
Bayesian Wavelet and Fourier Transform Kernel Regression and
Classification in RKHS

by

Xueying Zhang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Statistical Machine Learning

Department of Mathematical and Statistical Sciences
University of Alberta

© Xueying Zhang, 2021



Abstract

Kernel methods are often used for nonlinear regression and classification in machine

learning because they are computationally cheap and accurate. Fourier basis and

wavelet basis are the bases that can efficiently approximate the kernel functions.

In previous research, Bayesian approximate kernel regression with Fourier transform

has been proposed [1]. With the proposed method, we use the analytic properties

of the reproducing kernel Hilbert space (RKHS) to define a linear vector space that

captures nonlinear structures. We map the data into a low-dimensional randomized

feature space using Fourier transform and convert kernel function into operations of a

linear machine. A Bayesian approximate kernel regression model is then formulated

with the application of a generalized kernel model and the Bayesian method. We

replace Fourier transform with wavelet transform in randomized feature space to

approximate kernel functions. We formulate a new Bayesian approximate kernel

model with wavelet transform and use the Gibbs sampler to compute the parameters

of the model. We then make a comparison between the performance of Fourier-

based and wavelet-based Bayesian approximate kernels solving both regression and

classification problems.
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Chapter 1

Introduction

Machine learning problems with observations substantially smaller than the number

of available variables, which are known as large p small n problem, are widespread

and full of challenges. It is normal to use principal component analysis to lower

the dimensions [2] or to use variable selection to reduce the number of variables [3].

Variable selection is well-developed for linear regression models [1], but it might not be

practical or applicable in some situations. In this thesis, we focus on using nonlinear

regression models to handle the large p small n problem in the reproducing kernel

Hilbert spaces (RKHS) [4].

Since support vector machine (SVM) [5] was proposed, kernel supervised learning

methods in RKHS have been widely used. Generalized kernel models [6] are exten-

sions of the generalized linear models induced by a reproducing kernel in the feature

space. A usual way to train a nonlinear support vector machine is to approximate

the factorization of the kernel matrix and process the columns of the factor matrix as

features in a linear machine [7]. In this thesis, we approximate the kernel function by

factoring the kernel function itself [8] instead. This method maps high-dimensional

data into low-dimensional randomized feature space [8].

Rahimi and Recht (2007) notice that the kernel in the models can be approximated

by random Fourier features [8]. Inspired by their work, we propose their method to

approximate the kernel functions using random wavelet features. Wavelet transform
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is well localized in both time and frequency domains, while the Fourier transform is

only localized in the frequency domain [9]. Our experiments indicate that random

wavelet features yields higher accuracy in solving both classification and regression

problems.

Bayesian approaches are applied to nonlinear classification and regression. Bayesian

binary classification models in RKHS are proposed to analyze microarray data and

produce smaller classification errors than some existing classification methods [10].

Bayesian approximate kernel regression model for nonlinear regression [1] performs

well in genomic selection and association mapping. In this thesis, we mainly restrict

ourselves to the Bayesian approximate kernel regression model’s framework and apply

it to classification problems.

In Chapter 2, we present the basic definitions of RKHS and define the penalized

loss function in RKHS. In Chapter 3, we use random Fourier and wavelet features to

approximate the kernel function. In Chapter 4, we formalize the Bayesian approxi-

mate kernel methods and apply it to classification and regression. In Chapter 5, we

apply our methods to simulated data and real data, and compare the performance of

Fourier-based and wavelet-based Bayesian approximate kernel models. Specifically,

we focus on large p small n data. Finally, we make a conclusion in Chapter 6.
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Chapter 2

Background

2.1 Basic Definition

In this section, we review the basic concepts related to reproducing kernel Hilbert

space (RKHS). Then we model the high dimensional function f(x) by adopting the

RKHS approach.

Definition 2.1.1 (Norm). Let H be a vector space over R. A function ∥ · ∥H :

H → [0,∞) is called a norm on R if

1. ∥f∥H = 0 if and only if f = 0

2. ∥λf∥H = |λ|∥f∥H, ∀λ ∈ R,∀f ∈ H

3. ∥f + g∥H ≤ ∥f∥H + ∥g∥H,∀f, g ∈ H.

Definition 2.1.2 (Cauchy sequence). A sequence {xn}∞n=1 of elements of a normed

vector space is called a Cauchy sequence if for every ϵ > 0, there exists N ∈ N such

that for all m,n ≥ N , ∥xm − xn∥H < ϵ.

Definition 2.1.3 (Complete space). A space M is complete if every Cauchy

sequence in M converges in M.

Definition 2.1.4 (Banach space). A Banach space is a complete normed space.

Definition 2.1.5 (Inner product). Let H be a vector space over R. A function

⟨·, ·⟩H : H×H → R is defined as an inner product on H if

1. ⟨λ1f1 + λ2f2, g⟩H = λ1 ⟨f1, g⟩H + λ2 ⟨f2, g⟩H
2. ⟨f, g⟩H = ⟨g, f⟩H

3



3. ⟨f, f⟩H ≥ 0 and ⟨f, f⟩H = 0 if and only if f = 0.

We can define a norm induced by the inner product :

∥f∥H = ⟨f, f⟩1/2H

and they satisfy:

1. |⟨f, g⟩| ≤ ∥f∥ · ∥g∥

2. ∥f + g∥2 + ∥f − g∥2 = 2∥f∥2 + 2∥g∥2

3. 4⟨f, g⟩ = ∥f + g∥2 − ∥f − g∥2.

Definition 2.1.6 (Hilbert space). A Hilbert space H is a complete inner product

space where every Cauchy sequence converges to a limit.

Example 2.1.7. Let µ be a positive measure on X ⊂ Rd. The space L2(X ;µ) is

a Hilbert space with the inner product

⟨f, g⟩ =
∫︂
X

f(x)g(x)dµ.

Definition 2.1.8 (Linear operator). Define a function D : F → G where F and G

are the normed linear spaces in R. D is defined as a linear operator if and only if it

satisfies:

1. D(αf) = α(Df) ∀α ∈ R, f ∈ F

2. D(f + g) = Df +Dg ∀f ∈ F , g ∈ G.

Definition 2.1.9 (Operator norm). The operator norm of a linear operator D :

F → G is defined as

∥D∥ = sup
f∈F

∥Df∥G
∥f∥F

.

Definition 2.1.10 (Continuous). A function f : H → G is called continuous at

x0 ∈ H if for every ϵ > 0, there exists a δ > 0 such that

∥x− x0∥H < δ implies ∥f(x)− f(x0)∥G < ϵ.
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Definition 2.1.11 (Kernel). Let X be a non-empty set. The function k : X×X →

R is defined as a Kernel if there exists a real Hilbert space H and a map ϕ : X → H

such that ∀x, y ∈ X ,

k(x, y) = ⟨ϕ(x), ϕ(y)⟩H.

Such map ϕ : X → H is defined as the feature map, and space H is defined as the

feature space.

Example 2.1.12. Some well adopted nonlinear kernel functions include

1. Polynomial kernel: k(x, y) = (xTy + a)b, where a ≥ 0 and b ∈ N

2. Sigmoid kernel: k(x, y) = tanh(axTy + b)

3. Gaussian kernel: k(x, y) = exp
(︁
− 1

2σ2∥x− y∥2
)︁
, where σ > 0.

The feature map ϕ can be seen from the example of polynomial kernel. Let b = 2,

we have

k(x, y) =

(︄
n∑︂

i=1

xiyi + a

)︄2

=
n∑︂

i=1

(︁
x2i
)︁ (︁
y2i
)︁
+

n∑︂
i=2

i−1∑︂
j=1

(︂√
2xixj

)︂(︂√
2yiyj

)︂
+

n∑︂
i=1

(︂√
2axi

)︂(︂√
2ayi

)︂
+ a2

Thus, ϕ(x) is given by

ϕ(x) =
⟨︂
x2n, · · · , x21,

√
2xnxn−1, · · · ,

√
2x2x1,

√
2axn, . . . ,

√
2ax1, a

⟩︂
2.2 Reproducing Kernel Hilbert Space

There is an issue that for many well-adopted kernels, the dimension of the Hilbert

space is infinite [11]. It is preferred to solve an optimization problem in a finite-

dimensional space when training the dataset. We define a class of space called repro-

ducing kernel Hilbert space (RKHS) that transfers the infinite-dimensional space to

finite-dimensional space.
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Definition 2.2.1. Let X be a set. A reproducing kernel Hilbert space over X is a

Hilbert space H consisting of some functions on X such that for each x ∈ X , there is

a function kx ∈ H with the property

⟨f, kx⟩H = f(x) (∀f ∈ H),

where k(·, x) := kx(·) is called a reproducing kernel of H.

Proposition 2.2.2. The reproducing kernel k(x, y) is symmetric and positive

definite: k(x, y) = k(y, x) and for x1, · · · , xn ∈ X and a1, · · · an ∈ R

∑︂
i,j=1,··· ,n

aiajk (xi, xj) ≥ 0.

Suppose we are given a set of training data {(xi, yi)}ni=1 where xi ∈ X ⊆ Rp is an

input vector and yi ∈ Y ⊆ R is the continuous output for a regression problem or

yi = ±1 is the binary output for a classification problem. Consider the standard non-

parametric problem and estimate f(x) by the following penalized loss function [12]

ˆ︁f = argmin
f∈H

[︄
1

n

n∑︂
i=1

L (f (xi) , yi) + λ∥f∥2K

]︄
, (2.1)

where L(f(x), y) is a loss function. ∥f∥2K is the RKHS norm.

Theorem 2.2.3 (Nonparametric Representer theorem). Let X be a non-empty

set, k is a positive definite real-valued kernel on X ×X , g is a strictly monotonically

increasing real-valued function on [0,∞], L is an arbitrary cost function and F is a

class of functions that is given by [13]

F =

{︄
f ∈ RX | f(·) =

∞∑︂
i=1

βik (·, zi) , βi ∈ R, zi ∈ X , ∥f∥K <∞

}︄
,

where ∥ · ∥K is the norm in the RKHS. Then for any f ∈ F minimizing the penalized

loss function

L ((x1, y1, f (x1)) , . . . , (xn, yn, f (xm))) + g(∥f∥K)
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admits a representation of the form

f(·) =
n∑︂

i=1

αik (·, xi) .

By the representer theorem, the solution for (2.1) can be written as

ˆ︁f(x) = n∑︂
i=1

αik (x,xi) ,

where α = {αi}ni=1 are the corresponding kernel coefficients.

Notice that ∥f∥2K =
∑︁n

i,j=1 k (xi,xj)αiαj, substituting it into (2.1) we obtain [6]

ˆ︁f = argmin
f∈H

[︄
1

n

n∑︂
i=1

L (f (xi) , yi) + λα′kα

]︄
,

where α = (α1, · · · , αn)
′ is an n× 1 regression vector and k = (k1, · · · kn) is the n×n

kernel matrix with ki = (k(xi, x1), · · · , k(xi, xn))′

7



Chapter 3

Random features

3.1 Random features

The kernel methods can be used to generate features for algorithms easily. It is

based on the inner product between pairs of input points [8]. However, when deal-

ing with large training sets, the kernel methods consume a substantial amount of

computational and storage resources. Instead of using the normal kernel function,

we introduce a randomized feature map z : Rp → Rd that maps the data into a

low-dimensional inner product space. It utilizes the inner product between a pair of

transformed points to approximate the kernel function:

k(x,y) = ⟨ϕ(x), ϕ(y)⟩ ≈ z(x)′z(y),

where x ∈ Rp and z(x) ∈ Rd.

With the kernel methods, evaluating the machine at a test point x requires comput-

ing f(x) =
∑︁n

i=1 αik(x, xi), which has a time complexity of O(np). For large datasets,

the scaling of this kernel method is at least quadratic in the number of examples [14].

Therefore, this method is impractical if the dataset is beyond 104 elements.

After introducing the randomized feature map and learning a hyperplane w, a

linear machine can be evaluated by simply computing f(x) = w′z(x). With the

randomized feature maps presented, the computation requires onlyO(p+d) operations

and storage. [8]. We can transform the input x with the low-dimensional z and apply

8



linear methods to approximate the nonlinear kernel machine at high speed.

Theorem 3.1.1 (Mercer-Hilbert-Schmidt Theorem) [11]. Let {ϕj} be an orthogo-

nal sequence of continuous eigenfunctions on L2(X ) and eigenvalues l1 ≥ l2 ≥ · · · ≥ 0.

Let k be a continuous kernel on compact metric space X , then ∀x, y ∈ X

k(x, y) =
r∑︂

j=1

ljϕj(x)ϕj(y).

We define the feature functions ψ(x) = {
√︁
ljϕj(x)}rj=1, i.e. ψj(x) =

√︁
ljϕj(x).

Consequently, the estimated function f can be expressed as follows [6],

f(x) =
r∑︂

j=1

bjψj(x) = ψ(x)′b,

where b = (b1, . . . , br)
′.

Since there is the possibility that the r is infinite, we need to keep the first n

ψj(x) and set the remaining bj,j > n equal to zero [15]. Now we can use the finite-

dimensional approximation.

Let b = ψα. From f(x) =
∑︁n

i=1 αik(x, xi), we get k = ψ′ψ. For the shift-invariant

kernel function: k(xi, yj) = k(xi − yj), we have

k(xi − xj) = ψ′ψ ≈ z(xi)
′z(xj) = k̃(xi − xj),

where k̃ is the approximate kernel.

To be more explicit, we represent z as ψ̃ and specify a matrix ˜︁Ψ =
[︂
ψ̃ (x1) , . . . , ψ̃ (xn)

]︂
with a corresponding approximate kernel matrix [1]

˜︁K = ˜︁Ψ⊤Ψ̃.

3.2 Random Fourier Features

Bochner’s theorem plays an important role in the random Fourier features method.

The theorem connects the positive definite kernel and Fourier transform. [8, 14, 16]
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Theorem 3.2.1 (Bochner’s theorem) [17]. Let f be a positive definite function on

Y such that f is continuous at e and f(e) = 1, e is the identity element of Y . There

exists a unique probability measure µ on Borel σ-field of X such that

f(y) =

∫︂
X

⟨x, y⟩dµ(x), y ∈ Y

i.e. f is the Fourier transform of a unique probability measure µ on Y , where X is a

locally compact abelian group and Y is a dual group.

Applying Bochner’s theorem to the shift-invariant kernel, we have:

Theorem 3.2.2 [8]. A continuous kernel k(xi, xj) = k(xi − xj) on Rp is positive

definite if and only if k(xi − xj) is the Fourier transform of a non-negative measure.

If k(xi−xj) is in proper scale, then its Fourier transform p(ω) is a probability den-

sity function. Defining the shift-invariant kernel functions k(xi − xj), the probability

density p(ω) and ηω (xi) = exp(ιωTxi) where ι
2 = −1, we have the following Fourier

expansion

k (xi − xj) =

∫︂
Rp

p(ω) exp
{︁
ιω⊤ (xi − xj)

}︁
dω

= Eω [ηω (xi) ηω (xj)
∗] .

Therefore, ηω (xi) ηω (xj)
∗ is an unbiased estimate of k(xi, xj). Since probabil-

ity density p(ω) and k(xi, xj) are real values, we replace exp(ιωT (xi − xj)) with

cosωT (xi − xj). Then we have the real-valued mapping

ψ̃ω(xi) =
√
2cos(ωTxi + b),

where ω is drawn from p(ω) and b is drawn from U [0, 2π], satisfying the condition

E
[︂
ψ̃ω(xi)

′ψ̃ω(xj)
]︂
= k(xi, xj).

We can reduce the variance of ψ̃ω(xi)
′ψ̃ω(xj) by concatenating d randomly chosen

ψ̃ω into a column vector ψ̃ and normalizing each component by dividing them by
√
d [8]. We apply the Monte Carlo method to random Fourier features and the

approximation is as follows:

10



ωℓ
iid∼ p(ω), bℓ

iid∼ U [0, 2π], ℓ = 1, . . . , d

Ω = [ω1, . . . ,ωd] ∈ Rp×d, b = [b1, . . . , bd] ∈ Rd

ψ̃ (xi)
⊤ =

√︃
2

d
cos (xiΩ+ b) .

Let ˜︁Ψ =
[︂
ψ̃ (x1) , . . . , ψ̃ (xn)

]︂
, the approximate kernel martrix K̃ = Ψ̃

T
Ψ̃ converges

to the exact kernel as the random sample size d goes to infinity [1].

3.3 Random Wavelet Features

The motivation of wavelet analysis is to approximate a signal or a function by using

a mother wavelet function ψ

ψa,b(x) = |a|−1/2ψ

(︃
x− b

a

)︃
, (3.1)

where a, b ∈ R,a ̸= 0, a is a dilation factor and b is a translation factor.

If |a| < 1, ψa,b(x) has smaller time-width than ψ(x) and is in a higher frequency;

if |a| > 1, ψa,b(x) has larger time-width than ψ(x) and is in a lower frequency. Thus

wavelet has time-widths adapted to their frequencies [9].

If a function f(x) ∈ L2(R), the wavelet transform of f is written as

∑︂
j∈Z

∑︂
k∈Z

⟨f, ψj,k⟩ψj,k(t).

The wavelet coefficients of f is

⟨f, ψj,k⟩ = dj,k =

∫︂ ∞

−∞
f(t)ψj,k(t)dt.

Advantage of Wavelet transform [9]

• Wavelet transform is well localized in both the time and frequency domain.

• Wavelet transform is fast to compute.
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• Given a function f , we can use a few coefficients to approximate it and achieve

good results with wavelet transform.

• We can compress or denoise a signal without appreciable degradation.

If ψ(x) is a mother wavelet and x, x′ ∈ Rd then the dot-product wavelet kernel is

k (x, x′) =
d∏︂

i=1

(︃
ψ

(︃
xi − b

a

)︃
· ψ
(︃
x′i − b

a

)︃)︃
.

The translation-invariant wavelet kernel is [18]

k (x, x′) =
d∏︂

i=1

(︃
ψ

(︃
xi − x′i
a

)︃)︃
.

Definition 3.3.1(Mercer’s condition) A real-valued function k(x, y) is said to fulfill

Mercer’s condition if for all square-integrable functions g(x), we have [19]

∫︂∫︂
g(x)k(x, y)g(y)dxdy ≥ 0.

If the Mercer’s condition holds, we can write k(x, y) as a dot product k(x, y) =

⟨ϕ(x) · ϕ (y)⟩ [20].

Lemma 3.3.2 The dot-product wavelet kernel satisfies Mercer’s condition, i.e. it

can be written as a dot product.

Proof. For ∀g(x) ∈ L2(Rd), we have

∫︂∫︂
L2⊗L2

k (x,x′) g(x)g (x′) dxdx′

=

∫︂
L2

d∏︂
i=1

ψ

(︃
xi − b

a

)︃
g(x)dx

∫︂
L2

d∏︂
i=1

ψ

(︃
x′i − b

a

)︃
g (x′) dx′

=

(︄∫︂
L2

d∏︂
i=1

ψ

(︃
xi − b

a

)︃
g(x)dx

)︄2

≥ 0

12



Thus the dot-product wavelet kernel can be represented as

k (x, x′) =
d∏︂

i=1

(︃
ψ

(︃
xi − b

a

)︃
· ψ
(︃
x′i − b

a

)︃)︃

=
d∏︂

i=1

ψ

(︃
xi − b

a

)︃
·

d∏︂
i=1

ψ

(︃
x′i − b

a

)︃
= ⟨Ψ(x) ·Ψ(x′)⟩ ,

where Ψ(x) =
∏︁d

i=1 ψ
(︁
xi−b
a

)︁
, Ψ(x′) =

∏︁d
i=1 ψ

(︁
x′i−b
a

)︁
.

We then can use the dot product of Ψ(x) and Ψ(x′) to approximate the kernel

function k(x, x′). Selecting a proper mother wavelet ψ is important for the random

wavelet features method. Since we mainly focus on using random wavelet features to

approximate the Gaussian kernel in this article, we choose the Morlet wavelet kernel

function which decays as a Gaussian [21]. The mother wavelet of Morlet wavelet

function is defined as

ψ(x) = cos(1.75 ∗ x) exp
(︁
−x2/2

)︁
.

Therefore, we have

ψ(
x− b

a
) = cos(1.75 ∗ (x− b

a
)) exp

(︃
−(
x− b

a
)2/2

)︃
=cos(1.75 ∗ (mx− n)) exp

(︁
−(mx− n)2/2

)︁
,

where m = 1
a
, n = b

a
.

The Morlet wavelet kernel function can be written as

k(x, x′) =
d∏︂

i=1

cos(1.75 ∗ (mxi − n)) exp
(︁
−(mxi − n)2/2

)︁
·

d∏︂
i=1

cos(1.75 ∗ (mx′i − n)) exp
(︁
−(mx′i − n)2/2

)︁
.

The approximation of Gaussian kernel using random wavelet features is formulated

as follows:
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mℓ
iid∼ N(0, 1), nℓ

iid∼ N(0, 1),mℓ, nℓ are independent, ℓ = 1, . . . , d

M = [m1, . . . ,md] ∈ Rp×d, n = [n1, . . . , nd] ∈ Rd

ψ̃(xj)
⊤ = (

d∏︂
i=1

ψ (m1x1i − n1) , · · · ,
d∏︂

i=1

ψ (mdxdi − nd)), j = 1, · · · , n

Let ˜︁Ψ =
[︂
ψ̃ (x1) , . . . , ψ̃ (xn)

]︂
, we then can use K̃ = Ψ̃

T
Ψ̃ to approximate the kernel

function, where ψ(x) is the mother wavelet of Morlet wavelet function.
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Chapter 4

Bayesian approximate kernel
methods

4.1 Generalized Kernel Models

We can treat the loss function L (f (xi) , yi)) in (2.1) as a negative conditional log-

likelihood using the logarithmic scoring rule [22]. The generalized linear model

(GLM) [23] is defined as

y ∼ p(y | µ) with µ = g−1(Xβ),

where µ is the expected value of response y conditional on the input X, Xβ is the

linear operator and g is the link function.

The generalized kernel model (GKM) [6] is derived from the GLM and can be

written as

y ∼ p(y | µ) with µ = g−1
(︂
K̃

′
α
)︂
. (4.1)

This model can be obtained from the model

y ∼ p(y | µ) with µ = τ
(︂
ψ̃

′
b
)︂
,

where α = K̃
−1
ψ̃

′
b.

The generalized models have been widely used in classification and regression prob-

lems which are based on kernel methods [24]. We can specify a proper likelihood and
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link function depending on different applications. To be specific, the likelihood is set

to be normal distribution and the link function is set to be the uniform distribution in

the regression problems [1]. In this thesis, we apply these generalized kernel models

to regression and classification problems.

Since the approximate kernel matrix K̃ is symmetric and positive definite, the

spectral decomposition of K̃ is as follows,

K̃ = Q̃Λ̃Q̃
T
,

where Q̃ is an n × n orthogonal matrix whose ith column is the eigenvector qi of K̃

and Λ̃ = Diag(λ1, · · · , λn) is a diagonal matrix, where eigenvalues λ1 ≥ λ2, · · · ,≥ λn.

We rewrite the equation (4.1) as

y ∼ p(y | µ) with g−1(µ) = ˜︁Qθ, (4.2)

where θ = ˜︁ΛQ̃⊤
α.

Eigenvectors corresponding to small eigenvalues can be truncated to reduce the

computational complexity. Thus, we can keep the top s eigenvalues and consider Q̃

as an n × s matrix and λ̃ as an s × s diagonal matrix. We can further reduce the

dimension from n to s parameters. This new representation can substantially speed

up the process of estimating the model parameters, especially when n is large.

4.2 Projection onto Explanatory Variables

The standard projection operation is

Proj(X, y) = X†y,

where X† = (XTX)−1XT is the Moore–Penrose generalized inverse. For the Bayesian

approach, priors over the parameters β induce the distribution on the projection

Proj(X, y).
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Consider a nonlinear function E[y] = f = [f(x1), · · · , f(xn)], we define the projec-

tion β̃ as

β̃ = Proj(X, f).

Recall that α = K̃
−1
ψ̃

T
b and θ = Λ̃Q̃

T
α, we have the following representation

b = (Λ̃Q̃
T
K̃

−1
ψT̃ )−1θ.

The projection of f = ψ̃
T
b can be written as

β̃ = X†ψ̃
T
b.

4.3 Bayesian Hierarchical Model and Gibbs Sam-

pler

Before specifying the Bayesian approximate kernel models, we first review some basic

concepts in the applied Bayesian statistics. Bayes’ original theorem is applied to

probability mass functions, which is stated as

p(B | A) = p(A | B)p(B)

p(A)
,

where A and B are events and P (B) ̸= 0.

However, we use probability distributions more frequently than probability mass

functions in the application of the Bayesian theorem [25]. We then introduce Bayes’

theorem for probability distributions,

f(ϑ | X) =
f(X | ϑ)f(ϑ)

f(X)
,

where f(ϑ | X) is the posterior distribution, f(X | ϑ) is the sample density, f(ϑ) is

the prior distribution, ϑ is the parameter and X is the data.

The marginal probability of the data X is

f(X) =

∫︂
f(X | ϑ)f(ϑ)dϑ.
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Since the sample density is proportional to the likelihood function, the posterior

distribution is proportional to

p (ϑ | {yi,xi}ni=1) ∝ exp

{︄
−

n∑︂
i=1

L (f (xi) , yi)

}︄
π(ϑ),

where π(ϑ) is the prior distribution and exp {−
∑︁n

i=1 L (f (xi) , yi)} is the likelihood

function.

Let xj be an observation and ϑj is a parameter governing the data generating

process for xj. Assume that the parameters ϑ1, ϑ2, · · · , ϑj are generated from the dis-

tribution governed by a hyperparameter φ. The Bayesian hierarchical model includes

the following stages [26]

Stage 1. xj | ϑj, φ ∼ p(xj | ϑj, φ)

Stage 2. ϑ | φ ∼ p(ϑ | φ)

Stage 3. φ ∼ p(φ).

Thus, the posterior distribution is proportional to

p(φ, ϑj | xj) ∝ p(xj | ϑj, φ)p(ϑj, φ)

∝ p(xj | ϑj)p(ϑj | φ)p(φ).

Markov chain Monte Carlo (MCMC) methods include a class of algorithms for

sampling from probability distributions. The development of MCMC methods allows

us to compute the large Bayesian hierarchical model with thousands of unknown

parameters [27]. In the application of the Bayesian hierarchical model, the Gibbs

sampler is the most basic MCMC method. [25]. A general Gibbs sampler follows the

following iterative process,

0. Assign a vector of starting values S, θj=0 = S, where j is the iteration count.

1. Let j= j+1.

2. Sample
(︁
θj1 | θ

j−1
2 , θj−1

3 · · · , θj−1
k

)︁
.

3. Sample
(︁
θj2 | θ

j
1, θ

j−1
3 · · · , θj−1

k

)︁
.

k. Sample
(︁
θjk | θ

j
1, θ

j
2, · · · , θ

j
k−1

)︁
.
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k+1. Return to step 1.

4.4 Bayesian approximate kernel method for re-

gression

We restate equation (4.1) for the regression problem as,

y = ˜︁Kα+ ε, ε ∼ N
(︁
0, τ 2I

)︁
, (4.3)

where ε is the random error, N (·, ·) is the multivariate normal distribution with the

mean zero and the variance τ 2, and I is the identity matrix.

Combining the hierarchical model with the factor representation in equation (4.2),

we can formulate the specific hierarchical model for the nonlinear regression model

as follows [1],

y = ˜︁Qθ + ε, ε ∼ N
(︁
0, τ 2I

)︁
θ ∼ N

(︂
0, σ2˜︁Λ)︂

σ2, τ 2 ∼ Scale-inv- χ2(ν, ϕ).

(4.4)

The idea of using θ in (4.4) instead of using α in (4.3) is from the Silverman g-

prior [6]. The variance of random error τ 2 and the shrinkage parameter σ2 both come

from the scaled inverse chi-squared distribution with the degrees of freedom ν and the

scale parameter ϕ. The probability density function of the scaled inverse chi-squared

distribution over the domain x > 0 is

f (x; ν, ϕ) =
(ϕν/2)ν/2

Γ(ν/2)

exp
[︁−νϕ

2x

]︁
x1+ν/2

.

Given the Bayesian hierarchical model in (4.4), we can propose the conditional

densities p(θ | σ2, τ 2, y) using the Bayes’ Theorem. To be specific,

p(θ | σ2, τ 2, y) ∝ p(y | θ, τ 2)p(θ | σ2)

∝ N (m∗, n∗),
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where n∗ = τ 2σ2(τ 2˜︁Λ−1 + σ2Iq)
−1 and m∗ = τ 2n∗ ˜︁QTy.

Similarly, we can propose the conditional densities for σ2 and τ 2. We then use a

Gibbs sampler to generate the joint posterior p (θ, σ2, τ 2 | y) and the procedures are

as follows [1],

1. θ | σ2, τ 2, y ∼ N (m∗, n∗), with n∗ = τ 2σ2(τ 2˜︁Λ−1 + σ2Iq)
−1 and m∗ = τ 2n∗ ˜︁QTy;

2. ˜︁β = X†Ψ̃
⊤
(︂˜︁ΛQ̃⊤ ˜︁K−1˜︁Ψ⊤

)︂−1

θ;

3. σ2 | θ, τ 2, y ∼ Scale-inv−χ2 (v∗σ, ϕ
∗
σ), where v

∗
σ = v+q and ϕ∗

σ = v∗−1
σ

(︂
vϕ+ θ⊤Λ̃

−1
θ
)︂
;

4. τ 2 | θ, σ2, y ∼ Scale-inv −χ2 (v∗τ , ϕ
∗
τ ), where v

∗
τ = v+n and ϕ∗

τ = v∗−1
τ

(︁
vϕ+ e⊤e

)︁
,

with e = y − ˜︁Qθ.
We can achieve the following set of posterior samples by repeating the above pro-

cedure for T times

{︂
θ(t), σ2(t), τ 2(t), ˜︁β(t)

}︂T

t=1
.

For the sample test X observed, the prediction is stated as

y = Xβ̃.

4.5 Bayesian approximate kernel method for clas-

sification

We extend the Bayesian approximate kernel method to binary classification. We also

use the generalized kernel model for the classification problem,

y ∼ p(y | µ) with µ = g−1
(︂
K̃

′
α
)︂
.

We can specify the hierarchical model for classification using the factor representation

where K̃ = Q̃Λ̃Q̃
T
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yi =

⎧⎨⎩ 1 if si > 0

0 if si ≤ 0

s = ˜︁Qθ + ε, ε ∼ N (0, I),

θ ∼ N
(︂
0, σ2˜︁Λ)︂

σ2 ∼ Scale-inv- χ2(ν, ϕ).

The vector of latent responses is defined as s = [s1, · · · , sn]⊤. The MCMC pro-

cedure here is similar to the posterior sampling of probit regression [28]. Posterior

samples are generated by iterating the following procedures:

(1) For i = 1, . . . , n

s
(t+1)
i | θ, σ2, s(t), y ∼

⎧⎨⎩ N
(︁
q̃⊤i θ, 1

)︁
I
(︂
s
(t)
i ≤ 0

)︂
if s

(t)
i ≤ 0

N
(︁
q̃⊤i θ, 1

)︁
I
(︂
s
(t)
i > 0

)︂
if s

(t)
i > 0

;

(2) θ | s, σ2, y ∼ N (m∗, n∗) where n∗ = σ2
(︂˜︁Λ−1 + σ2I

)︂−1

and m∗ = n∗˜︂Q⊤s;

(3) ˜︁β = X†˜︁Ψ⊤
(︂˜︁ΛQ̃⊤ ˜︁K−1˜︁Ψ⊤

)︂−1

θ;

(4) σ2 | s, θ, y ∼ Scale-inv- χ2 (ν∗, ϕ∗), where ν∗ = ν+q and ϕ∗ = ν∗−1
(︂
νϕ+ θ⊤˜︁Λ−1θ

)︂
.

We obtain the following set of posterior samples by repeating the above procedure

T times

{︂
θ(t), σ2(t), ˜︁β(t)

}︂T

t=1
.

For the observations X, the prediction holds y = Xβ̃. For each response yi

yi =

⎧⎨⎩ 1 if yi > 0

0 if yi ≤ 0
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Chapter 5

Numerical studies

In this chapter, we conduct simulations to evaluate the performances of random

Fourier features and random wavelet features approximating the kernel function in

both regression and classification problems. We also compare the Bayesian approx-

imate kernel methods with other classical methods, such as Bayes Lasso Regression

(BL), Bayes Ridge Regression (BRR), support vector machine (SVM).

5.1 Simulation study: phenotypes prediction

5.1.1 Simulations for the regression problems

To evaluate the performance of random Fourier features and random wavelet features,

we refer to the simulation designs for predicting phenotypes from genotypes [29]. We

assume the total proportion of variance in phenotype explained by genetic effects is

0.6, i.e. PVE = 0.6. We divide the genetic effects into two groups: (1) additive

effects; (2) interaction effects. The additive effects make up ρ% of the genetic effects

and the interaction effects make up the remaining 1− ρ%.

Next we generate a matrix X with n = 500 observations and p = 5000 single-

nucleotide polymorphisms (SNPs) and a vector y which represents the corresponding

continuous phenotypes. We sample 30 causal SNPs and separate them into 15 additive

SNPs and 15 interaction SNPs. We formulate the following simulation model
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y = Xβ + Zγ + ϵ,

where β ∼ N (0, 3I), γ ∼ N (0, 3I), ϵ ∼ N (0, I). Z is the genotype matrix for all

pairs of interaction effects. ϵ is the random error.

Consider two scenarios depending on the parameter ρ since ρ indicates the propor-

tion of different groups of the genetic effects. We choose ρ from the set {0.25, 0.75}.

We set up the parameters in (4.4) and iterate the Gibbs sampler 2000 times. We

compare our methods with two other standard Bayesian methods for regression: (1)

Bayesian Ridge Regression [30] (2) Bayesian Lasso Regression [31]. The results are

shown in Table 5.1, Figures 5.1 and 5.2.

Table 5.1: Comparison of the mean square error (MSE) for Bayes Ridge (BRR),
Bayes Lasso (BL), Bayesian approximate kernel methods with Fourier and wavelet
transform approximating Gaussian kernels with the parameter σ = 1. Values in bold
represent the method with the lowest average MSE. Standard deviation (SD) for the
replicates of each model is given in the parentheses.

Methods MSE (SD)

ρ = 0.25
Fourier transform 1.000 (0.190)

Wavelet transform 0.953 (0.086)

Bayesian Ridge 1.118 (0.194)

Bayesian Lasso 1.145 (0.157)

ρ = 0.75
Fourier transform 0.982 (0.130)

Wavelet transform 0.945 (0.158)

Bayesian Ridge 1.085 (0.162)

Bayesian Lasso 1.079 (0.232)

From Table 5.1, we conclude that the Bayesian approximate kernel method approx-

imated by wavelet transform performs best among these four methods. The average

mean square error is 0.953 for ρ = 0.25 with the smallest standard deviation of 0.086.

For ρ = 0.25, wavelet transform also performs best with the MSE 0.94 and the stan-

dard deviations of our Bayesian approximate kernel methods are lower than those of
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Bayesian Ridge and Bayesian Lasso methods. The Boxplots in Figures 5.1 and 5.2

agree with our conclusion that wavelet transform has the smallest error and standard

deviation the Bayesian approximate kernel methods are more stable than the other

Bayesian regression methods we use.

Figure 5.1: Boxplots for different methods when ρ = 0.25.

Figure 5.2: Boxplots for different methods when ρ = 0.75.
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5.1.2 Simulations for the classification problems

We generate a matrix X with n = 500 observations and p = 4000 SNPs and a

vector y which represents the corresponding class of phenotypes. Here yi = {0, 1}

representing two categories of phenotypes. We conduct our experiment under the

scenario ρ = 0.75. The other settings of the classification simulation are similar

to those of the regression problems. We compare our Bayesian approximate kernel

methods with the Support Vector Machine (SVM) [32] method in this section. We

choose the Gaussian kernel as the kernel function in the SVM algorithms. We use

accuracy to evaluate the models of classification. The accuracy is defined as

Accuracy =
Number of correct predictions

Total number of predictions

Table 5.2: Comparison of the accuracy and standard deviation for the Bayesian ap-
proximate kernel methods with Fourier and wavelet transform and Support Vector
Machine (SVM) methods. The value in bold represents the method with the highest
accuracy.

Methods Accuracy Standard
Deviation

Fourier transform 0.583 0.049

Wavelet transform 0.602 0.022

SVM 0.471 0.035

From Table 5.2, we conclude that the Bayesian approximate kernel method approx-

imated by wavelet transform has the highest accuracy 0.602 and the lowest standard

deviation 0.022 among the three methods. Figure 5.3 shows that the results of the

wavelet transform are more concentrated than those of the Fourier transform.

In a word, the Bayesian approximate kernel method approximated by wavelet trans-

form has a good performance in both regression and classification simulations.

25



Figure 5.3: Boxplots for different classification methods.

5.2 Real data study

5.2.1 Real data for the regression problems

We further evaluate and compare the Bayesian approximate kernel method with

Fourier and wavelet transform by analyzing the biscuit dough piece dataset from

the R package functional data sets (fds) [33]. This example uses the near-infrared

reflectance (NIR) spectra to measure the composition of biscuit dough pieces. The

NIR spectrum of the observations is continuous curves, as shown in Figure 5.4. The

information from these curves can be used to predict the composition of the biscuit.

The compositions of the biscuit we estimated include fat, sucrose, flour and water and

they all record in percent. We treat them as response values. The dataset contains

32 observations with 700 features. The results are shown in Table 5.3, Figures 5.5

and 5.6.

We conclude that the kernel functions approximated by wavelet transform perform

better than those approximated by Fourier transform in our real data study. To

be specific, the Bayesian approximate kernel using wavelet transform has smaller

average mean square errors for all four compositions of the biscuit, which are 0.401,
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Figure 5.4: The NIR spectrum of the observations in the biscuit dough piece dataset.

Table 5.3: Comparison of the mean square error (MSE) for Bayesian approximate
kernel methods with Fourier and wavelet transform approximating Gaussian kernels.
Values in bold represent the method with the lower average MSE. Standard deviation
(SD) for the replicates of each model is given in the parentheses.

Compositions Methods MSE (SD)

Fat
Fourier transform 0.459 (0.201)

Wavelet transform 0.401 (0.237)

Sucrose
Fourier transform 0.614 (0.271)

Wavelet transform 0.347 (0.144)

Flour
Fourier transform 0.526 (0.271)

Wavelet transform 0.348 (0.139)

Water
Fourier transform 0.387 (0.216)

Wavelet transform 0.378 (0.177)

0.347, 0.348 and 0.378. The standard deviations of Bayesian approximate kernel

using wavelet transform are lower than those of the Bayesian approximate kernel
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Figure 5.5: Boxplots of the Bayesian approximate kernel method with Fourier and
wavelet transform results for the prediction of the fat and sucrose in the biscuit. Fou -
F represents using Fourier transform for the prediction of the fat; Wav F represents
using wavelet transform for the prediction of the fat; Fou S represents using Fourier
transform for the prediction of sucrose; Wav S represents using wavelet transform
for the prediction of sucrose.

Figure 5.6: Boxplots of the Bayesian approximate kernel method with Fourier and
wavelet transform results for the prediction of the flour and water in the biscuit.
Fou Fl represents using Fourier transform for the prediction of the flour; Wav Fl
represents using wavelet transform for the prediction of the flour; Fou W represents
using Fourier transform for the prediction of water; Wav W represents using wavelet
transform for the prediction of water.
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using Fourier transform. These results are consistent with our simulation studies.

5.2.2 Real data for the classification problems

In this real data study for the classification problems, we use the Duke Breast Cancer

database that consists of 86 tumour samples and 7129 genes. The data is numerical

and has no missing values. The aim is to classify these tumour samples into estrogen

receptor-positive (ER+) and estrogen receptor-negative (ER-) [34]. We can access

the dataset from the following website: https://www.kaggle.com/andreicosma/duke-

breast-cancer-dataset.

We compare the results of three methods applied to the Duke Breast Cancer

dataset: (1) Bayesian approximate kernel approximated by Fourier transform; (2)

Bayesian approximate kernel approximated by wavelet transform; (3) Support Vector

Machine (SVM) with Gaussian kernel. The results are shown in Table 5.4 and Figure

5.7. We conclude that the Bayesian approximate kernel method approximated by

wavelet transform performs the best among the three methods with an accuracy of

0.957. It is stable and accurate to use random wavelet features to approximate kernel

function. SVM, which is the traditional method for nonlinear classification has the

lowest accuracy of 0.55 processing the large p small n dataset.

Table 5.4: Comparison of the accuracy and standard deviation of three methods for
the Duke breast cancer dataset. The value in bold represents the method with the
highest accuracy.

Methods Accuracy Standard
Deviation

Fourier transform 0.934 0.072

Wavelet transform 0.957 0.063

SVM 0.550 0.137
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Figure 5.7: Boxplots of three classification methods for the Duke breast cancer
dataset.
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Chapter 6

Conclusions

This article proposes the Bayesian approximate kernel approximated by wavelet trans-

form based on the framework of Bayesian approximate kernel regression [1]. We

combine wavelet analysis with random features and use random wavelet features to

approximate the kernel functions. The randomized feature map can lower the di-

mension. It is an efficient and computationally fast approach to deal with the large

p small n problem. The method proposed in [1] uses random Fourier features. We

use random wavelet features to improve the method since the wavelet transform is

well localized in the both time and frequency domain. The performance of the kernel

approximated by wavelet transform is better than that of the kernel approximated by

Fourier transform when the data has big fluctuations in small intervals. We apply our

method to both regression and classification problems and compare the performance

with that of other classical methods.

Numerical studies prove that the Bayesian approximate kernel approximated by

wavelet transform outperforms the Bayesian approximate kernel approximated by

Fourier transform. We have smaller mean square errors solving regression problems

and higher accuracy solving classification problems when using random wavelet fea-

tures to approximate the kernel function. It shows that the random wavelet fea-

tures method is stabler since its standard deviation of duplicates is smaller. We also

conclude that the Bayesian approximate kernel methods perform better than other
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Bayesian regression methods for the large p small n problems.

In conclusion, the Bayesian approximate kernel approximated by wavelet transform

has a good performance in both regression and classification problems.
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Appendix A: Code

A.1 Section 1

Listing A.1: This is the code for random wavelet features

// [ [ Rcpp : : export ] ]
arma : : mat ApproxWaveletKernel3 ( arma : : mat X, double i t e r ) {

double samp s ize = X. n c o l s ;
mat zeta ( i t e r , samp s ize ) ;
f o r ( i n t i = 0 ; i< i t e r ; i++){

f o r ( i n t j = 0 ; j < samp s ize ; j++) {
vec n = randn ( 1 ) ; // b/a
vec m = randn ( 1 ) ; // 1/a
zeta ( i , j ) = 1 ;
f o r ( i n t k = 0 ; k < samp s ize ; k++) {

zeta ( i , j ) ∗= cos ( 1 . 7 5∗ ( a s s c a l a r (m)∗X( i , k)− a s s c a l a r (n ) ) )∗
exp(−pow( ( a s s c a l a r (m)∗X( i , k)− a s s c a l a r (n ) ) , 2 ) / 2 ) ;

}
}

}
mat K hat = zeta . t ( )∗ zeta ;
r e turn K hat ;

}

i n t rangeRand ( i n t min , i n t max) {
i n t range = max − min ;
re turn a s s c a l a r ( rand ( ) % range + min ) ;

}
}
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