This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results-
Fall 2021
Kernel methods are often used for nonlinear regression and classification in machine learning because they are computationally cheap and accurate. Fourier basis and wavelet basis are the bases that can efficiently approximate the kernel functions. In previous research, Bayesian approximate kernel...
-
Fall 2013
State inference and identification of discrete-time, non-linear, stochastic state-space models (SSMs) are considered here. A novel sequential Monte Carlo (SMC) based Bayesian method for simultaneous on-line state inference and identification of non-linear SSMs is proposed. Extension of the method...