a type-I oracle with c1(δ) =

2C ′1δ
2. �

Proof of Proposition 5 Case 1 (f ∈ C3):

We use the proof technique of Spall (1992) (in particular, Lemma 1 there). We start

by bounding the bias. Since by assumption E [ξ+ − ξ−|V] = 0, we have

E
[
V

(
ξ+
n − ξ−n

2δ

)]
= 0 ,

implying that

E[G] = E
[
V
f(X+)− f(X−)

2δ

]
.

By Taylor’s theorem, using that f ∈ C3, we obtain, a.s.,

f(x± δU) = f(x)± δ UT∇f(x) +
δ2

2
UT∇2f(x)U ± δ3

2
R±(x, δ, U) (U,U, U),

where, as in the proof of Proposition 3, R±(x, δ, U) is defined as follows:

R±(x, δ, U) =

∫ 1

0

∇3f(x± s δU)(1− s)2ds. (4.9)

55

Letting B3 = supx∈D ‖∇3f(x)‖,we have ‖R±(x, δ, U)‖ ≤ B3/3 a.s. Now,

V
f(X+)− f(X−)

2δ
= V

f(x+ δU)− f(x− δU)

2δ

= V U
T ∇f(x) +

δ2

4
V (R+(x, δ, U) +R−(x, δ, U))(U ⊗ U ⊗ U) .

(4.10)

and therefore, by taking expectations of both sides, using E [V UT] = I and then

|R±(x, δ, U)(U ⊗ U ⊗ U)| ≤ ‖R±(x, δ, U)‖ ‖U‖3, we get that

‖E [G]−∇f(x)‖∗ ≤ C1 δ
2 ,

where C1 =
B3E[‖V ‖∗‖U‖3]

6
.

Using arguments similar to that in the proof of Proposition 3, the variance of G

is bounded as follows:

E ‖G− EG‖2
∗ ≤ 4E ‖G‖2

∗

= 4E

(
‖V ‖2

∗

((
ξ+ − ξ−

2δ

)2

+ 2

(
ξ+ − ξ−

2δ

)(
f(X+)− f(X−)

2δ

)
+

(
f(X+)− f(X−)

2δ

)2
))

= 4E

(
‖V ‖2

∗

(
ξ+ − ξ−

2δ

)2
)

+ 4E
(
‖V ‖2

∗
)(f(X+)− f(X−)

2δ

)2

(4.11)

≤ C2

δ2
,

whereC2 = 4E
[
‖V ‖2

∗
] (
σ2
ξ + span(f)

)
and span(f) = supx∈D f(x)−infx∈D f(x).

The equality in (4.11) follows from E [ξ+ − ξ− |U, V] = 0.

Therefore, for f ∈ C3, γ defined by (4.3) is a (C1δ
2, C2/δ

2) type-I oracle.

Case 2 (Controlled noise and F is convex and Lψ-smooth):

The proof follows by parallel arguments to that used in the proof of Lemma 1 in

Duchi et al. (2015) and we give it here for the sake of completeness.

For any convex function f with an L-Lipschitz gradient, for any δ > 0 it holds

that

〈∇f(x), δu〉
2δ

≤ f(x+ δu)− f(x)

2δ
≤〈∇f(x), δu〉+ (L/2) ‖δu‖2

2δ
.

Using similar inequalities for f(x− δu), we obtain

〈∇f(x), u〉 − Lδ ‖u‖2

2
≤ f(x+ δu)− f(x− δu)

2δ
≤〈∇f(x), u〉+

Lδ ‖u‖2

2
.

56

Letting φ(x, δ, u) := 1
δ

(
f(x+δu)−f(x−δu)

2δ
− 〈∇f(x), u〉

)
, we get

|φ(x, δ, u)| ≤L
2
‖u‖2 .

Using E
[
V U>

]
= I , we obtain

E
[
V

(
f(x+ δU)− f(x− δU)

2δ

)]
=E

[
V U>∇f(x) + δφ(x, δ, U)V

]
=∇f(x) + δφ̂(x, δ),

where φ̂(x, δ) satisfies
∥∥∥φ̂(x, δ)

∥∥∥
∗
≤ L

2
E[‖V ‖∗ ‖U‖

2].

Applying the above expression to F (·,Ψ) and recalling thatG = V
(
F (X+,ψ)−F (X−,ψ)

2δ

)
,

we have, for P -almost every ψ,

E[G] = ∇F (x, ψ) + δφ̂(x, δ),

where, as before, φ̂(x, δ) satisfies
∥∥∥φ̂(x, δ)

∥∥∥
∗
≤ Lψ

2
E[‖V ‖∗ ‖U‖

2].

Using the fact that E[∇F (x,Ψ)] = ∇f(x), we obtain

‖E[G]−∇f(x)‖∗ =

∥∥∥∥E [V (f(x+ δU)− f(x− δU)

2δ

)
− V U>∇f(x)

]∥∥∥∥
∗

≤ δ ‖E[V φ(x, δ, U)]‖∗

≤ δLΨ

2
E[‖V ‖∗ ‖U‖

2],

and the claim for the bias follows by setting C1 = LΨ

2
E[‖V ‖∗ ‖U‖

2].

We now bound E
[
‖G‖2

∗
]

as follows:

E ‖G‖2 = E
∥∥V (δφ(x, δ, U) + U>∇f(x)

)∥∥2

≤ E

[(
‖V UT∇f(x)‖∗ +

δL

2
‖V ‖∗ ‖U‖

2

)2
]

≤ 2E
[
‖V UT∇f(x)‖2

∗

]
+
δ2L

2

Ψ

2
E
[
‖V ‖2

∗ ‖U‖
4] ,

and the claim for the variance follows by setting C2 = 2B2
1 + L

2
Ψ

2
E
[
‖V ‖2

∗ ‖U‖
4]

with B1 = supx∈K ‖∇f(x)‖∗.
Therefore, for the case of controlled noise with a convex and Lψ-smooth F , we

have that γ defined by (4.3) is a (C1δ, C2) type-I oracle.

57

Chapter 5

Application to Stochastic Convex
Optimization

The main application of the biased noisy gradient oracle based convex optimization

of Chapter 3 is bandit convex optimization. We introduce here briefly the stochastic

version of the problem, while online bandit convex optimization will be considered

in Chapter 6.

In the stochastic BCO setting, there is a single objective function. We now con-

sider stochastic BCO with a L-smooth function over a convex, closed non-empty

domain K. Let F denote the set of these functions. Duchi et al. (2015) proves

that the minimax expected optimization error for the functions F with uncontrolled

noise is lower bounded by Ω(n−1/2). They also give an algorithm which uses two-

point gradient estimates which matches this lower bound for the case of controlled

noise. For controlled noise, the constructions in the previous section give that for

two-point estimators c1(δ) = C1δ
p and c2(δ) = C2δ

−q with p = 1 and q = 0.

Plugging this into Theorem 1 we get the rate O(n−1/2) (which is unsurprising given

that the algorithms and the upper bound proof techniques are essentially the same

as that of Duchi et al. (2015)). However, when the noise is uncontrolled, the best

that we get is p = 2 and q = 2. From Theorem 2 we get that with such oracles, no

algorithm can get better rate than Ω(n−1/3), while from Theorem 1 we get that these

rates are matched by mirror descent. We can summarize these findings as follows:

Theorem 3 Consider FL,0, the space of convex, L-smooth functions over a convex,

closed non-empty domain K. Then, we have the following:

58

Uncontrolled noise: Take any (δ2, δ−2) type-I oracle γ. There exists an algorithm

that uses γ and achieves the rate O(n−1/3). Furthermore, no algorithm using γ can

achieve better error than Ω(n−1/3) for every (δ2, δ−2) type-I oracle γ.

Controlled noise: Take any (δ, 1) type-I oracle γ. There exists an algorithm that

uses γ an achieves the rate O(n−1/2). Furthermore, no algorithm using γ can

achieve better error than Ω(n−1/2) for every (δ, 1) type-I oracle γ. 2

For stochastic BCO with uncontrolled noise, Agarwal et al. (2013) analyze a

variant of the well-known ellipsoid method and provide regret bounds for the case

of convex, 1-Lipschitz functions over the unit ball. Their regret bound implies

a minimax error (2.2) bound of order O
(√

d32/n
)

. Liang et al. (2014) provide

an algorithm based on random walks (and not using gradient estimates) for the

setting of convex, bounded functions whose domain is contained in the unit cube

and their algorithm results in a bound of the order O
(
(d14/n)1/2

)
for the minimax

error. These bounds decrease faster in n than the bound available in Theorem 3,

while showing a much worse dependence on the dimension. However, what is more

interesting is that our results also shows that an O(n−1/2) upper bound cannot be

achieved solely based on the oracle properties of the gradient estimates considered.

Since the analysis of all gradient algorithms for stochastic BCO does this, it is no

wonder that the best known upper bound for convex+smooth functions is O(n−1/3)

(Saha and Tewari, 2011). (We will comment on the recent paper of Dekel et al.

(2015) later.)

The above result also shows that the gradient oracle based algorithms are op-

timal for smooth problems, under a controlled noise setting. While Duchi et al.

(2015) suggests that it is the power of two-point gradient estimators that helps to

achieve this, we need to add that having controlled noise is also critical.

Finally, let us make some remarks on the early literature on this problem. A

finite time lower bound for stochastic, smooth BCO is presented by Chen (1988)

for convex functions on the real line. When applied to our setting in the uncontrolled

noise case, his results imply that E
[
|X̂n − x∗|

]
, that is, the distance of the estimate

to the optimum, is at least Ω(n−1/3). Note that this is larger than the error achieved

by the algorithms of Liang et al. (2014); Bubeck et al. (2015); Bubeck and Eldan

59

(2015), but the apparent contradiction is easily resolved by noticing the difference

in their error measure: distance to the optimum vs. error in the function value

(in particular, compressing the range of functions makes locating the minimizer

harder). Polyak and Tsybakov (1990), who also considered distance to optimum,

proved that mirror descent with gradient estimation achieves asymptotically optimal

rates for functions that enjoy high order smoothness.

60

Chapter 6

Application to Online Convex
Optimization

In the online BCO setting a learner sequentially chooses the pointsX1, . . . , Xn ∈ K
while observing the losses f1(X1), . . . , fn(Xn). More specifically, in round t, hav-

ing observed f1(X1), . . . , ft−1(Xt−1) of the previous rounds, the learner chooses

Xt ∈ K, after which it observes ft(Xt). The learner’s goal is to minimize its

expected regret E [
∑n

t=1 ft(Xt)− infx∈K
∑n

t=1 ft(x)]. This problem is also called

online convex optimization with one-point feedback. A slightly different problem is

obtained if we allow the learner to choose multiple points in every round, at which

points the function ft is observed. The loss is suffered at Xt. The points where the

function is observed (“observation points” for short) may or may not be tied to Xt.

One possibility is that Xt is one of the observation points. Another possibility is

that Xt is the average of the observation points (e.g., Agarwal et al. (2010)). Yet

another possibility is that there is no relationship between them.

The oracle constructions from the previous section also apply to the online BCO

setting where the algorithm is evaluated at Yt, though in this case one cannot employ

two-point feedback as the functions change between rounds. This also rules out the

controlled noise case. Thus, for the online BCO setting, one should consider type-I

(and II) oracles with c1(δ) = C1δ
p and c2(δ) = C2δ

−q with p = q = 2. For these

type of oracles, the results from Theorem 2 give the following result:

Theorem 4 LetFL,0 be the space of convex, L-smooth functions over a convex non-

empty domain K. No algorithm that relies on (δ2, δ−2) type-I oracles can achieve

61

better regret than Ω(n2/3). 2

With a noisy gradient oracle of Proposition 4, Theorem 4 implies that this regret

rate is achievable, essentially recovering, and in some sense proving optimality of

the result of Saha and Tewari (2011):

Theorem 5 For zeroth order noisy optimization with smooth convex functions, the

gradient estimator of Proposition 4 together with mirror descent (see Algorithm 1)

achieve O(n2/3) regret. 2

This optimality result shows that with the usual analysis of the current gradient

estimation techniques, no gradient method can achieve the optimal regret O(n1/2)

for online bandit convex optimization, established by Bubeck et al. (2015); Bubeck

and Eldan (2015). Note that this shows a contradiction to the recent result of Dekel

et al. (2015), who claimed to achieve Õ(n5/8) regret with the same (δ2, δ−2) type-II

gradient oracle as Saha and Tewari (2011), but their proof only used the (δ2, δ−2)

tradeoff in the bias and variance properties of the oracle.

62

Chapter 7

Conclusions

We presented a novel noisy gradient oracle model for convex optimization. The

oracle model covers several gradient estimation methods in the literature designed

for algorithms that can observe only noisy function values, while allowing to handle

explicitly the bias-variance tradeoff of these estimators. The framework allows to

derive sharp upper and lower bounds on the minimax optimization error and the

regret in the online case. It not only encompasses “gradient” methods, reproducing

the state-of-the-art upper bounds in a unified and clear fashion, but also gives the

lower bound, implying the best possible rate the algorithm can achieve only with

access to the biased, noisy first-order information.

In particular, we obtain matching upper and lower bounds for optimizing smooth,

convex functions under the framework. This result is worthwhile because it claims

it impossible to design an algorithm that can make better use of current gradient

estimates. Therefore, to achieve the optimal O(
√

1/n) rate for smooth, convex

functions with uncontrolled noise, other approaches must be considered. For in-

stance, a gradient oracle with constant second moment bound (q = 0) must be

designed, or some extra properties of gradient estimates must be exploited beyond

the bias-variance tradeoff. It is also possible to design a non-gradient method which

achieve optimal rates with a reasonably low complexity.

Back to the big picture of bandit convex optimization, some cases are already

well understood, including the linear case, the general convex case with controlled

noise, and the strongly convex, smooth case. Nevertheless, for the general convex

case with uncontrolled noise, a big gap remains. Our results make a theoretically

63

progressive step towards bridging this gap. It is pointed out that current gradient

methods are essentially sub-optimal in terms of designing or analyzing the gradient

estimation properties. To find an optimal algorithm, one must go beyond the scope

of bias-variance tradeoff analysis, and find other directions.

64

Bibliography

Abernethy, J., Hazan, E., and Rakhlin, A. (2008). Competing in the dark: An
efficient algorithm for bandit linear optimization. In COLT, pages 263–274.

Agarwal, A., Dekel, O., and Xiao, L. (2010). Optimal algorithms for online convex
optimization with multi-point bandit feedback. In COLT, pages 28–40.

Agarwal, A., Foster, D. P., Hsu, D., Kakade, S. M., and Rakhlin, A. (2013). Stochas-
tic convex optimization with bandit feedback. SIAM Journal on Optimization,
23(1):213–240.

Baes, M. (2009). Estimate sequence methods: Extensions and approximations.
Technical report, IFOR Internal report, ETH Zurich, Switzerland.

Bartlett, P., Hazan, E., and Rakhlin, A. (2008). Adaptive online gradient descent.
In Platt, J., Koller, D., Singer, Y., and Roweis, S., editors, Advances in Neural
Information Processing Systems 20, pages 65–72. MIT Press, Cambridge, MA.

Beck, A. and Teboulle, M. (2003). Mirror descent and nonlinear projected subgra-
dient methods for convex optimization. Operations Research Letters, 31(3):167–
175.

Bhatnagar, S., Prasad, H. L., and Prashanth, L. A. (2013). Stochastic Recursive
Algorithms for Optimization: Simultaneous Perturbation Methods (Lecture Notes
in Control and Information Sciences), volume 434. Springer.

Bubeck, S. (2014). Theory of convex optimization for machine learning. Technical
report, Microsoft Research.

Bubeck, S., Dekel, O., Koren, T., and Peres, Y. (2015). Bandit convex optimization:
o(
√
T) regret in one dimension. In COLT, pages 266–278.

Bubeck, S. and Eldan, R. (2015). Multi-scale exploration of convex functions and
bandit convex optimization. Technical report, Microsoft Research.

Chen, H. (1988). Lower rate of convergence for locating a maximum of a function.
The Annals of Statistics, 16(3):1330–1334.

d’Aspremont, A. (2008). Smooth optimization with approximate gradient. SIAM
Journal on Optimization, 19:1171–1183.

Dekel, O., Eldan, R., and Koren, T. (2015). Bandit smooth convex optimization:
Improving the bias-variance tradeoff. In NIPS, pages 2926–2934.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L. (2012). Optimal distributed
online prediction using mini-batches. Journal of Machine Learning Research,
13(1):165–202.

65

Devolder, O., Glineur, F., and Nesterov, Y. (2014). First-order methods of smooth
convex optimization with inexact oracle. Mathematical Programming, 146:37–
75.

Dippon, J. (2003). Accelerated randomized stochastic optimization. The Annals of
Statistics, 31(4):1260–1281.

Duchi, J. C., Jordan, M., Wainwright, M. J., and Wibisono, A. (2015). Optimal
rates for zero-order convex optimization: The power of two function evaluations.
IEEE Transactions on Information Theory, 61(5):2788–2806.

Dvurechensky, P. and Gasnikov, A. (2015). Stochastic intermediate gradient
method: Convex and strongly convex cases. arXiv:1411.2876.

Flaxman, A. D., Kalai, A. T., and McMahan, H. B. (2005). Online convex opti-
mization in the bandit setting: gradient descent without a gradient. In SODA,
pages 385–394.

Hazan, E. and Levy, K. (2014). Bandit convex optimization: Towards tight bounds.
In NIPS, pages 784–792.

Honorio, J. (2012). Convergence rates of biased stochastic optimization for learning
sparse ising models. In ICML, pages 257–264, New York, NY, USA. Omnipress.

Juditsky, A. and Nemirovski, A. (2011). First-order methods for nonsmooth con-
vex large-scale optimization, i: General purpose methods. In Sra, S., Nowozin,
S., and Wright, S., editors, Optimization for Machine Learning, pages 121–147.
MIT press.

Katkovnik, V. Y. and Kulchitsky, Y. (1972). Convergence of a class of random
search algorithms. Automation Remote Control, 8:1321–1326.

Kleinman, N. L., Spall, J. C., and Naiman, D. Q. (1999). Simulation-based opti-
mization with stochastic approximation using common random numbers. Man-
agement Science, 45(11):1570–1578.

Kushner, H. J. and Clark, D. S. (1978). Stochastic Approximation Methods for
Constrained and Unconstrained Systems. Springer Verlag, New York.

Liang, T., Narayanan, H., and Rakhlin, A. (2014). On zeroth-order stochastic con-
vex optimization via random walks. arXiv preprint1402.2667.

Mahdavi, M. (2014). Exploiting Smoothness in Statistical Learning, Sequential
Prediction, and Stochastic Optimization. PhD thesis, Michigan State University.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochas-
tic approximation approach to stochastic programming. SIAM J. Optimization,
4:1574—1609.

Nemirovskii, A. and Yudin, D. B. (1983). Problem complexity and method effi-
ciency in optimization. Wiley-Interscience series in discrete mathematics. Wiley.

Nesterov, Y. (2004). Introductory lectures on convex optimization, volume 87.
Springer Science & Business Media.

Nesterov, Y. and Spokoiny, V. (2011). Random gradient-free minimization of con-
vex functions. Foundations of Computational Mathematics, pages 1–40.

66

Polyak, B. and Tsybakov, A. (1990). Optimal orders of accuracy for search algo-
rithms of stochastic optimization. Problems in Information Transmission, pages
126–133.

Saha, A. and Tewari, A. (2011). Improved regret guarantees for online smooth
convex optimization with bandit feedback. In AISTATS, pages 636–642.

Schmidt, M. W., Roux, N. L., and Bach, F. R. (2011). Convergence rates of inexact
proximal-gradient methods for convex optimization. In NIPS, pages 1458–1466.

Shamir, O. (2012). On the complexity of bandit and derivative-free stochastic con-
vex optimization. In COLT.

Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation. IEEE Transactions on Automatic Control,
37(3):332–341.

Spall, J. C. (1997). A one-measurement form of simultaneous perturbation stochas-
tic approximation. Automatica, 33(1):109–112.

Spall, J. C. (2005). Introduction to stochastic search and optimization: estimation,
simulation, and control, volume 65. John Wiley & Sons.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families,
and variational inference. Foundations and Trends R© in Machine Learning, 1(1-
2):1–305.

Yao, A. C. C. (1977). Probabilistic computations: Toward a unified measure of
complexity. In FOCS, pages 222–227.

67

	Introduction
	Problem Statement
	Motivation and Related Work
	Contributions and the Gradient Oracle Model
	Organization

	Gradient Oracle Models
	Notations
	Type-I and Type-II Oracles
	Reduction Between Two Types of Oracles
	Previous Work

	Main Results
	Upper Bounds of the Minimax Error
	Proofs of the Upper Bounds
	Stochastic Optimization
	Online Optimization
	The Mirror Descent Lemma

	Lower Bounds of the Minimax Error
	Proofs of the Lower Bounds
	Smooth Convex Functions
	Strongly Convex + Smooth Functions

	Application to the Averaging Algorithm

	Gradient Estimation Methods
	One-point Feedback
	Two-point Feedback
	Proofs for Gradient Estimates

	Application to Stochastic Convex Optimization
	Application to Online Convex Optimization
	Conclusions
	Bibliography

