
Calibration Models for Real-World Deployment of Reinforcement
Learning Agents

by

Jordan Coblin

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Jordan Coblin, 2024



Abstract

The sensitivity of reinforcement learning algorithm performance to hyperparameter

choices poses a significant hurdle to the deployment of these algorithms in the real-

world, where sampling can be limited by speed, safety, or other system constraints.

To mitigate this, one approach is to learn a calibration model from offline data logs,

and use this model to simulate trajectories for the purpose of hyperparameter tun-

ing. While there has been preliminary success applying calibration models to simple

simulated problems, more work is needed to understand the desirable properties of

such models and to test their feasibility in a real-world setting.

In this work, we take the first steps toward characterizing desirable properties of

calibration models and provide the first application of a calibration model towards

a real-world industrial prediction task. We investigate several measures that can be

used to understand model quality and evaluate calibration model implementations ac-

cording to these measures. The calibration models are then tested on a prediction task

for sensors in a water treatment plant (WTP) located in Alberta, Canada. We find

that various types of calibration models can be used to simulate simple environments,

while generalizing models tend to collapse due to compounding prediction error in the

more complex real-world setting. We show how a non-parametric k-nearest neighbors

calibration model with a Laplacian distance metric is able to produce realistic rollouts

over long-horizons in the WTP setting, and can be used successfully for hyperparam-

eter tuning. Finally, we aim to bridge the gap towards real-world deployment and

demonstrate how this model can be scaled to a year’s worth of data.
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“All models are wrong, but some are useful.”

-George E.P. Box
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Chapter 1

Introduction

Reinforcement learning (RL) has been central to numerous breakthroughs in arti-

ficial intelligence (AI) in the past decade, where artificial agents trained using RL

algorithms have surpassed human-level performance in games such as Atari (Mnih,

Kavukcuoglu, Silver, Rusu, et al. 2015), Go (Silver et al. 2016), and StarCraft (Vinyals

et al. 2019). However, the application of RL algorithms in real-world systems remains

a complex endeavor, with significant challenges related to sampling limitations, par-

tial observability, explainability, safety constraints, and so forth (Dulac-Arnold et

al. 2021). One especially challenging aspect of real-world RL is the selection of hy-

perparameters, which are the parameters that govern the learning process of an RL

algorithm. Hyperparameters are typically set by a designer before training begins,

and can have a significant impact on the performance of an algorithm (Henderson et

al. 2018). The process of selecting hyperparameters is often done through a combi-

nation of intuition and extensive sweeps over configurations, where a single run could

require tens of millions of environment samples (Bergstra and Bengio 2012). This

process can be especially challenging in real-world settings, where the lack of a high-

fidelity simulator can make hyperparameter tuning prohibitively slow and expensive.

Further, the deployment of agents with poorly tuned hyperparameters can be risky,

as it may lead to unnecessary financial cost or damage to the physical system, such

as in the case of a water treatment plant dosing large amounts of chemicals into the

system or crashes in helicopter control.

There are a variety of possible approaches for mitigating the hyperparameter tun-

ing bottleneck, such as developing algorithms with robust default hyperparameters

(Hafner, Pasukonis, et al. 2023), few or no hyperparameters at all (Jacobsen et al.

2019; Kingma and Ba 2014; M. White and A. White 2016; Zahavy et al. 2020),

performing hyperparameter tuning online (Paul et al. 2019; Tang and Choroman-

ski 2020), or using offline logs to evaluate an online agent (Mandel et al. 2016). In
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Chapter 3, we argue that each of these approaches are either not mature enough or

ill-suited to the task of evaluating an online learning algorithm over long horizons.

Alternatively, one could learn a model of the environment through offline logs, and

use this model to simulate environment interactions for the purpose of hyperparameter

tuning (H. Wang, Sakhadeo, et al. 2022). We will refer to such a model as a calibration

model. Because many environment interactions are typically required in order to

evaluate an RL algorithm, a calibration model is designed to be stable over long-

horizon rollouts, where a rollout is a sequence of state-action pairs that are generated

through agent-model interactions. Stability here is defined in the context of model-

generated rollouts, where predicted states stay within a region close to the previous

state and do not diverge to areas of the state space that are unreachable in the

true environment (Talvitie 2017; H. Wang, Sakhadeo, et al. 2022). The calibration

model is then used to evaluate hyperparameter configurations, offering a safe and

efficient means of performing hyperparameter tuning. In this thesis, we investigate

the feasibility of calibration models in both simulated and real-world settings, and

explore different model implementations and evaluation metrics for the calibration

model.

1.1 Contributions

The central goals of this thesis are to develop a better understanding of calibration

models, and to test the calibration model approach in a real-world setting. We begin

by asking what the important properties are of good calibration models, and whether

we can design evaluation measures that roughly capture these properties. A recurring

theme we will encounter is related to a model’s stability under long-horizon rollouts.

While planning in model-based RL is typically performed with rollouts of 10-100

steps (Chua et al. 2018; Hafner, Lillicrap, Norouzi, et al. 2020; Holland et al. 2019),

evaluating a hyperparameter setting is typically on the order of thousands or even

millions of timesteps. As a result, we posit that a model should be able to produce

a reasonable trajectory over long-horizons, and offer several perspectives on how to

characterize a reasonable trajectory. We investigate how different model implementa-

tions behave across environments, testing both discrete and continuous-action cases,

and seek to validate assumptions around how different types of model inaccuracies

affect model efficacy. Finally, we present a study on the application of calibration

models towards a real-world task, where we perform hyperparameter selection for a

prediction agent operating in a water treatment plant located in Alberta, Canada.

The main contributions of this thesis can be summarized as follows:

2



• We evaluate several measures for evaluating calibration models, including multi-

step MSE, state-space distribution, and invalid transition count.

• We investigate several calibration model implementations: a feedforward neural

network, a recurrent neural network, a KNN model with Euclidean distance

metric, and a KNN model with Laplacian distance metric. These models are

evaluated against the proposed metrics in two simple environments.

• We provide the first experiments for the continuous-action KNN calibration

model proposed in H. Wang, Sakhadeo, et al. (2022).

• We demonstrate the first application of calibration models to a real-world task

and show how the KNN calibration model can be scaled up to a full year’s worth

of data.
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Chapter 2

Background

In this chapter, we provide relevant background on several topics central to this

thesis. This includes an overview of fundamental components of the reinforcement

learning framework, as well as brief introductions to transition models, Laplacian

representations, and dynamic time warping.

2.1 Reinforcement Learning

Reinforcement learning refers to the problem of learning how to act in an environment

in order to maximize a cumulative scalar reward. The agent learns to interact with the

environment through a series of actions, receiving feedback in the form of rewards and

observations. The agent’s goal is to learn a policy that maps states to actions in order

to maximize the expected sum of rewards over time. RL has been successfully applied

to a wide range of problems, including games (Mnih, Kavukcuoglu, Silver, Rusu, et al.

2015; Silver et al. 2016), robotics (Levine et al. 2016a), and recommendation systems

(Afsar et al. 2022). In this section, we provide an overview of the key components

of the RL framework, including Markov Decision Processes (MDPs), policies, value

functions, function approximation, and general value functions.

2.1.1 Markov Decision Processes

An RL problem can be framed as a finite Markov Decision Process (MDP), where

an agent interacts with an environment over a series of discrete timesteps. At each

timestep t, the agent receives a representation of the environment’s state St ∈ S and

given this information, selects an action At ∈ A which is sent back to the environment.

The environment then transitions to a new state St+1 ∈ S and returns this state, along

with a reward Rt+1 ∈ R to the agent. For episodic tasks, this process repeats until

the agent reaches a terminal state, at which point the episode ends and a new episode
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begins. Alternatively, we also consider the setting where this interaction may continue

indefinitely and does not break up into distinct episodes - we call these continuing

tasks. More formally, an MDP can be defined as the 5-tuple (S,A, p, r, µ) where:

• S is the state space

• A is the action space

• p : S × R × S × A → [0, 1] denotes the state transition probability function,

which specifies the probability of transitioning to state s′ given the previous

state s and action a:

p(s′, r|s, a) .= Pr{St = s′, Rt = r | St−1 = s, At−1 = a}.

• r : S × A × S → R is the immediate reward function r(s, a, s′), providing the

reward received after transitioning to state s′ from state s with action a, and

• µ represents the distribution over all possible start states s0 ∈ S

An important property of an MDP is that it satisfies the Markov property, which

requires that the dynamics of the environment depend only on the previous state St−1

and action At−1, and not any previous states or actions (i.e. its history). That is,

Pr{St | St−1, At−1} = Pr{St | S0, A0, ..., St−1, At−1}.

In other words, the previous state is modeled as containing all the relevant information

about the history of the agent-environment interaction needed for making decisions.

2.1.2 Policies and Value Functions

The agent’s goal is to learn a policy π : S → P(A) that maximizes the expected sum

of discounted reward over some time horizon t = 0..T :

Gt
.
=

T∑︂
k=0

γkRt+k+1, (2.1)

where γt ∈ [0, 1] is a discount factor that controls how much influence future

rewards have on the return, and can be used to keep the return from becoming

infinite in the case that T = ∞. The policy that maximizes the expected return is

known as the optimal policy π∗.

A key concept in RL is the value function vπ : S → R, which reflects the expected

return from state s, following policy π. Similarly, the action-value function qπ :
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S × A → R reflects the expected return from taking action a in state s, following

policy π. The value function of a state under a policy π can be expressed as:

vπ(s)
.
= Eπ[Gt|St = s] = Eπ

[︄
∞∑︂
k=0

γkRt+k+1 | St = s

]︄
, for all s ∈ S. (2.2)

Whereas the value function of a state-action pair (s, a) under a policy π can be

expressed as:

qπ(s, a)
.
= Eπ[Gt|St = s, At = a]

= Eπ

[︄
∞∑︂
k=0

γkRt+k+1 | St = s, At = a

]︄
, for all s ∈ S and a ∈ A. (2.3)

The optimal value functions v∗(s) and q∗(s, a) are defined as the value functions of

the optimal policy π∗, where:

v∗(s)
.
= max

π
vπ(s) and q∗(s, a)

.
= max

π
qπ(s, a). (2.4)

The optimal policy can be generated from the optimal value functions by selecting

the action that maximizes the value function at the next state (i.e. greedy action

selection).

A key feature of returns and value functions is that they can be expressed recur-

sively:

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|st = s]. (2.5)

Using this recursive definition and expanding out the expectation, we can express

the value vπ(s) of a state in terms of the values of its successor states vπ(s
′), the

agent’s policy π(a, s), and the transition function p(s′, r|s, a), through what is known

as a Bellman equation:

vπ(s) =
∑︂
a∈A

π(a|s)
∑︂
s′∈S

∑︂
r∈R

p(s′, r|s, a) [r + γvπ(s
′)] , for all s ∈ S. (2.6)

The Bellman equations can be solved to find the value function of a policy, and can

also be used to derive iterative algorithms for finding the optimal policy.

2.1.3 Temporal-Difference Learning

One important class of methods that do not require a model of the environment is

known as temporal-difference (TD) learning. When the transition function is known,
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that is, that the agent has access to a perfect model of the environment, the optimal

policy can be found using dynamic programming to solve the Bellman equation. How-

ever, in many cases the true transition function is unknown, and the agent must try

to learn the optimal policy through trial-and-error. TD methods use a combination

of sampling and bootstrapping to learn the value function of a policy in the absence

of an environment model. Sampling refers to the process of collecting experience by

interacting with the environment, while bootstrapping refers to the process of updat-

ing value function estimates of a given state based on estimates of the value function

of successor states.

One of the simplest TD algorithms is known as TD(0), which uses a single-step

bootstrapping approach for policy evaluation (also referred to as the prediction prob-

lem). The TD(0) update rule is given by:

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] . (2.7)

Here we use V to denote a tabular estimate of the value function vπ, and α ∈ R+

is a learning rate parameter that controls the size of the update. This update is

performed after every step of agent-environment interaction, and can be shown to

converge to the true value function (Sutton 1988).

The TD(0) prediction algorithm can be extended to the control setting by using the

estimated value function to select actions. Of particular interest is the off-policy Q-

learning algorithm, which uses the estimated value function to select actions greedily,

and updates the value function according to the following update rule:

Q(St, At)← Q(St, At) + α

[︃
Rt+1 + γmax

a∈A
Q(St+1, a)−Q(St, At)

]︃
. (2.8)

Here Q directly approximates the optimal action-value function q∗, independent

of the agent’s policy. A convergence guarantee for Q-learning exists as long as the

general requirement for finding optimal policies is met, namely that all state-action

pairs continue to be visited and updated.

2.1.4 Function Approximation

In order to extend RL methods to larger state spaces, we will move towards approx-

imate solution methods, also known as function approximation. In theory, we can

store the learned value approximations of every state in a single table, such that an

exact representation of the value function is maintained at all times. This is known

as a tabular representation of the value function. However, in many cases, the state
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space S is too large to store or update the value function for all states in a tabular

fashion. In these cases, we can use function approximation to learn a parameterized

value function v̂(s,w) ≈ vπ(s), where w ∈ Rd is a weight vector of parameters. This

allows us to generalize the value function to states that have not been visited be-

fore, and to update the value function in a more efficient manner. For example, we

can use a neural network to approximate the value function, and update the weights

of the network using stochastic gradient descent (SGD). A general SGD update for

state-value prediction can be given by:

wt+1
.
= wt + α [Ut − v̂(St,wt)]∇v̂(St,wt), (2.9)

where Ut is an estimate of vπ(St), α ∈ R+ is a learning rate parameter, wt are the

function approximator parameters at timestep t, and v̂(St,wt) is the approximate

value of state s given parameters wt. When Ut is an unbiased estimate of vπ(St),

this update rule is guaranteed to converge to a local optimum approximation of

the true value function (Sutton and Barto 2018). Bootstrapped methods such as

TD(0) and Q-learning can also be used with function approximation, by replacing

the target Ut with the appropriate bootstrapped estimate of the value function, e.g.

Ut = Rt+1+γv̂(St+1,wt) for TD(0). However, these methods involve a biased estimate

of vπ(St), given that Ut is dependent on the weights wt. Such methods are referred to

as semi-gradient methods, and are known to be more susceptible to instability and

divergence compared with true gradient methods. Still, TD methods are often used in

tandem with function approximation due to their computational efficiency and ability

to be used in an online manner. An important instance of semi-gradient methods is

the Deep Q-Network (DQN) algorithm (Mnih, Kavukcuoglu, Silver, Graves, et al.

2013), which uses a neural network to approximate the action-value function qπ(s, a),

and introduces techniques such as target networks and experience replay to aid with

learning stability. We will use the DQN algorithm throughout the experiments in this

thesis for learning policies.

2.1.5 General Value Functions

The value functions we’ve seen up to this point have been dependent solely on the

agent’s policy π. However, the value function can be further generalized in two other

ways. First, we can generalize discounting by changing the scalar discount factor to a

termination function γ : S → [0, 1], where the discount rate now becomes a function of

the state. Second, we can generalize the notion of a reward to encompass any arbitrary

signal of interest, for example, individual features of the agent’s state representation,
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or predictions of these features. We refer to this signal Ct ∈ R as the cumulant.

A general value function (GVF) (Sutton, Modayil, et al. 2011) encapsulates these

modifications, resulting in the updated expression:

vπ,γ,C(s)
.
= Eπ

[︄
∞∑︂
k=0

(
k∏︂

i=t+1

γ(Si))Ct+k+1

⃓⃓⃓
St = s

]︄
. (2.10)

An important feature of GVFs is that they allow us to express arbitrary prediction

problems in a form that can be solved using standard RL techniques, such as TD-

learning. Prediction of cumulant signals has been pursued as a type of auxiliary task

for an agent, where the goal is to acquire knowledge of the world through tasks that

are not limited to solely maximizing reward. This type of knowledge acquisition was

explored in the Horde architecture (Sutton, Modayil, et al. 2011), and for multi-

timescale predictions (i.e. nexting) in Modayil et al. (2012), where GVFs were used

to formulate large collections of multi-step predictions of robot sensors. Some works

even argue that world knowledge in general can be reduced to a rich set of these kinds

of low-level predictions (Sutton 2009). In Chapter 6, we leverage the GVF framework

to define a real-world prediction task, which acts as a testbed for our experiments.

2.2 Transition Models

A transition model (also sometimes referred to as a dynamics model, or world model)

p̂(s′, r|s, a) attempts to approximate the environment’s true transition function

p(s′, r|s, a). This approximate function is typically learned given observations from

the true environment, D = {(si, ai, ri, s′i)i}, where i is the index of the transition,

collected by a (potentially unknown) behavior policy πβ. A model can be ”rolled

out” by seeding p̂ with an initial state and action (s0, a0), and then using subsequent

model predicted states ŝt as input for later predictions, in an autoregressive fashion,

ŝt+1 ∼

{︄
p̂(st, at) if t = 0,

p̂(st̂, at) if t > 0.
(2.11)

While transition models are typically learned through a one-step prediction objective,

where only the next state s′ and reward r are prediction targets, some works also

explore the use of multi-step prediction objectives to encourage better long-horizon

predictions (Oh et al. 2015; Talvitie 2014).

It is a well-known problem that dynamics models can produce trajectories which

diverge from the true environment over long horizons (Chua et al. 2018; Hafner,

Lillicrap, Norouzi, et al. 2020). This is because even small errors in the model can
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compound over time, leading to large errors in the predicted trajectory (Lambert et

al. 2022; Talvitie 2014). This poses a challenge for planning-based RL algorithms,

where longer horizon rollouts are useful for policy improvement (Holland et al. 2019).

In order to mitigate this problem, model-based RL algorithms often limit the rollout

horizon, though other approaches are sometimes used, such as leveraging an ensemble

of models to reduce trajectory uncertainty (Chua et al. 2018), or executing rollouts

in a learned latent space (Hafner, Lillicrap, Ba, et al. 2020).

In this thesis, we will be primarily focused on transition models that are stable for

long-horizon rollouts. For a more in-depth discussion on long-horizon rollout models

and several possible implementations, please refer to Chapter 4.

2.3 Laplacian Representations

The matter of how to represent state comprises one of the key decisions when de-

signing RL agents. Whether using hand-designed features such as tile coding or state

aggregation, leveraging inductive biases as in convolutional neural networks, or re-

lying on the flexibility of a standard fully-connected neural network, each of these

designs aims to tackle the problem of transforming raw observations into a represen-

tation that is most useful for the agent to solve the task at hand. One method of

representing state that has garnered interest involves the usage of the graph Laplacian

matrix L. The graph Laplacian is an important operator in the field of spectral graph

theory and can be defined as follows: given an undirected graph G = (V,E) where

V = {v1, ..., vn} is the set of vertices in the graph and E = {eij} is the set of edges

connecting vi and vj, with adjacency matrix A ∈ {0, 1}n×n,

A
.
=

{︄
Aij = 1 if eij ∈ E,
Aij = 0 otherwise,

and degree matrix D ∈ Zn×n,

D
.
=

{︄
Dij = degree(vi) if i = j,

Dij = 0 otherwise,

the Laplacian matrix is defined as simply

L
.
= D − A. (2.12)

Alternatively, the Laplacian can be viewed as an operator on the space of functions

on a graph f : V → R,
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Lf(vi)
.
=
∑︂
vj∼vi

(f(vi)− f(vj)), (2.13)

where vi ∼ vj denotes adjacency between vi and vj. Similarly, for a weighted

graph, where each edge eij has an associated weight wij, the Laplacian operator can

be defined as:

Lf(vi)
.
=
∑︂
vj∼vi

wij(f(vi)− f(vj)). (2.14)

The Laplacian can be thought of as a diffusion operator that describes the flow of

information through a graph, and the eigenvectors of the Laplacian capture different

temporal properties of diffusion within the graph (Mahadevan and Maggioni 2007).

Specifically, we can capture the largest timescale properties of the graph by taking

the eigenvectors [u1, ...,ud] ∈ R|V | associated with the d smallest eigenvalues of the

Laplacian.

The eigenvectors of the Laplacian have found various applications in RL, and were

originally introduced to RL as a means of constructing a useful representation for

value function approximation (Mahadevan and Maggioni 2007). This representation

uses the Laplacian eigenvectors as a set of basis functions, also known as proto-value

functions (PVFs), and was designed to be learned in conjunction with policy iteration

in order to speed up learning. In addition to value function approximation, PVFs

have been used for other purposes in RL, such as option discovery (Machado et al.

2017) and reward shaping (Wu et al. 2018). In each case, PVFs can be used to

construct ψ : S → Rd, a state representation mapping where each feature is the i’th

eigenvector evaluated at state s:

ψ(s) = [u1[s], ...,ud[s]]. (2.15)

We will refer to this PVF mapping as the Laplacian representation for the remainder

of this thesis. As the Laplacian representation encodes information about the geom-

etry of an MDP, in Chapter 4 we will see how the space of Laplacian representations

can be useful toward computing similarity between states, for the purpose of con-

structing an approximate transition model. Analytically computing the eigenvectors

of the Laplacian becomes difficult when the state space is large (or continuous) or

when a model of the environment is unknown, as is the case in model-free RL. Hence,

in Chapter 4 we will also introduce one method of approximating the eigenvectors,

following work in Wu et al. (2018), and discuss modifications we found useful for

learning the approximation.
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2.4 Dynamic Time Warping

Dynamic time warping (DTW) is a technique used to compare two time series se-

quences that may vary in speed or timing, and has been used for applications such

as speech recognition, information retrieval, and time series analysis (Kruskal and

Liberman 1983). It is particularly useful when comparing sequences that have simi-

lar shapes but are out of phase, or when there are missing or noisy data points. DTW

works by finding the optimal alignment between two sequences by warping the time

axis to minimize the distance between corresponding points. Given two time series se-

quences, a query sequence X = (x1, ..., xTx), and reference sequence Y = (y1, ..., yTy),

a dissimilarity function f is defined on pairs of elements across sequences:

d(i, j)
.
= f(xi, yj) ≥ 0, (2.16)

where i = 1...Tx is used to index elements in X, and j = 1...Ty is used to index

elements in Y . A common choice for f is Euclidean distance, but other functions are

also possible. Warping functions ϕx and ϕy, align indices of the two sequences, i and

j, to a common time axis k:

i = ϕx(k), k = 1, 2, ..., T

j = ϕy(k), k = 1, 2, ..., T.

Given a choice of ϕ = (ϕx, ϕy), a global dissimilarity measure can be defined over

the full sequences:

dϕ(i, j)
.
=

1

Mϕ

T∑︂
k=1

d(ϕx(k), ϕy(k))mϕ(k), (2.17)

where mϕ(k) > 0 is a per-step weighting coefficient, and Mϕ is a normalization

factor that allows comparisons across different paths.

A selection of constraints are typically imposed on ϕ to ensure good alignment.

The monotonicity constraint ensures temporal order is maintained after warping:

ϕx(k + 1) ≥ ϕx(k)

ϕy(k + 1) ≥ ϕy(k).

Local continuity constraints determine the allowable paths that the warping func-

tion can take to a given point (i, j) and can take many forms. One example is the

constraint introduced in Sakoe and Chiba (1978):
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ϕx(k + 1)− ϕx(k) ≤ 1

ϕy(k + 1)− ϕy(k) ≤ 1,

though many other choices are possible. Local continuity constraints are often

best expressed through geometric diagrams, as in Rabiner and Juang (1993). Local

slope constraints impose further limits on admissible paths, by putting a limit on the

magnitude of change in a specific direction from ϕ(k) to ϕ(k+1). Finally, global path

constraints aim to exclude certain regions of the (i, j) plane from the set of admissible

paths, for example by limiting the temporal deviation between two matched elements.

Specific choices of constraints can be characterized by a step pattern, which deter-

mines the set of allowed transitions from a given matched pair (ϕx(k), ϕy(k)). The

choice of step pattern can have a significant impact on the quality of the alignment,

and the best choice of pattern is often problem-dependent.
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Chapter 3

Hyperparameter Tuning

Despite the many successes of RL and deep learning, the selection of hyperparame-

ters remains a dark art, with many practitioners relying on intuition or costly search

processes to find good hyperparameters. This is especially true in the case of Deep

RL (i.e. RL with deep neural network function approximators), where the hyperpa-

rameter space is often large and complex, and where the performance of an algorithm

is typically highly sensitive to small changes in hyperparameters. In this section,

we will discuss the role of hyperparameters in RL, the challenges of tuning them for

real-world tasks, and give an overview of typical methods used for hyperparameter

tuning.

3.1 Hyperparameters in RL

Reinforcement learning algorithms typically have a number of hyperparameters that

need to be tuned in order to achieve good performance, and can be highly sensitive

to small changes in or interactions between these hyperparameters (Andrychowicz et

al. 2020; Engstrom et al. 2020; Henderson et al. 2018). Hyperparameter choices are

also often environment-specific, meaning that an algorithm may have a different set

of optimal hyperparameters across different environments (Henderson et al. 2018).

Examples of hyperparameters typically tuned for RL methods include the discount

factor γk, the optimizer learning rate α, the replay buffer size, and the neural network

architecture (i.e. when using neural network function approximation). Studies like

(Henderson et al. 2018) also consider various components of the algorithm as hyperpa-

rameters, such as value clipping, reward scaling, learning rate annealing, observation

normalization methods, and network initialization schemes, finding that these choices

have a greater impact on performance than the general training algorithm.

In general, hyperparameters are not learned during training, but rather are set
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by a designer before training begins. This means that either the designer must have

some prior knowledge about the problem and the algorithm in order to select appro-

priate hyperparameters, or they must employ some process to search over different

hyperparameter settings (i.e. hyperparameter tuning). This process can be very

time-consuming, especially when the algorithm is slow to train or there are many

hyperparameters to search over. While progress has been made towards reducing the

need for hyperparameter tuning through the use of adaptive methods (Jacobsen et

al. 2019; Kingma and Ba 2014; M. White and A. White 2016; Zahavy et al. 2020),

hyperparameter tuning remains a major bottleneck in the usage of RL algorithms.

3.2 Tuning for Real-World Tasks

The process of hyperparameter tuning is typically done in a simulation setting, where

either the target environment itself is a simulation (e.g. Atari, Mujoco, etc.), or

where a simulator is used to approximate the target environment (e.g. a physics-

based simulator for a real-world system). In these cases, collecting samples from the

environment can be cheap and fast, and despite being a bottleneck in the training

process, hyperparameter tuning can usually be achieved without excessive overhead.

However, this bottleneck can become extreme when applying RL to real-world tasks,

where constructing a simulator is often infeasible (i.e. due to cost or complexity) and

thus data collection can become extremely slow or expensive. For example, in Luo

et al. (2022), only 300 samples per day can be collected from a commercial HVAC

system where no simulator is available, and in Janjua et al. (2023), 86k samples can

be collected per day from a water treatment plant. For reference, a single training

run of a PPO agent in Mujoco lasts for 1M timesteps in Schulman et al. (2017), while

a single run of a Rainbow agent in Atari consists of 200M timesteps in Hessel et al.

(2017). This means that it could take weeks or months to perform even a small grid

search.

In addition to time and computational cost, agents deployed in the real-world

may have financial or safety constraints that limit the ability to run large sweeps over

poorly performing hyperparameters. For example, in the case of a data center cooling

system, it may not be acceptable to run a policy that causes the system to overheat,

as this could damage the hardware. Or, in a pilot water treatment plant, it may be

costly to dose large amounts of chemicals into the system. This suggests that hyper-

parameter tuning for real-world tasks is ideally achieved in an offline manner, where

sweeps are performed either using historical data or in a simulation setting (i.e. when

a high-fidelity simulator is available). Throughout this thesis, we will be primarily
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interested in the setting where no simulator is available and instead where we have

access to offline logs alongside limited access to collecting online samples - we will

refer to this as the NoSim setting. Note that both the NoSim and simulator settings

pose a new challenge: the distribution shift between the tuning and deployment envi-

ronments. Much work has been done to study and address this issue, also known as

transfer learning, or sim-to-real (Bellemare et al. 2020; Kaufmann et al. 2023; Matas

et al. 2018; Rusu et al. 2018), but these works typically focus on transferring a policy,

not the hyperparameters.

3.3 Tuning Approaches

There are many approaches to hyperparameter tuning in RL, each with its own trade-

offs in terms of time, computational cost, and effectiveness. The most common ap-

proaches include grid search, random search, Bayesian optimization, and population-

based algorithms. In grid search, the hyperparameter space is discretized and an

agent is trained for each combination of hyperparameters, usually across several ran-

dom seeds. This approach is simple and easy to parallelize, but can be very slow

and inefficient, especially when the hyperparameter space is large. Random search is

similar to grid search, but instead of uniformly discretizing the hyperparameter space,

random samples are drawn from the space and models are trained with these hyper-

parameters. This approach is more efficient than grid search (Bergstra and Bengio

2012), but can still be inefficient given a large hyperparameter space. Bayesian opti-

mization is an adaptive approach that uses information from past runs to guide the

search process in a probabilistic manner, and has been shown to be more efficient than

grid and random search in many cases (Snoek et al. 2012). Lastly, population-based

training (PBT) (Jaderberg et al. 2017), aims to jointly optimize both an agent and

its hyperparameters by using a population of concurrently running agents to select

and propagate hyperparameters in an online fashion.

While these approaches are successfully used across many RL applications, they

are primarily designed for the online setting, where an agent has the ability to sample

large amounts of data from either the target environment or a simulator. However,

in the NoSim setting, we have no such luxury - instead, the agent must rely on offline

data to select hyperparameters. While there has been much work in offline RL to

develop algorithms that can learn from offline data (Agarwal et al. 2020; Fujimoto

et al. 2019; Kumar et al. 2020; Yu et al. 2020), these are primarily geared towards

learning a fixed policy, as opposed to evaluating hyperparameter settings for an online

agent. Highlighting this difference is the fact that offline RL algorithms themselves
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have hyperparameters, which are either tuned using the real environment (Wu et al.

2019) or from the Q-values learned during offline training (Paine et al. 2020), with

limited success. The offline RL methods mentioned above typically involve evaluation

of a fixed policy, however we are interested in evaluating an online learning algorithm

where the policy is in flux. There is one previous work that considers how to use

offline data to evaluate an online agent (Mandel et al. 2016), but it is not effective

for longer horizons as is typically required for hyperparameter tuning.

To tackle this problem of evaluating an online agent, (H. Wang, Sakhadeo, et al.

2022) introduce the idea of a calibration model, which is a transition model learned

from offline data that can be used to evaluate hyperparameters. Given such a model,

any of the previously covered hyperparameter tuning approaches can be used in a

typical online fashion. The authors propose that an imperfect simulator might still

be useful for identifying good hyperparameters, in contrast with typical model-based

RL or sim-to-real methods, where an accurate model or simulator is typically required

for policy transfer. The remainder of this thesis will be dedicated to exploring the

idea of a calibration model along with several of its possible implementations.
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Chapter 4

Calibration Models

The notion of a calibration model is one possible solution to the problem of hyper-

parameter tuning for real-world RL agents (H. Wang, Sakhadeo, et al. 2022). This

model is essentially an environment simulator learned from an offline dataset, with

potentially lower fidelity requirements than simulators used for policy transfer. In

order to use a calibration model for hyperparameter tuning, we require the model to

be stable under long rollouts, as evaluation rollouts are typically run for thousands,

if not millions of timesteps. In this chapter, we will discuss perspectives on evaluat-

ing model quality, and cover several candidate transition models for producing stable

trajectories over many timesteps. We discuss two popular choices of parametric mod-

els (feedforward and recurrent neural networks) before introducing a non-parametric

method based on the k-nearest neighbors algorithm. Finally, we cover the difficulties

of evaluating a calibration model, and propose several metrics that can be used for

evaluation.

4.1 Preliminaries

Let us consider a setting similar to that of offline reinforcement learning, where there

exists access to a static dataset of state transitions D = {(si, ai, ri, s′i)i}, where i is the
index of the transition, collected by a (potentially unknown) behavior policy πβ from

the true environment. The calibration is a learned approximation to the transition

function, p̂(s′, r|s, a), that is able to simulate the true environment to an extent that is

useful for selecting hyperparameters. More specifically, we would expect the model to

produce realistic transitions over many timesteps, and to be able to produce a variety

of transitions that are similar to those observed in the true environment. The exact

meaning of the term realistic will vary depending on the environment and the task,

but we will discuss several properties of trajectories that we believe are important for
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evaluation. First, let us introduce a characterization of calibration models by their

ability to generalize to unseen state-action pairs and explain the importance of this

distinction.

4.2 Generalizing and Non-Generalizing Models

Standard transition models in model-based RL are parametric models that are trained

to generalize to unseen state-action pairs by attempting to approximate the true

transition function p(s′, r|s, a). This is useful for planning, as it allows the model to

produce transitions for any state-action pair, rather than just those observed in the

training data. However, this generalization capability can also lead to compounding

prediction error when the model is rolled out for long horizons, as the model may pro-

duce transitions that are not realistic or valid. Note that this compounding prediction

error is highly related to the difficulty in training models for multi-step prediction

(Talvitie 2014; Venkatraman et al. 2015).

In contrast, we might consider a transition model that is designed to minimize

compounding prediction error, for example by limiting transitions to those observed

in the training data. Such a model might allow trajectories to remain stable over long

horizons, as it would never transition to parts of the state space that were not seen

in the dataset, and thus prevent large errors or collapse of predictions. However, this

long-horizon stability comes at the cost of generalization, as the model would only be

able to produce transitions for state-action pairs that are similar to those observed

in the training data. We will refer to these models as non-generalizing models, and

we will refer to the models that are able to generalize to unseen state-action pairs as

generalizing models. Note that the exact threshold we use to define a long-horizon

rollout will vary depending on the environment, but we will typically be interested in

horizons of at least 50-100 timesteps (and often much longer), as this is the length of

trajectories typically needed to evaluate a given hyperparameter setting.

In the following sections, we will discuss several implementations of both gener-

alizing and non-generalizing models, and investigate their performance and stability

under selected conditions.

4.3 Data Coverage

A learned model is inherently limited by the quality of the offline data that is used

for training. A dataset can be characterized by its trajectory quality and state-action

coverage (Schweighofer et al. 2021); for example, trajectory quality can be measured
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by average dataset return and state-action coverage can be measured by number of

unique state-action pairs. Another classification of datasets that is often used is based

on the policy used for data collection. For example, a dataset can be generated by

random policy, medium policy, expert policy, or some combination of policies (Fu et

al. 2021). In our experiments in Chapter 5, we will primarily focus on the setting

where the model has good coverage over the state-action space and some examples of

near-optimal trajectories, using mixed policies to achieve such coverage. We explore

the usage of large real-world datasets in Chapter 7, where we expect more state-action

coverage to produce an improved model.

4.4 Neural Network Models

Neural network models are one popular choice for transition models in model-based

RL, as they are able to learn complex functions from raw data, The flexibility of neu-

ral networks to learn such functions has led to breakthroughs in a variety of fields,

including computer vision (Krizhevsky et al. 2012), natural language processing (De-

vlin et al. 2018), and reinforcement learning (Mnih, Kavukcuoglu, Silver, Rusu, et

al. 2015; Silver et al. 2016). The art of training these networks has also advanced

significantly, making them robust and reliable tools for a variety of tasks. Thus, it

is no surprise that neural networks have been used as dynamics models in a number

of model-based RL algorithms (Chua et al. 2018; Deisenroth and Rasmussen 2011;

Hafner, Lillicrap, Norouzi, et al. 2020). When applied to transition models, neural

networks are generally used to estimate the dynamics of the environment p(s′, r|s, a),
which makes them generalizing models, as previously discussed. In this section, we

will discuss two popular choices of neural network models for transition models: feed-

forward neural networks and recurrent neural networks.

4.4.1 Feedforward Neural Network

The most standard form of neural network is a multi-layer, fully-connected neural

network, also known as a feedforward neural network (FNN, but we will also refer

to this as NN). FNNs are parameterized by a set of weights and biases, and are able

to learn complex functions from raw data. For such parametric models, we typically

frame the learning objective as finding a set of parameters θ that minimizes the

one-step prediction loss over transitions in the dataset:

θ∗
.
= argmin

θ

1

|D|
∑︂

(st,at,st+1)∈D

∥st+1 − p̂FNN(st+1|st, at; θ)∥22, (4.1)
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where D is the dataset of transitions collected from the true environment and p̂fnn
is the parameterized model. Notice that p̂FNN is only conditioned on the current

state and action, and does not take into account any previous states or actions in the

trajectory.

This optimization problem can be solved with the aid of optimizers such as SGD

or Adam (Kingma and Ba 2014), along with other useful techniques such as hold-out

validation and input normalization to improve generalization and speed up learning.

Examples of model-based RL algorithms that use FNNs for their transition models

include model-ensemble trust-region policy optimization (ME-TRPO) (Kurutach et

al. 2018), where an ensemble of deep FNN models are used to stabilize learning, and

Nagabandi et al. 2018, where an FNN is used to learn the dynamics of the environment

for a model-predictive control algorithm.

4.4.2 Recurrent Neural Network

If the transition dynamics of an environment are not Markovian, then a standard

feedforward neural network may be insufficient to capture the true one-step dynam-

ics. In other words, the next state s′ may depend on more than just the previous

state and action (st, at). This characteristic is also often referred to as partial ob-

servability. In this case, it is common to use a recurrent neural network (RNN) to

capture the temporal dependencies in the data. The RNN model can be defined as

p̂RNN(st+1|st, at, ht; θ) Here, ht ∈ Rnh is the hidden state of the RNN at time t that

serves as memory for the previous states and actions, where nh is the number of

neurons in the hidden state. The hidden state is updated at each timestep according

to:

ht+1 = g(θhht + θxxt(st, at)), (4.2)

where g : Rnh → Rnh is a non-linear activation function, θh ∈ Rnh×nh and θx ∈
Rnh×nx are the parameters of the RNN, θ = θh ∪ θx, and xt ∈ Rnx is the feature

vector timestep t, which is typically a concatenation of the current state and action,

i.e. xt = [st, at].

The learning objective is similar to that of the FNN, but the model is trained using

backpropagation through time (BPTT) (Werbos 1990). Vanilla RNNs are rarely used

due to their difficulty in learning long-term dependencies, and are often replaced with

more sophisticated architectures such as long short-term memory (LSTM) (Hochreiter

and Schmidhuber 1997) or gated recurrent units (GRU) (Cho et al. 2014). In this

thesis, we will use the GRU architecture for our RNN experiments, which are similar

in performance to LSTMs, but are typically faster to run and train.
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RNNs are a popular choice for model-based RL algorithms in partially observable

environments, and have been the focus of several recent works (Chiappa et al. 2017;

Hafner, Lillicrap, Norouzi, et al. 2020; Kaiser et al. 2019). For example, the Dream-

erV2 algorithm (Hafner, Lillicrap, Norouzi, et al. 2020) uses an LSTM-based model

to learn the transition dynamics of the environment, and is able to produce realistic

rollouts over medium horizons (H = 15).

4.5 K-Nearest Neighbors Models

In this section, we will discuss a non-generalizing k-nearest neighbors (KNN) model

that aims to avoid compounding prediction error by limiting model transitions to the

space of real transitions observed from the true environment (H. Wang, Sakhadeo,

et al. 2022). This model is non-parametric and relies on a notion of distance within

a representation space to select transitions. We posit that while a KNN model may

sacrifice generalization capabilities, its ability to remain stable over long horizons

make it a good candidate for a use case such as hyperparameter selection.

4.5.1 Algorithm Overview

Like previous calibration models discussed, the KNN model aims to provide an ap-

proximation of p(s′, r|s, a) from which we can draw samples. That is, for a given

state-action pair (s, a), the KNN model must produce a next state s′ and reward r.

In order to produce novel trajectories that differ from those observed in the offline

dataset, we can consider a transition tuple (si, ai, ri, s
′
i) ∈ D to be a neighbor of a

query state-action pair (s, a) if the state-action pair is close to the query pair in some

representation space. At each timestep in a rollout, the model will first find the k

most similar transitions to the query pair in the dataset, using an efficient nearest

neighbor search algorithm such as a k-d tree (Bentley 1975). Then, the model will

stochastically sample from these k transitions, in proportion to their distance d from

the query pair. The probability of sampling a transition with index i from the query

pair (s, a) is given by:

Pr{St+1 = s′i, Rt = ri | St = s, At = a} .= 1

Z(s, a)

(︄
1− di(s, a)∑︁k

j=1 dj(s, a)

)︄
, (4.3)

where di(s, a) is the distance between (s, a) and the i’th neighbor (si, ai, ri, s
′
i), and

Z(s, a) is the normalization constant used to map values to the interval [0, 1]:
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Z(s, a)
.
=

k∑︂
l=1

(︄
1− dl(s, a)∑︁k

j=1 dj(s, a)

)︄
. (4.4)

Hence, transitions that are closer to (s, a) in the representation space are more likely

to be sampled, and transitions with larger distance are less likely to be sampled. Note

that the softmax function over −di(s, a) is another reasonable candidate sampling

distribution:

Pr{St+1 = s′i, Rt = ri | St = s, At = a} .= e
−di(s,a)

τ∑︁k
j=1 e

−dj(s,a)

τ

, (4.5)

with temperature parameter τ to allow for tuning the degree of randomness in

the sampling process. While this tunable softmax provides a more flexible sampling

distribution, we found the simple inverse-proportional distribution from Equation 4.3

to be sufficient for our experiments.

Up to this point we have introduced the notion of a distance function d(s, a)

without specifying how this distance is computed. The simplest approach is to use

the Euclidean distance between the state-action pairs within the raw state space,

di(s, a) = ∥(s, a)− (si, ai)∥22. However, this approach is not always suitable, as it does

not take into account the structure of the underlying MDP and may not provide an

accurate measure of similarity between state-action pairs. This can become problem-

atic, for example in a 2D gridworld, where states that are close together in terms of

(x, y) coordinates have a wall between them; in this case we would not want to output

a small distance between the two states, despite a small Euclidean distance. Instead,

we may want to learn a function ψ(s, a) that maps state-action pairs to a represen-

tation space where the distance between pairs is more indicative of their similarity.

In the next section we will discuss a learned mapping function and distance metric

based on the graph Laplacian.

Before moving onto the learned distance metric however, our KNN algorithm must

also consider how to handle the case where the query pair (s, a) is not close to any of

the neighbors in the dataset. This might occur when there is poor dataset coverage

over certain regions of the state-action space. While there are different ways we might

handle this, we follow the approach taken in H. Wang, Sakhadeo, et al. (2022) and

take a pessimistic view of the action. In practice, this means that if there are no

neighbours within a certain distance threshold of the query pair, we return a mini-

mum reward computed from the dataset and terminate the episode. This pessimistic

approach helps to prevent the model from producing unrealistic transitions, while si-

multaneously deterring the agent from entering low-coverage areas of the state-action
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space.

4.5.2 Laplacian Distance Metric

The Laplacian representation, as introduced in Chapter 2, provides a natural way

to compute state similarity in an MDP, due to its ability to capture the geometric

structure of the MDP. States that are close in Euclidean distance may be far apart

in the MDP, and the Laplacian representation has been shown to offer an improved

notion of distance in such cases (Wu et al. 2018). In this new representation space,

state similarity can be expressed as the L2 distance between state representations,

di(s) = ∥ψ(s)−ψ(si)∥22.
While analytically computing the eigenvectors of the Laplacian is straightforward

in small, discrete state spaces where a model of the environment is known, it becomes

significantly more challenging when these criteria are not met. As a result, various

works have focused on the problem of accurately approximating the Laplacian from

samples (K. Wang, Zhou, Feng, et al. 2022; K. Wang, Zhou, Zhang, et al. 2021; Wu

et al. 2018).

We follow the approach taken in Wu et al. (2018) and H. Wang, Sakhadeo, et

al. (2022), which leverages spectral graph drawing to stochastically approximate the

eigenfunctions of the Laplacian via sampling. The Laplacian is considered for a fixed

behavior policy, such that the transition distribution forms a Markov reward process.

For a dataset D of transitions, the graph drawing objective can be expressed as

∑︂
st∼D

⃦⃦
ψθ(st)−ψθ(st+1)

⃦⃦2
2
+
∑︂

si,sj∼D

(︂
(ψθ(si)

Tψθ(sj))
2−
⃦⃦
ψθ(si)

⃦⃦2
2
−
⃦⃦
ψθ(sj)

⃦⃦2
2

)︂
, (4.6)

where ψθ : S → Rd is the representation learned using a neural network function

approximator, with representation dimension d, and parameters θ. Minimizing this

objective function through, for example, stochastic gradient descent yields an approx-

imation to the Laplacian eigenfunctions. Intuitively, we can view this objective as

being comprised of an attractive term and a repulsive term. The first term is attrac-

tive insofar as it encourages ψθ to map states st and their successors st+1 closely in

the representation space - this roughly captures temporal distance within an MDP.

Conversely, the second term encourages independently sampled state pairs from the

dataset to have orthogonal representations.

Several hyperparameters are introduced to allow more flexibility in learning. The

β hyperparameter controls the weighting of the repulsive term relative to the attrac-

24



tive term, ζ regularizes representations away from zero, and κ ∈ [0, 1) extends the

objective to multi-step transitions, yielding the updated expression:

∑︂
st∼D,u∼Pκ

⃦⃦
ψθ(st)−ψθ(st+u)

⃦⃦2
2
+
∑︂

si,sj∼D

(︂
β(ψθ(si)

Tψθ(sj))
2−ζ

⃦⃦
ψθ(si)

⃦⃦2
2
−ζ
⃦⃦
ψθ(sj)

⃦⃦2
2

)︂
.

(4.7)

By extending the objective to handle multi-step transitions, we allow the represen-

tation to directly learn longer temporal relationships between states. To accomplish

this in practice, we store trajectories of length z in the replay buffer - when a state

trajectory [s0, s1, ..., sz] is selected, we need to choose two states to use for our up-

date. The first state is naturally s0 and the second state is selected with sampling

probability Pκ = [κ, κ2, ..., κz], such that κ determines how often nearer vs. further

states are selected for updates. See Appendix A.1 for values of these hyperparameters

that show good empirical performance.

In order to validate learned Laplacian representations, we use a separate metric

called dynamics awareness (H. Wang, Miahi, et al. 2024). This metric is highly

related to the approximate Laplacian objective function, but does not depend on

relative weighting between attractive and repulsive loss nor the effect of multi-step

rollouts. Instead, we measure the distance between a state and its successor state

relative to the distance between that state and a randomly sampled state from the

dataset:

LDA
.
=

∑︁
si∼D

⃦⃦
ψ(si)− ψ(sj∼U(1,N))

⃦⃦
−
∑︁

si∼D

⃦⃦
ψ(si)− ψ(si+1)

⃦⃦∑︁
si∼D

⃦⃦
ψ(si)− ψ(sj∼U(1,N))

⃦⃦ . (4.8)

In practice, we find that the dynamics awareness score is not able to capture

degeneration in the representation space, where either many or all states map to the

same Laplacian representation. Clearly, this representation is undesirable as it does

not provide any meaningful notion of distance between states - all states will have zero

distance from each other in the degenerated space. To mitigate this, we introduce a

secondary validation metric that we call representation uniqueness, which measures

the proportion of unique state representations over the entire validation set:

LRU
.
=
| Ψ |
N

, (4.9)

where Ψ is the set of Laplacian representations of all states in the validation set, and

N is the number of states in the validation set. A good uniqueness score should be

close to 1.0, denoting that nearly all states have a unique representation. Thus, a good

learned Laplacian representation can be selected by first filtering out representations
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with a low uniqueness score (e.g. < 0.95) and then ranking representations in this

filtered set using the dynamics awareness score.

An example of a Laplacian representation learned through this process in a four-

room continuous gridworld environment is provided in Figure 4.1. Compared to raw

Euclidean distance, the Laplacian distance is able to account for the obstacles in the

environment.

(a) Euclidean distance (b) Laplacian distance

Figure 4.1: Heatmap of distances calculated from the blue square to all other squares
in a continuous state-space gridworld environment, using (a) L2 distance in raw ob-
servation space and (b) L2 distance in Laplacian representation space, where the
Laplacian representation was approximated using the method described above. The
gridworld was discretized into squares for the purpose of visualizing distances, and
d = 4 was used for the Laplacian representation - further hyperparameters can be
found in Table A.6 and training methodology in Section 5.2.4.

4.5.3 Discrete vs. Continuous Action Spaces

The KNN model can be used for both discrete and continuous action spaces, but the

method of performing the nearest neighbor search will differ between the two. For

discrete action spaces, the model will partition the dataset into subsets based on the

action, and then perform a nearest neighbor search within the subset corresponding

to the query action. For example, if the query action is at = 1, the model will perform

a nearest neighbor search over the subset of dataset transitions where ai = 1. For

continuous action spaces, we are not able to partition the dataset in the same way.

Instead, we will form a feature vector xt = [ψ(st), g(at)] by concatenating the state

representation ψ(st) with the action representation g(at), and then perform a nearest

neighbor search over the entire dataset using this feature vector. We opt to use an

action representation g(at) that simply normalizes at to be within the same range of
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ψ ∈ Ψ where Ψ is the set of all state representations over D. Pseudo-code for the

discrete and continuous action KNN next-state sampling algorithms can be found in

Algorithms 1 and 2.

Note that more thought may be needed to handle continuous action spaces, as the

naive approach of concatenating the state and action representations may generalize

poorly. For example, the distance between two action representations may not be

indicative of the true similarity between the actions. In this case, we may want to

use a learned action representation g(at) that maps the action to a space where the

distance between representations is more indicative of action similarity. Further, it

is not clear what the proper distance function is when jointly comparing states and

actions. Currently, we take the union between the state and action representation

spaces and compute L2 distance within the joint space, such that the state and action

features are weighed equally. While this equal weighting works to a reasonable extent

in our experiments, it is not clear if this is an ideal approach.

Algorithm 1 Discrete-Action KNN Sampling

Input: st, at
(s′i, ri, di)

k
i=1 ← KDTreeSearch(ψ(st), at, k)

if mini di > threshold then
return minrt∈D rt, terminal ▷ Get min return from dataset

end if
i ∼ SamplingDistr(d1, ..., dk) ▷ E.g. distribution from equation 4.3
return ri, s

′
i

Algorithm 2 Continuous-Action KNN Sampling

Input: st, at
xt = [ψ(st), g(at)]
(s′i, ri, di)

k
i=1 ← KDTreeSearch(xt, k)

if mini di > threshold then
return minrt∈D rt, terminal ▷ Get min return from dataset

end if
i ∼ SamplingDistr(d1, ..., dk) ▷ E.g. distribution from equation 4.3
return ri, s

′
i

4.6 Bootstrapped Ensembles

A bootstrapped ensemble of models is a technique that can be used to account for

model uncertainty (also known as epistemic uncertainty) and improve confidence in
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the model’s predictions. It involves generating samples from a dataset with replace-

ment, which can then be used to train a population, or ensemble of models on. While

a single learned model may be prone to randomness in its training process, an en-

semble of models can help to smooth out this randomness by averaging out their

predictions and reducing the risk of learning a poor model (Dietterich 2000). Boot-

strapped ensemble models have been used with success in PETS (Chua et al. 2018)

and model-based policy optimization (MBPO) (Janner et al. 2019), where uncer-

tainty estimates constructed from bootstrapped ensembles are used to plan and learn

policies.

There are various ways to construct bootstrap samples and to leverage an ensem-

ble of models. In our experiments, we will use block bootstraps, where the dataset is

segmented into chunks and B bootstraps are constructed by holding out one of these

chunks per bootstrap. A separate model is then trained on each bootstrap, and pre-

dictions across models are reconciled by taking the worst rank of a hyperparameter

across models. For example, if we have three bootstraps and three hyperparameter

settings, the bootstraps might produce rankings of [1, 2, 3], [2, 1, 3], [1, 2, 3], re-

spectively, where the index in each list represents the hyperparameter setting, and

the value represents the ranking of the setting according to the bootstrap. Using

the worst rank approach, our final ranking in this case would be [2, 2, 3]. Note that

while there are many ways that rankings can be reconciled across bootstraps, includ-

ing various voting strategies, we opt to use worst rank because it is a way of using

bootstraps to define a lower bound of performance for a hyperparameter setting.

4.7 Alternative Models

There are a variety of model architectures that have been used in previous model-

based RL works, typically for the purpose of simulating rollouts for planning. Non-

parametric, Gaussian process-based models were historically popular for learning

robot dynamics (Deisenroth, Rasmussen, and Fox 2012; Ko et al. 2007; Nguyen-Tuong

et al. 2009), and have also been leveraged to provide rollout uncertainty estimates

to the agent during planning (Deisenroth and Rasmussen 2011). Linear-Gaussian

dynamics models have also been used for guided policy search algorithms (Finn et al.

2016; Levine et al. 2016b), but these models are designed primarily to model local

dynamics. Probabilistic dynamics model, which model distributions over predicted

states, have been shown to capture stochastic dynamics and aleatoric uncertainty

(Chua et al. 2018; Depeweg et al. 2018). State-space models, which make predictions

in a latent space, have been used with success in the Dreamer algorithm (Hafner,
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Lillicrap, Ba, et al. 2020), where the authors augment the model with recurrent and

spatial inductive biases in order to predict pixel-based observations. In complex indus-

trial systems, models that incorporate structured domain knowledge have been shown

to significantly improve model accuracy (Zhan et al. 2022). Finally, one promising

line of work uses a Lyapunov function constraint to encourage long-horizon rollout

stability of the dynamics model (Manek and Kolter 2020). The non-generalizing KNN

model that we spotlight in this work is an alternate perspective on building dynamics

models, with a focus on remaining in the space of seen transitions, and a potential

trade-off of short-term dynamics accuracy. We believe that this approach could be

complementary to other models presented in this section when the goal is to achieve

long-horizon rollout stability.

4.8 Model Evaluation

In model-based RL, learned transition models are often evaluated with respect to

their utility in planning, by benchmarking performance on a downstream control task

(Hafner, Lillicrap, Norouzi, et al. 2020; Kaiser et al. 2019; Talvitie 2014). Similarly,

we are interested in understanding how a model performs with respect to its ability to

rank and select hyperparameters of an RL algorithm. In addition to this measure, we

are also interested in understanding the properties of model-generated trajectories,

how to classify whether they are realistic or not, and how these properties relate to

the model’s ability to select hyperparameters. In this section, we will discuss the

properties of model-generated trajectories that we are interested in, as well as some

measures we can use to evaluate these properties.

4.8.1 Hyperparameter Selection

The most direct method of evaluating a calibration model is to test its performance

on the task of selecting hyperparameters. One approach to this is to plot agent

performance across different values of a single hyperparameter when run in the cal-

ibration model, and compare the curve to that when run in the true environment.

For example, we can plot the total return of a DQN agent across different values

of the optimizer learning rate, e.g. α ∈ {1e−4, 1e−3, 1e−2, 1e−1}, when run in the

calibration model, and compare this to the same curve when run in the true environ-

ment. Total return can be averaged across multiple runs of the agent, and confidence

intervals can be used to express the variance in performance. If the relative ranking

of each hyperparameter setting is similar in the calibration model and the true envi-
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ronment, then we might conclude that the calibration model is effective at selecting

hyperparameters. In the case of bootstrapped calibration models, we will use worst

rank across bootstraps to generate the model ranking, as described in Section 4.6.

4.8.2 Multi-Step Prediction Error

One popular method for evaluating the quality of model-generated trajectories is to

use the mean-squared error (MSE) between the model’s predictions and the true

environment’s transitions over many timesteps. This can either be averaged across

all timesteps in a trajectory, or per timestep across many trajectories. We will be

using the latter method, where the MSE at each step can be defined as:

MSEt
.
=

1

K

K∑︂
k=1

⃦⃦
s
[k]
t − ŝ

[k]
t

⃦⃦2
2
, (4.10)

where K is the total number of evaluation trajectories, s
[k]
t is the true state at

timestep t of trajectory k, and ŝ
[k]
t is the model-predicted state at timestep t of

trajectory k. Alternatively, we might want to express the MSE in the same units as

the state variables, in which case we can use the root mean-squared error (RMSE):

RMSEt
.
=

⌜⃓⃓⎷ 1

K

K∑︂
k=1

⃦⃦
s
[k]
t − ŝ

[k]
t

⃦⃦2
2
. (4.11)

MSE has been used to showcase the tendency of models to exhibit compounding

prediction error when rolled out for long horizons (Lambert et al. 2022) and is typically

the metric used to evaluate model accuracy. However, a high MSE does not necessarily

mean that a given trajectory is unrealistic, for example in chaotic systems where

trajectories will diverge given slight differences, or for trajectories that are simply

lagging by several timesteps. Works such as (Oh et al. 2015) recognize this and

use a combination of quantitative analysis (MSE) and qualitative analysis (visual

inspection) to evaluate the quality of model-generated trajectories. We will follow a

similar approach in our experiments, using both quantitative and qualitative analysis

to evaluate the quality of model-generated trajectories.

4.8.3 State-Space Distribution

Another approach to understanding how well a model simulates the true environment

is to compare the distribution of states encountered in model-generated trajectories to

those of the true environment. For a discrete state space, this can be done by counting
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the number of times each state is visited in expectation over many trajectories, given

some behavior policy, i.e.:

c(s)
.
= Eπ

[︄
T∑︂
t=0

1{St = s}

]︄
. (4.12)

To handle continuous state spaces, one simple approach is to discretize each state

feature into a set of B bins, and then count the number of times each bin is visited

in expectation:

c(i, j)
.
= Eπ

[︄
T∑︂
t=0

1{b[i,j]start ≤ S
[i]
t < b

[i,j]
end}

]︄
, (4.13)

where i ∈ {0, ..., |S|} is the index of the state feature, j ∈ {0, ..., B} is the bin index,

S
[i]
t is the i’th feature of the random state, and b

[i,j]
start and b

[i,j]
end specify the range of

the feature bin. The state-space distribution can then be visualized as a histogram,

where each bin represents a value range of a state feature, and the height of the

bin represents the number of times that feature range was visited in expectation over

many trajectories. We will refer to this visualization as a state distribution histogram.

4.8.4 Invalid States and Transitions

Measuring the tendency of a calibration model to produce invalid states or transitions

is another perspective on evaluating model quality. An invalid state is one that

does not exist in the true environment’s state space, while an invalid transition is

a transition to a state that is not reachable from the previous state, according to

the true dynamics. We can measure the frequency of invalid states or transitions in

model-generated trajectories and compare this value across models. Counting invalid

states is straightforward:

Eπ

[︄
T∑︂
t=0

1(St /∈ S)

]︄
. (4.14)

However, counting invalid transitions is more difficult, for example in deterministic

environments where any transition that does not follow the true dynamics exactly

could be considered invalid. This could be mitigated by specifying a tolerance for

the difference between the true and model-predicted transitions, however it’s not

immediately clear how to set this tolerance. For the purposes of our experiments,

we will use environment-specific knowledge to determine what constitutes an invalid

transition, e.g. for a gridworld environment, considering transitions through walls as

invalid.
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Chapter 5

Calibration Model Experiments

In this chapter, we will investigate the performance and stability of the NN, RNN,

and KNN calibration models under selected conditions. We will use two simple envi-

ronments, fixed-horizon acrobot and continuous gridworld, as our primary testbeds,

alongside a combination of the metrics previously introduced to evaluate the quality

of model-generated trajectories.

5.1 Fixed-Horizon Acrobot

For the first part of our experiments, our focus is twofold. First, we aim to understand

the metrics introduced in Section 4.8, and the extent to which each maps to a useful

notion of model quality. Second, we compare the performance of the NN, GRU, and

KNN calibration models in a simple environment with a low-dimensional state space

and simple dynamics. To this end, we will use a variant of the acrobot environment,

with MSE, state-space distribution, and hyperparameter selection as our evaluation

techniques.

5.1.1 Environment Description

The acrobot environment is a 2-link pendulum with a single actuator at the joint

between the two links. The goal of the agent is to swing the end of the lower link

up to a certain height. We use the Gym implementation of acrobot (Brockman et

al. 2016) where the state space is 6-dimensional, consisting of the sine and cosine

of the two joint angles and their angular velocities. The action space is a discrete

and 1-dimensional, with three possible values representing the torque applied to the

joint between the two links. The dynamics of the environment are governed by the

equations of motion for a double pendulum, for which there is a detailed description

in Sutton 1995.
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For our experiments, we use a fixed-horizon variant of the acrobot environment,

where the episode terminates after a fixed number of steps Ntraj. Rather than using

the default termination condition of the true environment, which terminates when the

end of the lower link reaches a certain height, we instead allow the agent to continue

swinging the pendulum until Ntraj is reached. Reward is consequently changed to be

−1 for every timestep that the pendulum is below the target height, and 0 for every

timestep above the the target height. Because we’d like to understand compounding

prediction error, using fixed-length trajectories allows us to have a constant number

of samples to average across at each step in our per-step MSE analysis. A similar

approach of using fixed-length trajectories was taken in Lambert et al. (2022). We

primarily use Ntraj = 500 for our experiments as empirically we found this gives

sufficient time for the agent to learn, while also providing a large enough chunk of

steps to investigate compounding prediction error.

5.1.2 Data Collection

As discussed in Section 4.3, a dataset with good coverage of the state-action space is

generally a requirement in constructing a good model. To promote such coverage, we

collect data using a learning agent that is trained to maximize the expected return

in the true environment. The intuition here is that good coverage of acrobot is com-

prised of both sub-optimal behaviour for typical exploration, as well as near-optimal

behaviour to reach certain parts of the state space (e.g. regions where the links need

to reach a certain height). Hence a learning agent should provide broad coverage

of the state-space, including the difficult to reach regions. This can alternatively be

viewed as using a mixture of random, medium, and expert policies for data collection.

We use a DQN agent with hyperparameters specified in Table A.1 and collect 200

trajectories withNtraj = 500 for a single training dataset. The DQN agent begins the

training process with a randomly initialized policy, and improves its policy through

the data collection process, reaching a near-optimal policy around 25% through the

data collection process. Five datasets are collected using this process, only differing

by random seed, to mitigate randomness associated with a single training run. These

five datasets are subsequently used to train the NN, GRU, and KNN models.

5.1.3 Model Training

For the NN and GRU models, we split each dataset into a training set and a valida-

tion set, with 80% of the data used for training and 20% used for validation. The

models are trained for 500 epochs to predict next state, reward, and termination,
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(St+1, rt, term) with early stopping based on validation error. Because the transition

models need to predict three separate targets, we train three separate networks of

each model type, one for each prediction target. Network architectures can be tuned

independently for each prediction target, e.g. for the acrobot GRU model, we use

hidden layers of [64, 64], [32, 32], and [16, 16] for next state, reward, and termination

networks respectively. MSE loss is used for next state and reward prediction, while

binary cross-entropy loss is used for termination. Hyperparameters for these models

can be viewed in Tables A.4 and A.5. Notably, for the GRU model, we use a burn-in

length of 5 timesteps, and a lookback sequence length of 10 timesteps for the one-step

prediction. While the environment is fully observable and may not require a recurrent

model, we include the GRU model in our experiments to provide a benchmark of its

performance in a simple environment.

We also construct KNN models using both Euclidean and Laplacian distance met-

rics. For both the Euclidean and Laplacian KNN models, we use k = 3 nearest

neighbors, which is the default used in H. Wang, Sakhadeo, et al. (2022). We also try

eliminating stochasticity by setting k = 1 but find that this degrades model perfor-

mance - see the next section for these results. There are no further hyperparameters

required for the Euclidean KNN, however hyperparameters for the Laplacian repre-

sentation training can be viewed in Table A.6.

We learn several unique models for each model class, where the models differ by

their training dataset. Given four model classes and three datasets, we learn a total of

twelve models. By having multiple models of each type, we hope to mitigate the effect

of randomness in the training process, and to better understand the performance of

each model type. Also note that hyperparameter tuning is performed for each model

type using a basic grid search appraoach.

5.1.4 Evaluation

Root Mean Squared Error

We compute the per-step root mean squared error (RMSE) between model rollouts

and true rollouts starting from the same initial state, and following the same fixed

policy. The reported RMSE is averaged across nine runs of 200 trajectories each,

where each run uses a unique combination of model and rollout policy (three distinct

policies and three distinct models). The rollout policies were frozen from a DQN

agent at different stages of training in the true environment are are different from the

policies used during data dollection.

Following the approach taken in Lambert et al. (2022), we normalize state features
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to [0, 1] prior to computing RMSE, such that each feature contributes equally to the

error. We include 95% confidence intervals for each model’s RMSE in the plots. We

also try measuring the RMSE in the learned Laplacian representation space, where

we consider the L2 distance between ψ(st) and ψ(ŝt) at each timestep.

As a baseline, we include results for a static model that always predicts the same

next state, and a reward of −1. Effectively, this means that the model remains in the

start state for the duration of each episode. This model provides a good reference

point for how we expect a poor model to perform with respect to different evaluation

metrics.

State-Space Distribution

Using the same rollout data as for the RMSE evaluation, we visualize the state-space

distribution of each model by plotting histograms of the visitation counts for each

feature bin during rollouts. Each feature is normalized to [0, 1] and discretized to

20 bins. Histograms are overaged over nine runs of 200 trajectories. We expect

that a good model will produce a state-space distribution that is similar to the true

environment’s state-space distribution.

Hyperparameter Selection

We plot hyper sensitivity curves over the Adam optimizer learning rate α for a DQN

agent run in each of the calibration models, and compare this to the same curve

when run in the true environment. We perform a grid search over the range α ∈
[1e−7, 1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1], with 50 runs per hyper setting and a

training budget of 20,000 steps. We then plot the average episode return of the DQN

agent as our performance measure for each value of α. We expect that a good model

will produce a hyper sensitivity curve that is similar to the true environment’s hyper

sensitivity curve - i.e. the ranking (as opposed to the raw performance value) of

hyperparameters and the optimal hyperparameter value should be similar.

Altering Dataset Coverage

Finally, we briefly investigate the effect of reducing dataset coverage on the NN

model’s performance. We consider the standard dataset, which was collected us-

ing Ntraj = 500 as described in Section 5.1.2 as our high-coverage dataset, and a

secondary dataset collected with Ntraj = 50 as our low-coverage dataset. Since the

agent never escapes the region of the state-space close to the initial state, we expect

the low-coverage dataset to contain a poor coverage of the state-space. We then com-

pare performance of NN models trained on each dataset using RMSE, state-space

35



Figure 5.1: Per-step RMSE between model rollouts and true rollouts, averaged across
nine runs of 200 trajectories each, where each run uses a unique combination of model
and rollout policy. State features are normalized to [0, 1] prior to computing RMSE
and RMSE is computed in Euclidean space.

distribution, as well as a trajectory visualization.

5.1.5 Results

Root Mean Squared Error

We find that Euclidean RMSE has poor correlation with model quality. In Figure

5.1, we can see that the static model’s RMSE curve roughly matches each of the

other models, despite producing essentially useless trajectories. In fact, we see the

static model’s RMSE begin to decrease near the final prediction steps - this might

be related to policy behaviour in later steps (e.g. a good policy in this environment

might learn to swing the acrobot links around in circles). We also try computing

the RMSE in the Laplacian representation space, and find that Laplacian RMSE is

able to distinguish poor quality of the static model trajectories (see Figure 5.2). Note

that several learned Laplacian representations were tried and yielded the same results.

This suggests Laplacian RMSE may be a more meaningful metric for evaluating model

quality than Euclidean RMSE, due to its ability to capture a notion of distance in the

underlying MDP. Interestingly, the NN model performs best in the Laplacian space,

even better than the Laplacian KNN which directly uses the Laplacian representation.

One possible explanation for this is that learning one-step dynamics is a task closely

related to learning the structure of the MDP, and so the NN model may implicitly

learn to minimize the Laplacian error. However, more investigation would be needed

to confirm this hypothesis.
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Figure 5.2: Same as Figure 5.1, but RMSE is computed in the Laplacian representa-
tion space.

State-Space Distribution

State-space distribution appears better able to capture the quality of model-generated

trajectories than Euclidean RMSE. As we can see in 5.3, the static model produces

feature histograms that are very different from the true environment’s histograms,

while the other models are all more closely matched. This suggests that state-space

distribution may be a more meaningful metric for evaluating model quality than

Euclidean RMSE. Also note that all (non-static) models perform well in the Fixed-

Horizon acrobot environment with respect to state-space distribution, when trained

on a dataset with good coverage. This is surprising, since we might have expected NN

models to collapse due to compounding error and may suggest that realisitc multi-step

prediction can in fact be achieved across a variety of model types in environments

with simple dynamics.
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Figure 5.3: Histogram over binned features of the acrobot environment; each feature
is normalized to [0, 1] and discretized to 20 bins. The histogram shows the number
of timesteps spent in each feature bin, averaged across 200 rollouts from each model.

Hyperparameter Selection

All models perform relatively well from a hyperparameter selection perspective, as

we can see in Figure 5.4 where the hyper sensitivity curves for each model are quite

similar to the true environment’s curve. Specifically, we can see that the learning rates

[1e−6, 1e−5, 1e−4] have overlapping confidence intervals for the true environment

and can hence all be considered optimal (more runs would be needed to further

distinguish between these). Each of the calibration models similarly selects optimal

hyperparameters in this set, with most models typically selecting all three. Similarly,

the rankings for the remaining hyperparameters are roughly consistent with the true

environment ranking as well. This corroborates the findings from the state-space

distribution histograms, and suggests that the good model accuracy determined by

the state-space distribution perspective does in fact correlate with the type of model

accuracy that is useful for selecting hyperparameters.
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Figure 5.4: Hyper sensitivity curves over the Adam optimizer learning rate α for
a DQN agent across the true environment and calibration models in fixed-horizon
acrobot. Curves for five different models of each type are shown, each trained on a
different dataset collected with a unique random seed. Each hyper setting is averaged
across 20 random seeds, with a training budget of 20,000 steps per run. Transparency
is used to visually distinguish between lines and does not encode any additional
information.

Dataset Coverage

As expected, dataset coverage has a significant impact on the NN model’s perfor-

mance. Qualitatively, we can see that the low-coverage NN model produces trajec-

tories that are quite different from the true environment’s trajectories, as shown in

Figure 5.5, which visualizes acrobot trajectories by stacking frames of the acrobot

arm throughout a given rollout. This is similarly reflected in the state-space dis-

tribution histograms in Figure 5.6, where the low-coverage NN model produces a

state-space distribution that is quite different from the true environment’s distribu-

tion. Notably, the RMSE metric is unable to capture the degraded model quality of

the low-coverage NN model, and actually appears to have slightly better performance

according to Figure 5.7.
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Figure 5.5: Visualizations of Fixed-Horizon acrobot rollouts from the true environ-
ment (left), a low-coverage NN model (middle), and a high-coverage NN model (right).
Frames are subsampled every 15 steps from 500 step rollouts, with earlier frames
shaded lighter and later frames shaded darker. Each rollout is initialized with the
same start state and uses the same policy for selecting actions.

Figure 5.6: Feature histograms for NN models with varying dataset coverage.

Figure 5.7: RMSE plot for NN models with varying dataset coverage.
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KNN Model Sensitivity to k

The KNN model is quite sensitive to the number of nearest neighbors k used to sample

the next state, as we can see in Figure 5.8. Some transition stochasticity (i.e. k > 1)

appears necessary in order to stabilize the KNN rollouts.

Figure 5.8: Histograms over binned features of the acrobot environment. Here we
can see the effect of varying the number of nearest neighbors k used to predict the
next state. Some transition stochasticity (i.e. k > 1) appears necessary in order
to stabilize the KNN rollouts. The histograms are averaged across three different
calibration models, each learned on a different dataset of 200 trajectories. The same
rollout policy is used for all rollouts, which is different from the policy used to collect
the training set.

5.2 Continuous Gridworld

For our next set of experiments, we would like to investigate the setting where we

expect calibration models to produce unrealistic trajectories in an easily identifiable

way. To achieve this, we will use a continuous gridworld environment with obstacles,

where we might expect e.g. generalizing models such as the NN and GRU to predict

next states where the agent transitions into or through obstacles. We aim to under-

stand to what extent such models might be considered ”unrealistic” and whether this

has any bearing on their ability to select hyperparameters.
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5.2.1 Environment Description

The continuous gridworld environment is a w×h 2D gridworld with continuous state

and action spaces. The state space is 2-dimensional, with features representing the

x and y coordinates of the agent, i.e. s = (x, y) where x ∈ [0, w] and y ∈ [0, h].

Similarly, the action space is 2-dimensional, where each dimension corresponds to a

change in the agent’s x and y coordinates. Given that the environment’s dynamics

are deterministic, they can be described by the equation st+1 = st+at. While actions

could be un-bounded, we limit them to the range [−1, 1] for our experiments.

We primarily focus on a four-room gridworld of gridsize w = h = 11, with a

goal state in the top-right room. Episodes terminate either after the agent reaches

the goal state or after a fixed timeout. The reward is 0 for reaching the goal state

and −1 for all other timesteps. Actions that would result in the agent moving into

an obstacle or beyond the map boundary result in the agent staying at the map or

obstacle boundary. The environment is deterministic, with the agent’s action vector

being clipped to [−1, 1] at each timestep. The environment is visualized in Figure 5.9

with a near-optimal policy rollout.

Figure 5.9: Four-room continuous gridworld environment with a near-optimal policy
rollout. The green square represents the start state, the blue square is the goal state,
red squares are obstacles, and arrows represent the agent’s action vector at each
timestep.
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5.2.2 Agent Description

In order to handle the environment’s continuous action space, we opt to use a Soft

Actor-Critic (SAC) agent (Haarnoja et al. 2018) with a fixed entropy temperature

α during training. Observations are normalized to [−1, 1] prior to training, and the

agent is trained according to the hyperparameters specified in Table A.2. The agent

may select actions outside of the allowed range [−1, 1], so we rely on either the true

environment or calibration model to clip the actions appropriately. We use this SAC

agent for both data collection and evaluation rollouts.

5.2.3 Data Collection

A good dataset for the continuous gridworld environment should include both suf-

ficient coverage over the state-space as well as rollouts where the agent reaches the

goal state, so that the calibration models can learn to predict the termination sig-

nal. To achieve this, we construct a dataset that is 95% random policy data and

5% near-optimal policy data. Specifically, we collect 19k transitions from a random

policy agent and 1k transitions from a near-optimal policy agent. The near-optimal

policy was learnt via SAC agent with hyperparameters specified in Table A.2 for 30k

steps. Episode timeouts are set to 200 during data collection, which is also used in

evaluation experiments. Three datasets are collected using this process, only differing

by random seed, to mitigate randomness associated with a single training run. These

three datasets are subsequently used to train the NN, GRU, and KNN models.

While actions are clipped to [−1, 1] by the environment, we collect the pre-clipped

actions in our dataset. This is because we want to see how the models handle invalid

actions, and whether they are able to implicitly simulate the true environment’s action

clipping.

5.2.4 Model Training

Model training is similar to the acrobot environment as described in Section 5.1.2,

but with different datasets and hyperparameters for the models. One other significant

difference is in the algorithm used for the KNNmodels - for the discrete-action acrobot

environment, we used a discrete-action KNN model, while for the continuous-action

gridworld environment, we use a continuous-action KNN model as described in 2.

As previously noted, the continuous-action KNN algorithm may be sub-optimal in

its treatment of distance within the action space, as well as how it balances the

importance of state and action distance, but we leave this as a topic for future work.
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We use the same hyperparameters for the Euclidean KNN model as we did for

the Laplacian KNN model, as we found that the Laplacian KNN model did not

perform well in the continuous gridworld environment. Note that since the continuous

gridworld is fully observable, for simplicity we opt to exclude the GRU model from

this set of experiments. While the acrobot models were trained using unnormlized

state features, we normalize state features to [−1, 1] for training continuous gridworld

models, including when learning a Laplacian representation. Hyperparameter tuning

is performed for each model type using a basic grid search approach to arrive at the

hyperparameters specified in the tables above.

5.2.5 Evaluation

Invalid transitions

Wemeasure the number of invalid transitions in model-generated rollouts, where three

types of invalid transitions are considered: transitions into an obstacle, transitions

through an obstacle, and transitions with an invalid magnitude, i.e. where |∆x| > 1

or |∆y| > 1, given ∆x = xt+1 − xt and ∆y = yt+1 − yt. To measure an expected

number of invalid transitions, we perform nine runs of 5000 steps for each model,

where each run is done using a unique combination of model and random seed (i.e.

three models trained on different datasets, and three random seeds per model). We

use a SAC agent that learns from scratch with hyperparameters specified in Table

A.2 for rollouts. We then compute the number of transitions within each category as

a percentage of the total number of transitions in each rollout and average this across

all rollouts in the nine runs, also providing 95% confidence intervals.

Hyperparameter Selection

We follow the same procedure described for the acrobot environment in Section

5.1.4 for evaluating hyperparameter selection. Specifically, we plot hyper sensitiv-

ity curves over the SAC entropy temperature α for a SAC agent run in calibra-

tion models vs. the true environment. We perform a grid search over the range

α ∈ [0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95], with 50 runs per hyper setting and a training

budget of 30,000 steps.

Rollout Visualizations

Lastly, we consider a qualitative approach to understanding rollout quality by looking

at visualizations of rollouts from each model. We expect these visualizations to cor-

relate with our measures of invalid transitions, and to provide insight into the nature
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of each model’s inaccuracies. We attempt to take rollout visualizations that are rep-

resentative of a typical rollout from each model, while also showcasing inaccuracies

specific to that model.

5.2.6 Results

Model Inaccuracies

The rollout visualizations in Figure 5.10 and the invalid transition plots in Figure 5.11

help to paint a picture of the nature of the inaccuracies of each model. The NN model

produces trajectories where there are seldom large jumps in the state space, but does

produce invalid states (i.e. transitions into obstacle). In contrast, the KNN models

disallow such invalid states by nature of only predicting real states from the training

dataset, but do appear more prone to errors in one-step dynamics (i.e. transitions

with an invalid magnitude). The Laplacian KNN is especially prone to these large

jump transitions, which is perhaps not surprising, as the next predicted state is no

longer selected based on distance in the original Euclidean space. The Laplacian

KNN also reduces the number of invalid transitions through obstacles compared to

the Euclidean KNN, due to its usage of the Laplacian distance metric, which is able

to account for obstacles. Note that Figure 5.11 shows results for the setting where the

agent’s actions are not clipped prior to being passed to the calibration model. We also

try clipping the agent’s actions prior to being passed to the calibration model, and

find that this decreases the number of invalid magnitude transitions for the NN model,

but increases the number of invalid magnitude transitions for the KNN models, as

shown in Figure 5.12.
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(a) Euclidean KNN (b) Laplacian KNN

(c) NN

Figure 5.10: Example rollouts of near-optimal policies in different calibration models
of four-room continuous gridworld. Euclidean and Laplacian KNN rollouts tend to
include more large magnitude jumps, while NN rollouts tend to include many invalid
transitions into obstacles.
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Figure 5.11: Count of invalid transitions as a percentage of total number of transitions
across each model class.

Figure 5.12: The same as Figure 5.11, except in this case agent actions are clipped
prior to being passed to the calibration model.
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Hyperparameter Selection

While the NN model is susceptible to producing invalid states, it appears that this

does not have a significant negative impact on its ability to match the true envi-

ronment’s hyper sensitivity curve for the entropy temperature parameter α - as we

can see in Figure 5.13, where the NN curve closely mirrors the true one. On the

other hand, the invalid magnitude flavour of model inaccuracy presented by the KNN

models appears to have a negative impact on the model’s ability to select hyperpa-

rameters. Figure 5.13 highlights this, where both the Euclidean and Laplacian KNN

models rank α = 0.2 as a candidate for the best hyperparameter setting, while the

true environment’s curve suggests either α = 0.35 or α = 0.5 as the top choice. More

investigation is needed to determine the precise relationship between model inaccu-

racies and hyperparameter selection, but we hypothesize that either the larger jumps

allowed by the KNN models or the constraining of the MDP may provide an easier

environment for the agent to exploit, thus allowing for better performance with less

need for exploration (i.e. less policy entropy).

Figure 5.13: Hyper sensitivity curves over the SAC entropy temperature α for a SAC
agent across continuous gridworld calibration models and true environment. Curves
for five different models of each type are shown, each trained on a different dataset
collected with a unique random seed. Each hyper setting is averaged across 20 random
seeds, with a training budget of 30,000 steps per run. Transparency is used to visually
distinguish between lines and does not encode any additional information.

48



5.3 Discussion

The first significant finding of this work is that MSE, and the multi-step compounding

error typically associated with it, may not have much discriminatory power in distin-

guishing models of good and bad quality. In chaotic systems especially, like acrobot,

a divergence from the true environment’s trajectory does not necessarily imply that

the model is bad. Instead, we find that other metrics such as state-space distribution

may be better able to capture characteristics that we would consider indicative of a

good model.

Further, model quality or accuracy can be considered in a variety of ways, including

but not limited to the perspectives taken in this work. Namely, we can consider the

state-space distribution produced over rollouts, the types and frequencies of invalid

transitions produced, or the performance of the model on a downstream task, such as

hyperparameter selection. Other perspectives that were not explored in this work but

may be useful are measuring the error in the model’s one-step dynamics, or assigning

a likelihood that a model rollout was produced by the true environment.

Certain types of model inaccuracy may be more detrimental than others in the

context of hyperparameter selection. While more evidence is required to suggest a

causal relationship, we find the invalid magnitude transitions produced by the KNN

models to correlate with worse hyperparameter selection performance, whereas the

invalid states produced by the NN models do not. This suggests that the nature of

model inaccuracies are important to consider when evaluating the quality of a model,

and the significance of an inaccuracy is likely dependent on the downstream task at

hand.

While we initially expected that generalizing models like the NN and GRUmight be

more prone to compounding prediction error, we found that these models performed

well over long rollouts in the acrobot and gridworld environments. One interpretation

of this result is that for environments with simple dynamics, a range of both generaliz-

ing and non-generalizing models can produce realistic multi-step predictions. This is

an interesting finding, as it suggests that the choice of model may not be as important

as we might have initially thought, at least in the context of simple environments.

Lastly, we recommend that more work be done to develop the continuous-action

KNN algorithm. For discrete action spaces, the KNN algorithm addresses the is-

sue of the raw Euclidean state space not matching the structure in the underlying

MDP. However, for continuous action spaces, the algorithm also needs to account

for distance in the action space, while further balancing the weighting between state

and action distances when computing distance. A more sophisticated approach, e.g.
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learning a distance metric in the action space and a weighting between state and

action features, could be of benefit here.

In this chapter, we focused on understanding the performance of several calibration

model implementations in the context of simple, simulated environments. In the

next chapter, we will apply the calibration models to a real-world environment, and

investigate the feasibility of the approach in a setting with more complex dynamics

and high-dimensionality.
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Chapter 6

Calibration Models for Water
Treatment

For the final part of this thesis, we investigate the application of calibration models

to a real-world water treatment plant. The goals of this study are to demonstrate

the effectiveness of calibration models in a real-world setting, and to investigate the

potential for using calibration models to select hyperparameters for a prediction agent.

We will use the same calibration models as in the previous chapter, and focus on

prediction of individual sensors in the water treatment plant.

6.1 Background

First, we provide background on the water treatment plant (WTP) dataset, the pre-

diction task, and the use of dynamic time warping (DTW) as a metric for evaluating

calibration models. We discuss the prediction task in detail using the general value

function (GVF) framework, the computation of returns, and the evaluation metrics

used in this study.

6.1.1 Water Treatment

In collaboration with the Drayton Valley water treatment plant located in Alberta,

Canada, we collect real-time data from a range of sensors that are used to monitor

the water treatment process. These sensors are not located on the full-scale plant,

but rather on a miniature test plant that is fed the same incoming water, and is

meant to emulate the filtration process used by the full plant. The plant uses a

membrane filtration system to treat water by removing particulate matter such as

sediment and microorganisms to a degree that satisfies regulatory and safety stan-

dards. Prior to passing through the filter membrane, the water is pre-treated with
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chemicals to facilitate clumping of the particulate matter, which is then filtered by

the membrane. There are a variety of control tasks that can be formulated within

this system, some of which include controlling the chemical dosing rates, the mem-

brane backwash frequency, and the water flow rates. For the purposes of this study,

we focus on prediction of individual sensors, as this is a previously studied problem

within the context of the Drayton Valley plant (Janjua et al. 2023) and offers a stable

testing ground for our experiments.

The plant is equipped with a variety of sensors that monitor properties of the

water chemistry and mechanical components of the plant at various stages in the

water treatment pipeline. In total there are 480 sensors that monitor properties such

as temperature, pH, turbidity, flow rate, and pressure, comprising a high-dimensional

multivariate time series. Given the seasonal nature of incoming water quality, the

changing conditions of the physical sensors (e.g. dirt or moisture building on a sensor

over time), and the existence of sudden changes in plant operation (e.g. maintenance

or repair), the sensor data is highly non-stationary, noisy, and complex. With this

in mind, the algorithms we consider should be robust to a high degree of partial

observability and noise. A visualization of several of these sensors is provided in 6.1.

The plant also does not have a simulator available, and thus deploying a reinforce-

ment learning agent in the plant runs into the issues discussed in previous chapters for

the NoSim setting, most notably the problem of hyperparameter tuning. Given the

high-dimensionality, non-stationarity, and potentially complex dynamics of the sensor

data, learning a calibration model in this environment is a challenging task and will

provide a good litmus test for the effectiveness of the different types of calibration

models. More details about the dataset, including pre-processing and augmentation

techniques, will be discussed in 6.2.1.

6.1.2 Prediction

Prediction forms a critical element of any decision-making method, whether it be

in value function estimation for action selection as in Q-learning, in constructing

accurate models of the world as in model-based RL, or in directly anticipating future

state variables as in nexting (Modayil et al. 2012). In the context of water treatment,

Janjua et al. (2023) explore the utility and feasibility of predicting sensor values many

steps into the future. While the focus of our experiments is on building and evaluating

calibration models, the prediction tasks proposed in Janjua et al. (2023) provide a

useful test-bed for such models.

To leverage RL methods for the purpose of sensor prediction, we use the GVF
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Figure 6.1: Plot taken from (Janjua et al. 2023) showing a subset of sensors from the
water treatment plant over the course of a year. Different colours are used to reflect
the change in seasons. This selection of sensors illustrates the effect of seasonality
and plant maintenance procedures on the sensor readings.

framework, as described in Section 2.1.5. In the water treatment setting, cumulants

are formulated as raw sensor readings oit from the full observation vector ot ∈ Rd,

where d is the dimensionality of the observation vector, i ∈ [1, d], and t is the timestep

in a given trajectory.

Prediction can hence be framed as GVF, where the objective is to estimate the

expected future sum of discounted cumulants cit = oit from state s:

vit(s)
.
= E

[︂
Gi

t

⃓⃓⃓
st = s

]︂
= E

[︄
∞∑︂
k=0

γkcit+k+1

⃓⃓⃓
st = s

]︄
(6.1)

Following usual practice in the continuing RL setting, a discount rate γ ∈ [0, 1)

is used to ensure a finite sum. We model the problem as a Markov reward process

(MRP), as is common for prediction tasks, since the observations contain information

about any actions that might have been taken by the behavior policy.
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Figure 6.2: Cumulants and discounted returns for the PIT300 membrane pressure
sensor for a 20k step slice of the training data. Returns are computed using γ = 0.99
and y-axes are of different scales. Returns are used as the prediction target for our
learning agent.

While Janjua et al. (2023) considered five sensors of different categories in their

investigation, we will restrict our focus to three sensors which we find maintains suf-

ficient diversity for our analysis. The sensors we consider are the membrane pressure

(PIT300), influent temperature (TIT101), and inlet turbidity (TUIT101). Figure 6.2

shows cumulants and returns of PIT300 for a 20k trajectory in the training dataset.

To measure prediction accuracy, we can compute the true return

Gi
t
.
=

∞∑︂
k=0

γkcit+k+1, (6.2)

for each step during a rollout retroactively. The root mean-squared error (RMSE)

between true and predicted returns can then be computed as ∥v̂it − Gi
t∥2 averaged

over all T timesteps in a rollout:

RMSE
.
=

⌜⃓⃓⎷ 1

T

T∑︂
t=0

∥v̂it −Gi
t∥2, (6.3)

where v̂it denotes the agent’s discounted return estimate for sensor i at timestep t,

and similarly for the true discounted Monte Carlo return Gi
t.

Because RMSE across models may be at different scales, we also use a normalized

mean-squared error (NRMSE) metric, where the RMSE is normalized by the mean

of the true discounted returns in the rollout, µi = 1
T

∑︁T
t=0G

i
t:

NRMSE
.
=

1

µi

⌜⃓⃓⎷ 1

T

T∑︂
t=0

∥v̂it −Gi
t∥2. (6.4)

Both the RMSE and NRMSE are typically averaged across R rollouts.
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6.1.3 Dynamic Time Warping for Rollout Similarity

As described in Section 2.4, the DTW algorithm can be used to compute similarity

between two time series sequences that vary in length or frequency. In the context of

calibration models, DTW can be used to compare rollouts produced by a calibration

model to rollouts from the true dataset, providing us with one method of determining

rollout accuracy. This is particularly useful when evaluating the quality of Laplacian

distance metrics, as the quality of the rollouts produced by these metrics can vary

significantly.

An important hyperparameter for the DTW algorithm is the step pattern, which

characterizes the specific constraints imposed on the warping functions ϕx and ϕy. For

our experiments, we opt to try four of the most common step patterns, as described

in Giorgino (2009):

• Symmetric2: Imposes no limit on the number of elements that can be matched

from one sequence to a single element in the other, no global path constraints,

and requires all elements to be matched. This is the default step pattern used

in the dtw python package (Giorgino 2009).

• Asymmetric: Includes a slope constraint between 0 and 2, and matches each

element of the query sequence exactly once.

• Sakoe-Chiba: Slope-constrained patterns with slope parameter P and choice

of symmetry (symmetric or asymmetric) (Sakoe and Chiba 1978). We use the

symmetric variant with P = 1 for our experiments.

• Rabiner-Juang-IV-c: A characterization of step pattern introduced in Ra-

biner and Juang (1993), which offers a choice of local continuity constraint, slope

weighting function mϕ(k), and smoothing (true or false) over slope weights. We

use the type IV continuity constraint, with type c slope weighting, and smooth-

ing set to true, following Giorgino (2009). For brevity, we will refer to this

version of step pattern as Rabiner-Juang-IV-c.

A visual representation of the Symmetric2 and Rabiner-Juang-IV-c step patterns

can be viewed in Figure 6.3.

We use DTW with either one or all of these step patterns as one form of evaluation

for rollouts produced by different calibration models. Specifically, in this chapter, we

will use DTW to evaluate different learned Laplacian representations, and in Chapter

7, we will use DTW to compare calibration models trained with different datasets.

While it is unclear the degree to which DTW is suitable for evaluating calibration
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Figure 6.3: Example of dynamic time warping alignment between a sine and cosine
wave, using the Symmetric2 (left) and Rabiner-Juang-IV-c (right) step patterns. The
optimal alignment is found by warping the time axis to minimize the distance between
corresponding points.

models rollouts, we believe that it is useful as a supplement to other evaluation

techniques, such as rollout visualization and hyperparameter selection.

6.2 Experimental Setup

Next, we describe the methodology used for training and evaluating calibration models

in the WTP. Similar to Chapter 5, we aim to understand the performance of each

model with respect to the quality of the rollouts it produces, as well as to its ability

to select good hyperparameters for a prediction agent. We discuss the dataset, the

agent used for training, and the calibration models that we consider for this study.

We also describe the hyperparameters used for training the calibration models, and

the evaluation metrics used to assess the quality of the models.

6.2.1 Dataset

The dataset used for this study is collected from the Drayton Valley water treatment

plant, and consists of sensor readings from a range of sensors that monitor the water

treatment process. First, we will describe the data collection process in more depth,

then discuss the normalization and augmentation techniques used to prepare the data

for training the calibration models.
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Data Collection

Each row in the dataset represents a single observation of the plant’s state, which is

a vector of sensor readings. The dimensionality of each observation is 480 (matching

the number of sensors), and the data is collected at a frequency of one sample per

second. The dataset spans a period of over two years, however we will not use

the entire dataset for our experiments. Instead, we opt to use one week of data

(∼350k transitions) for our initial experiments, and scale up to a full year’s worth of

data in Chapter 7. Note that we do not have significant missing data issues for the

one-week dataset. In the rare case where there are missing sensor readings, we use

zero-imputation to fill in the missing values. For the full year dataset, there are 32

sensors that are missing data for extended periods of time, which we opt to remove

from the observation space. This did not seem to significantly hurt performance of

the prediction agent, so it is likely that these sensors are not critical for the prediction

task.

Normalization and Augmentation

Prior to training the calibration model, we follow data normalization and augmen-

tation techniques used in Janjua et al. (2023). First, we remove sensors that emit

constant values in the dataset and then use percentile min-max normalization over

the remaining sensor values to the range [0, 1]. This means that we take the 5th-

percentile value as the min and 95th-percentile value as the max when performing

min-max normalization so that the scaling is more robust to outliers. Next, we

augment the dataset by employing several techniques, namely: zero-imputation for

missing data and adding mode encodings to encapsulate timing of the plant transi-

tioning between operation modes. We tested other augmentation techniques such as

adding trace features to alleviate partial observability, and transforming continuous

features to discrete ones using feature binning, however we did not find these improved

performance, so we omit them in our experiments. A more detailed description of

these techniques can be found in Janjua et al. (2023). Following normalization and

augmentation, we are left with a feature dimensionality of 142.

6.2.2 Agent

Following the design of the online prediction agent in Janjua et al. (2023), we use a

TD(0) agent with replay buffer to learn the GVF from equation 6.1. Specifically, we

approximate the GVF using a neural network with 2 hidden layers of 512 units each.

The network takes as input the augmented observation vector, or agent state st and
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outputs a single value representing the predicted future sum of discounted values of

the PIT300 sensor. We use a discount rate of γ = 0.99 and a replay buffer size of

1M samples with batch size of 256. The agent is trained using the Adam optimizer,

where the learning rate α is the hyperparameter swept over for our experiments.

6.2.3 Calibration Models

We consider the same calibration models as in Chapter 5, namely a feedforward neural

network, a recurrent neural network, a KNN model with Euclidean distance metric,

and a KNN model with Laplacian distance metric. The implementation and training

details for each model are described below.

KNN

We train a bootstrapped Laplacian KNN model consisting of 5 bootstraps over the

training dataset, using k = 3. A sweep was performed over Laplace training hy-

perparameters, using standard hold-out validation on the training set. In addition

to performing validation with the dynamics awareness and representation unique-

ness scores described in 4.5.2, we found it necessary to introduce an additional step

for evaluating learned Laplacian representations. This was due to the fact that dis-

tance metrics that scored well in terms of training loss and validation scores would

sometimes vary in the visual quality of the rollouts they produced. Figure 6.4 shows

rollouts from models that use Laplacian representations with similar dynamics aware-

ness scores, but that differ in number of training steps and have very different rollout

quality. To address this, we first selected the top 3 distance metrics based on the

validation scores, and then selected the one with rollouts that most closely match the

true environment using dynamic time warping with the Rabiner-Juang-IV-c step pat-

tern to compute time series similarity. Note that we only evaluated rollout similarity

for the PIT300 sensor. A final Laplacian representation was selected using these two

measures and subsequently used to construct the bootstrapped calibration model.

NN and RNN

We train a 2-layer neural network and a 2-layer GRU model on the training dataset

using the same training and validation splits as the KNN model. We use one-step

ahead prediction as the training objective; we tried multi-step prediction target strate-

gies (Talvitie 2014; Venkatraman et al. 2015) but did not find them to be effective at

producing better rollouts. We also experiment with standard techniques for improv-

ing GRU performance, such as dropout and burn-in periods. We perform grid search
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Figure 6.4: Sample rollouts of the PIT300 sensor using three distance metrics that
produce good, medium, and poor rollouts compared to a slice of the true dataset.
DTW yields normalized distances of 0.023, 0.043, and 0.080 respectively, giving us a
useful way to rank distance metrics.

sweeps over various hyperparameter combinations to select the hyperparameters that

perform best on the validation set - the final hyperparameters used can be found in

Appendix A.1.

6.2.4 Evaluation

We evaluate the calibration models using two main approaches: the quality of the roll-

outs produced by each model, and the ability of the models to select hyperparameters

for a prediction agent. These evaluation procedures are described below.

Rollout Quality

Defining a quantitative metric for evaluating rollout quality is difficult for the WTP.

Specifically, time series comparisons are made tricky by the fact that there may exist

temporal offsets or changes in frequency between two otherwise similar time series.

While we could use a technique such as DTW to mitigate such issues, a single scalar

metric is limited in its ability to convey information. Instead, we take a qualita-

tive approach of visualizing individual sensor time-series and comparing between the

model rollouts and the true dataset. Each model is rolled out for 30k steps starting

from an identical start state, and individual sensors PIT300, TIT101, and TUIT101

are plotted.
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Hyperparameter Selection

We sweep over Adam learning rates for the TD(0) prediction agent in the dataset

and in the calibration models. Because we are doing prediction with respect to a

fixed policy, the test dataset described in 6.2.1 can be used as a proxy for the online

setting. We select a rollout length that is roughly one third the size of the online

dataset (22,100 steps) such that there is some diversity across rollouts while still

allowing enough steps to simulate a reasonable learning timeframe. The last 2,100

steps of each rollout are truncated for the RMSE computation. This truncation length

k was selected such that γk < 10−10, i.e. large enough that we can ignore the effect of

rollout termination on computed returns. We use a discount rate of γ = 0.99 for the

agent and computed returns. As in previous sections, we evaluate calibration models

by their ability to match the sensitivity curves produced by the true environment.

Agent performance in the true environment and in non-bootstrapped calibration

models is measured and plotted using NRMSE, as described in Equation 6.4. Agent

performance in individual KNN bootstraps is done using RMSE, however due to how

hyperparameter ranking is reconciled across bootstraps (see Section 4.6), we plot

the hyperparameter rank directly instead of RMSE or NRMSE. Because rank and

NRMSE are typically at different scales, we plot these on separate axes. NRMSE will

typically be plotted along the left y-axis, and rank on the right y-axis. Since we care

mainly about relative rankings of hyperparameters and the shape of the sensitivity

curve, and less about the raw performance values, we are able to compare NRMSE

and rank curves within a single plot.

6.3 Results

We present the results of our experiments in the WTP, focusing on the quality of the

rollouts produced by each calibration model, and the ability of the models to select

hyperparameters for a prediction agent. We first visualize the rollouts produced by

each model, and then present the results of our hyperparameter sweeps. We find that

the Laplacian KNN produces the best rollouts, followed by the Euclidean KNN, and

then the NN and GRU models. We also find that the Euclidean KNN model is best

at selecting hyperparameters, followed by the Laplacian KNN, and then the NN and

GRU models.
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6.3.1 Visualizing Rollouts

Plots of PIT300, TIT101, and TUIT101 sensor values for each model rollout can be

seen in Figures 6.5, 6.6, and 6.7, respectively. Note that while each model predicts all

142 features in the state-space, we only visualize three of those sensors here. Overall,

we find that KNN model rollouts match closely with the true data for PIT300, but

appear to have more trouble with TIT101 and TUIT101. In each case, the Laplacian

KNN appears to produce better rollouts than its Euclidean counterpart. On the other

hand, the NN and GRU models struggle across all sensors. For PIT300, both appear

to collapse towards predicting a constant value after 500 timesteps. For TIT101 and

TUIT101, the NN model oscillates around some value in roughly the correct range

as the true environment, but does not appear to match the true sensor patterns very

well, while the GRU again predicts a constant value for TIT101, and produces a

step function-like pattern for TUIT101. While rollouts are certainly not perfect for

TIT101 and TUIT101 in the KNN models, it is possible that sufficient information is

captured by these models for the purpose of hyperparameter selection (while policy

transfer may be infeasible). Based on these results, we hypothesize that the Laplacian

KNN should be best for selecting hyperparameters, followed by the Euclidean KNN,

and then the NN and GRU models.

Figure 6.5: PIT300 sensor (membrane pressure) rollouts in the true environment and
calibration models. Each model is rolled out for 30k steps, beginning from the same
start state.
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Figure 6.6: TIT101 sensor (influent temperature) rollouts in the true environment
and calibration models. Each model is rolled out for 30k steps, beginning from the
same start state.

Figure 6.7: TUIT101 sensor (influent turbidity) rollouts in the true environment and
calibration models. Each model is rolled out for 30k steps, beginning from the same
start state.
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6.3.2 Hyper Selection

Figure 6.8 shows the results of our hyperparameter sweeps for fine-tuning prediction

on the PIT300, TIT101, and TUIT101 sensors. Across all sensors, we see that the

Euclidean and Laplacian KNNs are typically able to match the online sensitivity

curve, meaning that hyperparameters are ranked in roughly the same order in these

calibration models as the true environment. For example, in the TIT101 plot of

Figure 6.8, the online environment considers [1e−5, 0.0001, 0.001, 0.01] as all having
roughly equal (and optimal) performance, which is consistent for the Euclidean KNN,

and nearly consistent for the Laplacian KNN, where 0.001 is ranked as worse, and

0.01 is ranked as better. In contrast, the NN and GRU models perform inconsistently

across sensors. The GRU calibration model manages to roughly match the online

sensitivity curve for PIT300, and arguably for TIT101, but not for TUIT101, while

the NN calibration model is unable to match the online sensitivity curve in all three

cases.

One potential issue with our usage of bootstraps is that by condensing multiple

performance values into a single rank causes us to lose information about the vari-

ance within each model. For example, in the PIT300 plot of Figure 6.8, the online

environment considers [0.0001, 0.001, 0.01] as all having roughly equal (and optimal)

performance, whereas the KNN models produce an ordering between these hyperpa-

rameter settings, without any uncertainty. It may be preferable for the bootstrap

reconciliation method to incorporate performance uncertainty, though we will leave

this for future work.
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Figure 6.8: Learning rate sensitivity curves for the true (Online) environment and
calibration models using the 1-week WTP dataset over three different sensors. From
left to right, the plots are for sensors PIT300, TIT101, and TUIT101. NRMSE with
95% confidence intervals are shown for non-bootstrapped models, while worst rank
is used for bootstrapped models (i.e. KNN models), which is plotted against the left
rank y-axis. Wider, dotted lines are used for the Euclidean KNN to distinguish it
from the Laplacian KNN line, which often overlap.

6.4 Discussion

Through the water treatment experiments, we have shown that the KNN calibration

models show promise in their ability to produce realistic rollouts over long horizons

and their subsequent utility towards hyperparameter selection. In more detail, we

outline additional findings from these experiments in bullet-point:

• The current Laplacian learning process is not ideal. The dynamics awareness

score does not always correlate with model quality, for example in Figure 6.4

the Laplacian representations used for each model had similar dynamics aware-

ness score (with different amounts of training time), but much different rollout

quality. To mitigate this, an extra step of either manual visual analysis of roll-

outs or usage of DTW to compute rollout similarity was needed. Improvements

on this model might involve updating either of the training objective or vali-

dation metric, or both. Specifically, devising a differentiable loss function that

incorporates rollout quality could be a useful direction.

• The NN and GRU models yielded poor rollouts over long horizons. More inves-

tigation needed is needed to understand the root causes here, especially since we

found these models to be sufficient in Chapter 5 in simpler environments. Pos-

sible causes for this degradation include high dimensionality, non-stationarity,

complexity in dynamics, etc.
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• Interestingly, the Laplacian KNN had worse hyperparameter tuning perfor-

mance than the Euclidean KNN for the TIT101 and TUIT101 sensors, as we

can see in Figure 6.8. One possible explanation for this is that we selected a

Laplacian representation that performed best for a single sensor (PIT300), but

may have been suboptimal for other sensors. This points to the need for a

better way to validate Laplacian representations, as pointed out above and in

section 4.5.2.

• We do not have much intuition for the properties of the environment that are

most important for hyperparameter selection. For example, we see that the

GRU model is prone to predicting a constant sensor value, but is still able to

produce reasonable looking hyperparameter curves. Developing models that

are more tailored towards simulating properties important for hyperparameter

selection, or more generally, value function estimation, is also an avenue of

future work.

In this section, we demonstrated the effectiveness of calibration models in a real-

world setting, and showed that non-generalizing KNN models yield better long-

horizon rollouts than generalizing NN and GRU models within this environment.

In the next section, we will explore several considerations for employing a calibration

model in the real world, which we expect more closely simulate how one might be

used in practice.
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Chapter 7

Towards Real-World Deployment

There is often a sizable gap between an algorithm working within the context of a

controlled research experiment and in the increased complexity of real-world appli-

cation. For example, while a small dataset might be sufficient for demonstrating, by

proof of concept, that a technique is feasible, it does not guarantee that the tech-

nique will work to the same degree when scaled up to a much larger, more diverse

dataset. Further, certain experimental design decisions may not accurately represent

the setting in which the algorithm will be deployed. In this section, we hope to bridge

the gap towards application by exploring several modifications to the experimental

setting that was followed in Chapter 6. We will investigate how the KNN calibra-

tion model might be scaled up to handle a full year’s worth of data, how a dataset

might be used for both agent pre-training and calibration model construction, and

discuss the ramifications of distribution shift between the calibration model and the

true environment at deployment time. Finally, we will show experimental results that

illustrate how our approach can be modified to tackle these issues.

7.1 Scaling Up

In the water treatment setting, and similarly in industrial settings more generally,

we have access to offline data logs on the order of years. Training our models on

large proportions of this data means extracting all the information we can from the

dataset, which typically involves learning representations that might help in tackling

non-stationarity and seasonality, and ideally making the model more robust to a wide

range of scenarios. To this end, we will consider the setting where we have access to

one full year’s worth of data, and discuss modifications made to the KNN calibration

model to handle this scale. This is not the first study in which RL is applied towards

large datasets. For example, Zhan et al. 2022 uses between one and two years of data
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to train their models, while Luo et al. 2022 uses just under one year of data.

Given the standard observation sampling rate of once per second from the WTP,

the one-year dataset consists of roughly 32M samples. While it might be possible to

leverage this full dataset for learning, we hypothesize that such fine-grained sampling

is not critical for prediction, and opt to sub-sample to reduce the size of the dataset.

We sub-sample every 10th transition, changing our sampling rate to one sample per

10 seconds, and reducing our dataset size to ∼3.2M samples.

In terms of computational complexity of the KNN calibration model, constructing

the model is a two-step process of first building the KD-tree of all transitions, and

then converting this into a full lookup table (i.e. neighbor table) such that next-

state prediction is constant time. KD-tree construction is O(nd log n) (Brown 2014)

and neighbor table construction is O(nk log n), so the overall time complexity is

O((d+k)n log n), where n is the number of samples, d is the dimensionality of samples,

and k is the number of neighbors. With n ≈ 3.2M , d = 142, and k = 3, we find that

this takes ∼10 hours on a 2 GHz Quad-Core Intel Core i5 processor.

While this is relatively costly, we find the time to be acceptable for our experiments

since neighbor table construction only needs to be run once on the dataset. However,

other techniques that can be used to speed up KNN construction include dimension

reduction (e.g. PCA, autoencoder, etc.), prototype selection (Wilson and Martinez

2000) for further data reduction, and approximate nearest neighbor search (Arya et

al. 1998; Indyk and Motwani 1998).

7.2 Fine-Tuning

Given a real-world deployment in the water treatment plant, we would like to make

full use of our offline dataset towards solving the prediction or control task at hand.

In practice, this means that we would likely want to use some form of pre-training

to initialize the agent’s policy to a good starting point, i.e. give the agent a ”warm-

start”. This is especially important in the case where no simulator exists, and where

a poor cold-started policy could be costly or dangerous to run. Once an agent has

been pre-trained, we still want it to be able to adapt to the evolving conditions of

the plant and water conditions. While transferring a policy from offline to online is a

generally difficult problem (Zhu et al. 2023), we are primarily interested in the narrow

scope of selecting hyperparameters for such a pre-trained agent. We will refer to this

setting where an agent is first pre-trained on an offline dataset and then continues to

learn once deployed as the fine-tuning setting.

A natural hyperparameter of interest in the fine-tuning setting is the fine-tuning
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learning rate, which is simply the optimizer learning rate used for the deployed agent.

Ostensibly, the pre-trained agent will have compressed a large amount of information

about the task into its policy, but will still need to adapt online to achieve good

performance. In the case of many learning algorithms, such as TD(0), this requires

the agent to be deployed with a sensible learning rate. Hence, in the following ex-

periments, we will shift our focus from evaluating ”from-scratch” agent learning rate

selection to evaluating the fine-tuning learning rate selection.

Using the offline dataset for both agent pre-training and for constructing a cali-

bration model means that we should consider potential ways of sharing the dataset

between these tasks. One simple approach is to partition the dataset and use all the

transitions before a certain point for pre-training and all the transitions after for cal-

ibration model construction - such that the partitioning roughly simulates an offline-

to-real transfer point. While there are likely more nuanced approaches to sharing

data between the tasks, we will use this as a starting point for our experiments. Also

note that partitioning will be sensitive to distribution shifts (i.e. non-stationarity)

that may exist in the dataset, so understanding the dataset in advance is important.

7.3 Different Deployment Periods

In a complex, real-world system like the water treatment plant, the dynamics of the

system may change drastically depending on the time period of interest. In Figure

6.1, we can see how sensor patterns change throughout the year - these changes

could be due to varying conditions ranging from rainfall and temperature, to filter

cleanliness and sensor drift within the plant. While previously we only used a test

set that immediately proceeded the training set, in this section we will explore test

sets that occur one week, one month, and three months after the training set. Note

that test sets here are used to simulate a specific deployment period. As an example,

the time-series for TIT101 in these time periods are shown in Figure 7.1, where we

can see changing patterns across months.

In theory, scaling up the calibration model to a larger dataset should allow it to

capture more diverse dynamics around e.g. sensor drift, seasonality in incoming water

characteristics, changing plant conditions, etc. Hence, one goal for the calibration

model is that it might be used to simulate different deployment periods. Of course, this

may be extremely difficult to achieve given that we don’t know what the future data

distribution will look like, but it’s possible that with enough data, good generalization

is possible.

Given a calibration model p̂, we can think of several techniques for sampling rollout
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Figure 7.1: TIT101 time-series from several test deployment periods in the WTP. We
show 30k timestep slices, which corresponds to ∼3.5 days at 10x sub-sampling.

start states S0 = {s[0]0 , ..., s
[r]
0 }, where r is the number of runs for each hyperparameter

setting, to simulate a specific deployment period:

(i) Randomly select S0 from the entire dataset. This is a baseline method which

we wouldn’t expect to have much success.

(ii) Select S0 from the same month as the deployment period, if they exist in the

training set. E.g. if the deployment period is July 2023, we will select start

states from July 2022 in the training set.

(iii) Collect samples from the online period and find nearest neighbors in the dataset

to use for S0, where the nearest neighbor is found using the Laplacian distance

metric.

In our experiments, we will test (i) and (iii), hypothesizing that (iii) should more

closely simulate the target deployment period. While (ii) is also interesting, it is not

clear how closely sensor patterns from the same month in a previous year will map

to a subsequent year, i.e. due to sensor drift and changing plant conditions. Further,

our use of bootstrapping means that each individual start state will not exist in all

bootstrap models.

7.4 Experimental Setup

We try two different schemes for sharing the training dataset between agent pre-

training and calibration model construction:
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(i) 50/50 split of training dataset for agent pre-training and calibration model con-

struction. The first 6 months of data are used for pre-training and the second 6

months are used for the calibration model.

(ii) Full training dataset is used for both pre-training and calibration model con-

struction.

We pre-train a prediction agent on the training dataset using TD(0) with replay.

The replay buffer is filled with all transitions from the training data and the agent

is pre-trained for 1M steps with early stopping based on RMSE over the held-out

validation set. We find that an agent with learning rate 1e-5 trained for 1000 epochs

with batch size 256 (i.e. ∼5.5M steps for the 6-month dataset and ∼11M steps for

the full year dataset) produces high accuracy predictions on the validation set and

freeze this network to use for fine-tuning - see a full list of hyperparameters in Table

A.3. We find prediction accuracy to be fairly low with γ = 0.99 given this amount

of pre-training, so we shorten the prediction horizon using γ = 0.9. Hyper sweep

learning curves are shown in Figures A.1 and A.2.

To test performance of calibration models at selecting hyperparameters, we sweep

over the optimizer learning rate α ∈ [1e−7, 1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1]. We

perform 30 runs per learning rate in the online setting, and 10 per bootstrap in the

KNN models, resulting in 50 total runs per learning rate for bootstrapped models.

Performance is measured using RMSE averaged over the final 25% of each run, so

that early training error does not dominate the metric. Note that all experiments in

this section use a learned Laplacian distance metric.

7.5 Results

So far we’ve already seen that it is computationally feasible to scale up the KNN cal-

ibration model to a large dataset. In our remaining experiments, we seek to answer

two further questions which are presented below.

Question 1: Does scaling up the KNN calibration model improve its generalization

capabilities?

In training a calibration model on a larger dataset, one of the primary aims is

for the model to improve its ability to generalize to a wider range of scenarios (i.e.

deployment settings). To test this, we compare rollouts from a KNN trained on 12

months of data and a KNN trained on the one-week dataset from Chapter 6, which

we refer to as the 12-month KNN and 1-week KNN, respectively. These rollouts are
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evaluated by their ability to match true rollouts from three test datasets, giving us

one view into the generalization capabilities of each model. For each test dataset,

we select 30 random states from which to begin the true rollouts, and use their

nearest neighbor state as start states for KNN rollouts, as described by technique

(iii) in Section 7.3. Rollouts are performed for 10k steps, and we look at the PIT300,

TIT101, and TUIT101 sensors in our analysis. We analyze the rollouts qualitatively

through visualization, and quantitatively by using DTW to measure distance between

individual sensor sequences from the true and model-generated rollouts.

In Figures 7.2, 7.3, and 7.4, we show a subset of rollouts for each sensor relative

to the May 2023 test set. While it is difficult to definitively evaluate the rollouts by

qualitative (i.e. visual) analysis, the general trend appears to be that the 12-month

KNN is able to simulate a wider range of sensor patterns than the 1-week KNN.

We also measure how similar each model rollout is compared with its corresponding

rollout in the true dataset which begins from timestep t0. Results using the DTW

similarity metric are shown in Figure 7.1 across four common step patterns (Giorgino

2009). We find that results are mostly consistent between step patterns, with all

patterns agreeing the 12-month KNN produces better rollouts for TIT101 and the

1-week KNN for TUIT101, and three out of four patterns agreeing that the 1-week

KNN produces better rollouts for PIT300. Based on these three sensors, it is incon-

clusive whether the 12-month KNN yields better generalization from a quantitative

standpoint.

PIT300 TIT101 TUIT101

1-Week 12-Month 1-Week 12-Month 1-Week 12-Month

Symmetric2 414.02± 0.02 483.24± 0.02 910.20± 0.05 782.05± 0.04 154.78± 0.01 194.86± 0.01

Asymmetric 224.0± 0.02 283.38± 0.03 523.05± 0.05 431.87± 0.04 100.92± 0.01 153.81± 0.02

SymmetricP1 805.51± 0.04 782.79± 0.04 1031.66± 0.05 898.61± 0.04 199.55± 0.01 268.24± 0.01

RabinerJuang 339.87± 0.03 367.87± 0.04 521.66± 0.05 447.82± 0.04 100.43± 0.01 154.09± 0.02

Table 7.1: Dynamic time warping (DTW) distances computes between rollouts from
KNN models (1-Week and 12-Month) and true rollouts, averaged over three test sets
with 30 rollouts each, and computed across three sensors. Smaller distance is better,
and the best model for a specific sensor is presented in bold font. We try four common
step patterns for the DTW algorithm, with results for each occupying a separate row.

71



Figure 7.2: PIT300 rollouts for the 12-month and 1-week WTP KNN calibration
models using targeted start states from the May 2023 dataset.
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Figure 7.3: TIT101 rollouts for the 12-month and 1-week WTP KNN calibration
models using targeted start states from the May 2023 dataset.
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Figure 7.4: TUIT101 rollouts for the 12-month and 1-week WTP KNN calibration
models using targeted start states from the May 2023 dataset.
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Question 2: Can the KNN calibration models be used to simulate a specific deploy-

ment period for the purpose of selecting the fine-tuning learning rate?

By training the calibration model on a larger, richer dataset, we would expect it

to offer greater generalization capabilities. However, an open question remains as to

how these generalization capabilities can be realized, for example when attempting to

simulate new, unseen deployment periods. Because we are specifically interested in

generalization capabilities with respect to hyperparameter selection, our experiments

look at how well the 50/50 partitioning and full dataset approaches perform at se-

lecting a fine-tuning learning rate for different deployment periods, using start state

sampling techniques (i) and (iii) described in the previous section.

In figure 7.5, we see that using the full dataset for both pre-training and model

construction is not particularly useful for selecting the fine-tuning learning rate. Re-

gardless of deployment period, the KNN produces roughly the same learning rate

curve, even when using targeted start states, always finding a small learning rate of

1e−6 to be optimal. This is likely due to the fact that for fine-tuning, the agent has

been pre-trained on the same data as the calibration model, and hence the calibration

model produces a data distribution that the agent is already well-trained on. Con-

versely, in figures 7.6, where different dataset partitions are used for pre-training and

model construction, we see that the calibration models do a better job at simulating

the distribution shift, with learning rate curves closer to the true curves. We also

find that using targeted start states give different results than random (i.e. full year)

start states, but we do not find evidence that this strategy actually helps the model

to simulate the desired time period.
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(a) April 2023 Test Set (b) May 2023 Test Set

(c) July 2023 Test Set

Figure 7.5: Learning rate sensitivity curves for the true (Online) environment and
calibration models for PIT300 in the one-year WTP dataset with the full dataset used
for both pre-training and model construction. RMSE with 95% confidence intervals
are shown for non-bootstrapped models, while worst rank is used for bootstrapped
models (i.e. KNN models), which is plotted against the rank axis. Learning rate
1e−1 is omitted here because RMSE values and confidence intervals are extremely
large, which hurts plot scaling.
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(a) April 2023 Test Set (b) May 2023 Test Set

(c) July 2023 Test Set

Figure 7.6: Learning rate sensitivity curves for the true (Online) environment and
calibration models for PIT300 in the one-year WTP dataset with 50/50 partitioning
between pre-training and model construction. RMSE with 95% confidence intervals
are shown for non-bootstrapped models, while worst rank is used for bootstrapped
models (i.e. KNN models), which is plotted against the rank axis.
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7.6 Discussion

• We show that the KNN model can be scaled up to upwards of 3M samples with

minimal changes to the core algorithm, apart from reducing dataset size using

subsampling. We also discussed possible strategies that could be pursued to

reduce computational complexity, should the dataset size become untenable.

• The effectiveness of the calibration model may depend on the hyperparameter of

interest. E.g. fine-tuning learning rate is difficult to tune due to its dependence

on how much the data distribution during deployment has changed since the

agent’s training dataset was collected.

• The effectiveness of the calibration model also depends on how the offline dataset

is used. For example, if the offline dataset is also used for agent pre-training,

then a decision must be made on which portions of the dataset are used for model

construction and pre-trainng. While we explored two strategies for splitting the

dataset and found that a 50/50 split performed better than using the entire

dataset for both uses, this result was largely contingent on the fact that we

were trying to simulate a fine-tuning scenario where there is a distribution shift

between the offline and online data. Again, we point to the fact that choosing

a fine-tuning learning rate here is likely more dependent on how well the model

is able to simulate the true distribution shift, which is in itself a difficult task.

• The KNN model appears capable of capturing information from larger datasets

and simulating a range of patterns from within this dataset. This is promising

because it suggests that it may be possible to augment the KNN calibration

model using more data. However, there are two significant difficulties we en-

countered when using and evaluating the KNN model in this setting. First, it

is tricky to take advantage of this augmented model towards hyperparameter

tuning. Even if we have knowledge about the deployment period, it is necessary

to develop a method which can encourage the model to behave in a way that is

similar to the deployment period. Second, it is unclear what a good measure is

to evaluate rollout quality. Because the sensor data can be viewed as a collec-

tion of univariate time-series, we decided to try a popular time-series distance

measure which accounts for varying frequency and length. However, as we’ve

discussed thoroughly in this work, a measure which computes some multi-step

error over a rollout does not necessarily indicate whether this rollout is realis-

tic, nor effective for hyper tuning. Further exploration into good quantitative

measures for time-series rollouts would be beneficial.
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Chapter 8

Conclusion & Future Work

Reinforcement learning is a powerful framework for solving sequential decision-making

problems, and there are myriad real-world problems that could benefit from its ap-

plication. Unfortunately, application is rarely straightforward, as agent designers

frequently run into challenges ranging from partial observability and learning from

limited samples, to reward function design and safety constraints. In this thesis, we’ve

discussed one approach that uses a calibration model to mitigate the difficulties as-

sociated with hyperparameter tuning of RL algorithms in tasks where there is no

simulator available. While the idea of learning a calibration model is a simple one, its

requirement of producing realistic trajectories over long horizons is difficult to both

characterize and satisfy. We presented several perspectives on how to characterize

model quality, including metrics related to multi-step error, state-space distribution,

and invalid transition count. We also introduced different candidate implementations

for a calibration model, dividing them into generalizing and non-generalizing models,

where we posit that non-generalizing models may be better at avoiding compound-

ing prediction error and producing stable long-horizon rollouts. The generalizing

models we explore are a simple feedforward neural network and a GRU, while the

non-generalizing models include a KNN with Euclidean distance, and a KNN with

Laplacian distance. Our first batch of experiments compare different model imple-

mentations, finding that both generalizing and non-generalizing models were able to

perform well in environments with low-dimensionality and simple dynamics. This is a

positive result, as it shows that one does not necessarily need a highly accurate model

in order to select good hyperparameters, and validates the feasibility of the novel KNN

methods. We also show that the usual MSE metric used to evaluate model accuracy

is flawed, instead proposing that other perspectives such as state-space distribution

could be more meaningful.

In the final chapters of this thesis, we provide the first application of calibration
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models to a real-world environment, where we test different models in the Drayton

Valley water treatment plant. In this setting, we find that NN and GRU models fail

to produce realistic trajectories, while the KNN models perform surprisingly well for

some sensors. We contribute to the KNN method in several ways. First, we uncover

an issue where the learned Laplacian representation becomes degenerate, and propose

a secondary validation score to mitigate this. Second, we demonstrate that the KNN

model is in fact able to produce realistic trajectories in a high-dimensional, partially

observable environment with complex dynamics. Lastly, we provide perspectives on

how to bridge the gap to deploying the KNN model in a real-world system, and show

how it can be scaled up to a full year’s worth of data.

There are a variety of branches to be explored as natural extensions of this work:

• Understanding generalizing model failure in WTP: while we found that

NN and GRU models failed to produce good trajectories in WTP, it is unclear

the exact reasons why. More investigation here could be enlightening, and some

properties to look into would be the high-dimensionality of observations (e.g.

one could try dimension reduction techniques for observations), noise in sensor

outputs, and the non-stationarity of the dataset.

• Alternate long rollout models: basic NN and GRU architectures were just

the tip of the iceberg in terms of transition model architectures that we could

use. It would be fascinating to combine model techniques discussed in Sec-

tion 4.7, such as probabilistic ensembles, or Lyapunov stability, with the KNN

approach of keeping trajectories within the observed state space.

• Desired calibration model properties: while we thoroughly presented views

on rollout quality throughout this thesis, it is unclear exactly which properties

are necessary to achieve good hyperparameter selection. This extends more

broadly into understanding how and why hyperparameters are sensitive to dif-

ferent tasks. This is likely a deep rabbit hole, and it might be the case that the

desired properties change depending on the target hyperparameter.

• KNN improvements: the KNN models were mostly successful in the tasks we

tested, but there are multiple avenues of improvement. The first is improving the

algorithm for continuous action spaces - more thought should be put into how to

measure distance in the action space, and how to balance this with state-space

distance. Second is around improving the Laplacian representation learning

and validation process. Using two validation scores is not ideal, and finding

a way to incorporate the desired result of long-horizon rollout quality directly
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into the learning process (e.g. possibly using a differentiable KNN) could be

largely beneficial. Lastly, more thought could be put into voting strategies for

reconciling rankings across bootstrap models. While we use a simple worst

rank protocol in our work, there is a large space of other strategies that could

be taken.

We believe that the idea of learning simulators which require minimal domain

knowledge is an enticing idea, and one that can be broadly useful for hyperparameter

tuning and beyond. Perhaps, with more advances in this area, the myriad applications

of RL in the real-world can move one step closer to a reality.
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Appendix A: Appendix

A.1 Hyperparameters

Hyperparameters used for data collection, agent training, and model training in the

fixed-horizon acrobot and continuous gridworld experiments in chapter 5 and water

treatment experiments in Chapters 6 and 7. Hyperparameters were typically tuned

specifically for each environment, hence the differences in values across environments.

Hyperparameter Symbol Acrobot

Optimizer - Adam

Learning Rate α 1e−3

Discount Factor γ 0.99

Batch Size B 256

Hidden Layers - 2

Hidden Units - 256

Replay Buffer Size - 100,000

Target Network Update Frequency - 1

Training Frequency - 1

Exploration Rate ϵ 0.1

Table A.1: DQN hyperparameters used for data collection and evaluation in the fixed-
horizon acrobot environment.
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Hyperparameter Symbol GridWorld

Optimizer - Adam

Learning Rate - 1e−3

Discount Factor γ 0.99

Batch Size B 256

Hidden Layers - 2

Hidden Units - 64

Replay Buffer Size - 100,000

Target Network Update Frequency - 1

Training Frequency - 1

Entropy Temperature α 0.25

Table A.2: SAC hyperparameters used for data collection and evaluation rollouts in
the Continuous GridWorld environment. The same network architecture is used for
both actor and critic networks.

Hyperparameter Symbol Water 1-Week Water 12-Month Water 12-Month

(Online) (Pre-training) (Online)

Optimizer - Adam Adam Adam

Learning Rate α - 1e−5 -

Discount Factor γ 0.99 0.9 0.9

Batch Size B 256 256 256

Hidden Layers - 2 2 2

Hidden Units - 256 512 512

Replay Buffer Size - 1M 3M 1M

Train/Validation Split - - 0.9/0.1 -

Epochs - - 1000 -

Table A.3: Hyperparameters used for the TD(0) prediction agent in water treatment
experiments.

Hyperparameter Symbol Acrobot GridWorld Water 1-Week

Optimizer - Adam Adam Adam

Learning Rate α 1e−3 1e−3 1e−3

Batch Size B 256 256 256

Hidden Layers - 2 2 2

State Model Hidden Size - 64 128 512

Reward Model Hidden Size - 32 32 -

Termination Model Hidden Size - 32 32 -

Epochs - 500 500 100

Table A.4: NN calibration model training hyperparameters. The same number of
training epochs are used across state, reward, and termination models.
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Hyperparameter Symbol Acrobot Water 1-Week

Optimizer - Adam Adam

Learning Rate α 1e−3 1e−3

Batch Size B 256 256

Hidden Layers - 2 2

State Model Hidden Size - 64 512

Reward Model Hidden Size - 32 -

Termination Model Hidden Size - 16 -

Burn-in Length - 5 0

Sequence Length - 10 20

State Model Epochs - 400 100

Reward Model Epochs - 50 -

Termination Model Epochs - 50 -

Table A.5: GRU calibration model training hyperparameters. Different numbers of
training epochs are used for state, reward, and termination models.

Hyperparameter Symbol Acrobot GridWorld Water 1-Week Water 12-Month

Optimizer - Adam Adam Adam Adam

Learning Rate α 1e−3 1e−3 3e−4 1e−5

Batch Size B 256 256 256 256

Hidden Layers - 2 2 2 2

Hidden Units - 64 32 256 256

Output Dimension - 4 4 64 64

Training Steps - 100,000 100,000 100,000 200,000

Train/Validation Split - 0.9/0.1 0.9/0.1 0.8/0.2 0.8/0.2

Sequence Length - 20 5 20 20

Kappa κ 0.99 0.9 0.95 0.95

Beta β 5 1.0 5 5

Zeta ζ 0.05 0.01 0.05 0.05

Table A.6: Laplacian representation training hyperparameters.

A.2 Agent Pre-training

Training and validation curves for hyper sweeps of agent pre-training on the one-year

WTP dataset.
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Figure A.1: Hyper sweep over learning rate and network size for TD(0) replay pre-
diction agent on one-year WTP dataset, with γ = 0.9.
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Figure A.2: Hyper sweep over learning rate and network size for TD(0) replay pre-
diction agent on one-year WTP dataset, with γ = 0.99.
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A.3 WTP Rollouts

Rollouts for the 12-month and 1-week WTP KNN calibration models using targeted

start states from the April 2023 and July 2023 datasets. In Section 7.5, only rollouts

for the May 2023 dataset were shown.

Figure A.3: PIT300 rollouts for the 12-month and 1-week WTP KNN calibration
models using targeted start states from the April 2023 dataset.
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Figure A.4: PIT300 rollouts for the 12-month and 1-week WTP KNN calibration
models using targeted start states from the July 2023 dataset.
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Figure A.5: TIT101 rollouts for the 12-month and 1-week WTP KNN calibration
models using targeted start states from the April 2023 dataset.
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Figure A.6: TIT101 rollouts for the 12-month and 1-week WTP KNN calibration
models using targeted start states from the July 2023 dataset.

97



Figure A.7: TUIT101 rollouts for the 12-month and 1-week WTP KNN calibration
models using targeted start states from the April 2023 dataset.
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Figure A.8: TUIT101 rollouts for the 12-month and 1-week WTP KNN calibration
models using targeted start states from the July 2023 dataset.
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