This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results-
Fall 2024
The sensitivity of reinforcement learning algorithm performance to hyperparameter choices poses a significant hurdle to the deployment of these algorithms in the real-world, where sampling can be limited by speed, safety, or other system constraints. To mitigate this, one approach is to learn a...
-
Fall 2022
We have witnessed the rising popularity of real-world applications of reinforcement learning (RL). However, most successful real-world applications of RL rely on high-fidelity simulators that enable rapid iteration of prototypes, hyperparameter selection and policy training. On the other hand, RL...