This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results- 5Machine Learning
- 1Additive Manufacturing
- 1Artificial Neural Networks
- 1COVID-19
- 1Convolutional Neural Network
- 1Fleet Management
- 2Chemical and Materials Engineering, Department of
- 2Mechanical Engineering, Department of
- 1Chemical and Materials Engineering, Department of/Research Articles and Materials (Chemical and Materials Engineering)
- 1Chemical and Materials Engineering, Department of/Process Systems Engineering
- 1Biological Sciences, Department of
- 1Biological Sciences, Department of/Journal Articles (Biological Sciences)
-
A Hierarchical Constrained Reinforcement Learning for Optimization of Bitumen Recovery Rate in a Primary Separation Vessel
Download2020-01-01
Shafi, Hareem, Velswamy, Kirubakaran, Ibrahim, Fadi, Huang,Biao
This work proposes a two-level hierarchical constrained control structure for reinforcement learning (RL) with application in a Primary Separation Vessel (PSV). The lower level is concerned with servo tracking and regulation of the interface level against variances in ore quality by manipulating...
-
2022-01-01
Xiunan Wang, Hao Wang, Pouria Ramazi, Kyeongah Nah, Mark Lewis
Accurate prediction of the number of daily or weekly confirmed cases of COVID-19 is critical to the control of the pandemic. Existing mechanistic models nicely capture the disease dynamics. However, to forecast the future, they require the transmission rate to be known, limiting their prediction...
-
Automated semantic segmentation of NiCrBSi-WC optical microscopy images using convolutional neural networks
Download2022-01-01
Rose, D., Forth, J., Henein, H., Wolfe, T., Qureshi, A.
Convolutional neural networks (CNNs) were used for the semantic segmentation of angular monocrystalline WC from NiCrBSi-WC optical microscopy images. This deep learning approach was able to emulate the laborious task of manual segmentation effectively, with a mean intersection over union (IOU)...
-
Estimating Instantaneous Fuel Consumption of Vehicles By Using Machine Learning And Real-Time On-Board Diagnostics (OBD) Data
Download2022-06-01
Ansari, Amir, Abediasl, Hamidreza, Patel, Parth Rakeshkumar, Hosseini, Vahid, Koch, Charles Robert, Shahbakhti, Mahdi
Estimation of instantaneous fuel consumption of fleet vehicles to identify the causes of high fuel consumption and determine the optimum vehicle type for different applications and driving cycles is essential for the design of an intelligent fleet management system. Developing a practical and...