
Automated semantic segmentation of NiCrBSi-WC optical microscopy images using
convolutional neural networks

Dylan Rosea, Justin Forthb, Hani Heneina, Tonya Wolfec, Ahmed Jawad Qureshid

aDepartment of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
bConsultant, Edmonton, AB, Canada

cCentre for Innovation in Manufacturing, Red Deer Polytechnic, Red Deer, AB, Canada
dDepartment of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

Abstract

Convolutional neural networks (CNNs) were used for the semantic segmentation of angular monocrystalline WC from NiCrBSi-
WC optical microscopy images. This deep learning approach was able to emulate the laborious task of manual segmentation
effectively, with a mean intersection over union (IOU) and a mean dice coefficient (DC) of 0.911 and 0.953, respectively, across
the entire test dataset. From the model output, the carbide percent can be determined by dividing the area of positively labelled
pixels by the total area of the image. Additionally, the mean free path can be quantified using the method described in ASTM STP
839, and by physically counting the black pixels (CPB) between the particles in the image. Comparing the models predictions to
the ground truth, the carbide percent had an average difference of 1.2 area %, while the mean free path differed by 15.7 µm for the
ASTM method, and 24.8 µm for the CPB method. The robustness of the model was tested on images containing both spherical
eutectic WC and angular monocrystalline WC to determine whether the model was capable of accurately predicting the location
of objects that were not part of the training dataset. The U-Net CNN was able to segment the spherical and angular WC with
considerable accuracy. These results show that the application of computer vision models for microstructural characterization is
not limited to complex imaging modalities, and can be applied to readily available methods such as optical microscopy.

List of Symbols

The following list describes the symbols used throughout this
work. The symbols are organized according to field to avoid
any confusion with overlapping symbols.

Computational Metallography

λ Mean free path

f Volume fraction of reinforcement particles

NL Number of particles per unit length

Non-local means filter

σ Standard deviation of the noise

B Kernel of pixels

d Euclidean distance

h Filtering parameter

i Color channels of the image

j Number of pixels away from the center of the kernel
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p Center of kernel being adjusted

q Center of kernel being used for comparison

r Radius of the kernel

u Pixel intensity

w The weight (value) the pixel is multiplied by

Neural Networks

α Value of ELU saturation for negative values

β Weights for a given layer

p̂ The models probability that a pixel belongs to a partic-
ular class.

λ L2 regularization term

FN Type II error (false negative)

FP Type I error (false positive)

FPR False positive rate is the ratio of type I errors over the
total number of pixels belonging to another class.

T P True positive (correctly labelled pixels)

T PR True positive rate is the models ability to correctly clas-
sify pixels.

y Class value of the ground truth
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1. Introduction

Materials used in the mining and processing of natural re-
sources require the ability to resist high levels of abrasive and
erosive wear caused by direct exposure to various sands, ores,
and rocks. A typical mitigation strategy is the application of
a NiCrBSi-WC metal matrix composite (MMC) overlay, using
plasma transferred arc welding (PTAW), to prolong the service
life of the base part[1, 2]. With the estimated cost of wear in
the Canadian industry being $2.5 billion per year[3], there is
a constant push to reduce the downtime of operation by in-
creasing the wear resistance of Ni-WC MMCs. In the con-
ventional manufacturing space, some of the ongoing research
to extend overlay lifetime involves altering the: matrix chem-
istry [4, 2], carbide crystallinity and shape [1, 2], reinforce-
ment/matrix ratio [5], and coating method [6, 7, 8, 9]. Ad-
vances in additive manufacturing have extended the capabili-
ties of well-known welding techniques to become fully auto-
mated manufacturing processes, where the layer by layer de-
position is based on the cross-sectional geometry of a digitally
rendered product. Plasma transferred arc-additive manufactur-
ing (PTA-AM) offers the ability to build parts using composite
materials (NiCrBSi-WC), removing the requirement for wear-
resistant overlays while theoretically enhancing the service life
[10, 11].

The underlying philosophy regarding the use of compos-
ite materials is combining the benefits of two individual con-
stituents so they may compensate for their individually poor
material properties [15]. In abrasive wear applications, the
hardness of the WC reduces material loss due to micro-cutting
[5] while the ductility and toughness of the NiCrBSi matrix al-
low for adequate force transfer to the WC particles and sig-
nificant plastic deformation, adding resistance to brittle frac-
ture [16, 17, 18]. The wear performance of composite materi-
als is also greatly affected by the distribution of the reinforce-
ment particles within the metal matrix. Lack of homogene-
ity in the distribution of the carbide particles can lead to non-
uniform wear rates and premature failure of the coating[19].
Thus, it is imperative to quantify the distribution of the re-
inforcement phase to optimize the wear resistance of MMCs.
The mean free path of the matrix phase has shown a strong
inverse correlation to the abrasive wear resistance of the com-
posite material[2, 4, 20, 21]. The mean free path (MFP) can be
determined using equation 1[22].

λ =
1− f

NL
(1)

The size of the reinforcement particles has also been shown to
alter the tribological behavior of the MMC[23, 24], though par-
ticle size is unable to be quantified from 2-D projections, as
were gathered for this work.

The carbide characteristics (mean free path, and volume frac-
tion) can be determined using quantitative metallography on
optical microscopy images [22]. This can be achieved by man-
ually segmenting each carbide particle or semi-autonomously
with various image processing techniques to threshold out the
carbide particles from the image. Image processing modalities

to segment desirable features from an image range from com-
mon approaches such as Otsu’s method [12] and Canny edge
detection [13], to more complex unsupervised learning algo-
rithms like K-means clustering[14]. Image processing meth-
ods generally require the areas of interest to have distinct, non-
overlapping pixel distributions, and distinct edges; However,
the nature of optical microscopy induces significant user vari-
ance in the quality of the image attempting to be segmented.
Some common technician sources of noise in the pixel distribu-
tion include poor metallographic preparation, and sub-optimal
focus and contrast. There are also features beyond the equip-
ment’s resolution limits (∼0.2 µm [25]), which can contribute
further to noise in the pixel distribution. During image process-
ing, noise in the pixel distribution leads to type I (false positive)
errors, type II (false negative) errors, and poor edge definition.
[26, 27, 28]. Figure 1a displays a 512x512 pixel optical im-
age of Ni-WC, and Figure 1b shows the ground truth image
for the segmentation of the WC particles, where the location
of the WC particles are highlighted by the white pixels. The
segmentation of Figure 1a using Otsu’s method [12], Canny
edge detection [13], and k-means clustering [14] can be found
in Figure 1 c, d, and e, respectively. For Otsu’s method [12] the
scikit-image [29] algorithm selected 170 as the optimal thresh-
old value. Using Canny edge detection [13] with OpenCV [30],
a minimum and maximum gradient value was set to 15 and 63,
respectively, with a sobel kernel size of 3. The k-means clus-
tering was done in OpenCV [30] using 3 clusters, max itera-
tions of 100, ε of 0.1, and the centroids were initialized using
the k-means++ method [31]. The parameters for the image pro-
cessing methods found in Figure 1 were selected through trial
and error, and were analyzed visually. It can be seen that due to
the pixel luminance overlap of the features contained within the
WC particles, and the surrounding matrix, poor segmentation is
achieved when compared to the ground truth (Figure 1b). Al-
though optimization of the image processing algorithms shown
in Figure 1 could increase the accuracy of the segmentation, one
set of parameters may not work for all images, making it diffi-
cult to automate without some degree of manual intervention.
The aforementioned shortcomings in traditional image process-
ing, highlighted by Figure 1, show these techniques may not be
the best approach for an automated pipeline to segment Ni-WC
optical images.

Semantic segmentation is a branch of computer vision that
uses machine learning (ML) models to assign a class label to
each pixel in an image with an accuracy that can out perform
humans in some contexts [32]. Convolutional neural networks
(CNNs) use filters that are rastered (scanned) over an image to
create a feature map [33, 34]. A feature map is a tensor repre-
senting the multiplication of the features in the image, or input
feature maps, by the weights in the kernel of a given layer; this
can give insight into the signal that the network has learned to
be important to the task at hand. Each filter represents a single
layer in the network, and are organized in blocks of multiple
layers that have similar spatial dimensions. After each filter
passes over the image, the feature activation values are passed
through an activation function to account for the nonlinearity of
the image pixel data[35]. The last stage of a convolution block
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Figure 1: a) NiCrBSi-WC optical image, where the dark green particles represent the WC and the surrounding lighter portion is the Ni matrix, b) the ground
truth corresponding to image a), where the location of the WC particle is shown in white; c) thresholding of image a) using Otsu’s method [12]; d) thresholding of
detectable edges in image a) using Canny edge detection [13]; e) segmentation of image a) using K-means clustering [14].

is downsampling, which decreases the (x,y) dimensionality of
the output by reducing a rectangular kernel of pixels to a single
value ( typically the max value of the kernel[36] ). The number
of convolutional blocks is based on the depth and architecture
of the model being used. For image classification, the final layer
from the encoder is flattened to a feature vector, which is then
used for the classification stage [37, 38]. On the other hand,
for semantic segmentation, the activations from the final lay-
ers of the encoder must be restored to the original size of the
image, using a decoder network, to perform pixel-wise clas-
sification while replicating the original dimensionality of the
image[39]. Typically these models are developed to classify:
people [40, 41], natural objects [33, 42, 34, 40], and biomedi-
cal phenomena[43]. Semantic segmentation models’ ability to
extract features in an image extends beyond their original in-
tent and can be used for more abstract concepts such as phase
segmentation in microstructural images [44, 45, 46, 47, 48, 49].
The development of easy-to-use APIs [50, 51], makes the ap-
plication of computer vision models far easier for researchers
outside the immediate industry.

The present study aims to test state-of-the-art CNNs for the
semantic segmentation of Ni-WC MMCs deposited using PTA-
AM. The effect of varying the hyperparameters, as well as the
encoder architecture, will be discussed. Following the segmen-
tation of the carbides, the quantification of the carbide volume
percent, and mean free path (MFP) can be determined. The

computational uncertainty associated with the quantification of
the microstructure and the carbide characteristics will be dis-
closed, and the ability for the trained CNN to be able to segment
more complex optical microscopy images is shown.

2. Materials and Methods

The framework for the experimental work conducted in this
study can be found in Figure 2. Each step in the framework
corresponds to a chronological sub-section of Materials and
Methods, where the details of each step will be discussed. A
high-level overview of the section is as follows. The first step
was image acquisition which included the PTA-AM deposition
of Ni-WC MMC deposits, the sample preparation, and dataset
generation through optical microscopy. The images were pre-
processed with non-local means denoising and pixel mean shift
algorithms prior to being passed through the CNN. The CNNs
had to be optimized for the task of semantic segmentation of
Ni-WC optical microscopy images. This included a hyperpa-
rameter search, k-fold cross-validation, and receiver operating
characteristic curve analysis. Finally, the predictions from the
CNN are subject to various post-processing methods before the
final evaluation.
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Figure 2: Framework for segmentation pipeline used for this study.

2.1. Image Acquisition

The Ni-WC samples were deposited using the PTA-AM sys-
tem developed by Rojas et al., consisting of a Kennametal
Stellite TM STARWELD 400A PTA and a positioning table
capable of moving 365mm x 170mm x 300mm in the X, Y,
and Z plane, respectively [10, 11]. The powdered feedstock
used for the samples contained in the training data was 60wt%
(45 vol.%) angular monocrystalline WC, with the remaining
40wt% (55 vol.%) being a NiCrBSi matrix with a hardness of
30 HRC. Additional samples were deposited to test the trans-
ferability of the trained CNN using a powdered feedstock of
35wt% (∼26 vol.%) angular monocrystalline WC, 35wt% (∼26
vol.%) spherical eutectic WC, and 30wt% (48 vol. %) NiBSi.
The size distribution for the angular and spherical WC were (-
180, +63µm), and (-180, +125 µm), respectively. The single
track multi-layer deposits consisted of 40x0.75mm layers re-
sulting in sample dimensions of 100mm x 7mm x 30mm for the
length, thickness, and height, respectively. Following metallo-
graphic preparation, the samples were observed under an Olym-
pus PMG3 optical microscope, and images were captured using
an Olympus Q color 5 camera with Quartz PCI V5 software.
An example of a larger sample image taken at 50x magnifica-
tion can be seen in Figure 3. From the larger images, 256x256
pixel crops were taken to increase the size of the dataset to a
total of 229 images. The difference in density between Ni (8.9
gcm−3) and WC (15.6 gcm−3) caused there to be settling of the
WC particles, which is evident in Figure 3. The settling of the
WC caused the class balance of the images to vary depending
on where the cropped image originated in the sample. When
the images were split into training and test sets, it was ensured
that the class balance was as close to the same as possible. The
images were all taken at the same magnification, as the mag-
nification would effect the resolution of features in the images,
impacting the final results.

The ground truth for each image was made by manually trac-
ing each carbide in the images using the labelme [52] python
package and exporting the recorded vertices to a binary im-
age. An example of a cropped image and its corresponding
ground truth can be seen in Figure 1a and Figure 1b, respec-
tively. Pores, cracks, and defects were counted as being part
of the background class to simplify the problem to be binary
segmentation. During the initial experimentation, it was evi-
dent that the increased computational complexity of a multi-
class system was too much of an out of discipline leap. The end
goal was to quantify the WC distribution in the composite, pro-
viding a metallurgical justification for the improved wear resis-
tance, with an automated pipeline with base level complexity,

that can be built upon with future iterations. Although simplic-
ity was conserved, including microstructural artifacts as part of
the background class shows a lack of foresight to the potential
ramifications of this decision on the calculation of mean free
path. An additional poor ground truth decision was not ensur-
ing the shadowing around the WC particle was not included
in the mask. From a metallurgical standpoint, the error or in-
cluding this boundary is insignificant and the occasional in-
clusion makes little difference to the overall quantification of
the WC distribution; However, the effects of this decision from
a machine learning perspective were unbeknown. The lessons
learned from the above ground truth decisions are important
part of out of discipline experimentation.

2.2. Pre-processing

The first pre-processing step was done to reduce the noise in-
duced by the phase structure of the Ni matrix material, and re-
duce the variability in the pixel intensities belonging to the WC.
This has been shown to decrease the generalization error, and
may allow the user to reduce the depth of the model required to
perform the task [53]. A pixel-wise non-local means filter [54]
was used for denoising, which attempts to reduce the variance
between similar rectangular kernels found throughout the im-
age. An example of the results of the non-local means filter on
a Ni-WC optical micrscopy image is shown in Figure 4 , where
the black square represents the kernel containing the pixel p
being adjusted, and the red and purple squares are examples of
kernels that would be used to adjust p. The pixel values pro-
vided in Figure 4 are samples of the pixel intensities from the
green color channel for each region, and the red pixel represents
the pixel p, while the green pixel is the pixel q. The first step
is determining the squared Euclidean distance between the like
patches, shown in equation 2. An exponential kernel, shown in
equation 3, is then used to calculate the per pixel weight fac-
tor. Due to the exponential nature of the weight, distance val-
ues less than 2σ2 result in a value of 1, while more significant
variances between the patches are adjusted exponentially[54].
The weights are then used in equation 4 to adjust the value of
the pixel p. Referring back to Figure 4 the euclidean distance
between the pixels belonging to the black kernel and purple ker-
nel, will be smaller than the red kernel; This means the purple
kernel will have a larger influence on the pixel value of p. Fol-
lowing the adjustment, the center of the kernel is moved the
adjacent pixel, and the process is repeated until the entire im-
age has been analyzed. The decision to use the non-local means
filter coincided with the use of image augmentation in the early
stages of the model development; This prevents the decoupling
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Figure 3: An example of a large optical microscopy image used to compile the training and test datasets. The above image is 9138W x 3322H pixels, meaning that
468 256x256 pixel crops can be taken from one image.

of the contribution from the non-local means pre-processing.
However, convergence was unable to be achieved prior to the
implementation of these pre-processing methods.

d2(B(p,r),B(q,r)) =
1

3(2r+1)2

3

∑
i=1

∑
j∈B(0,r)

(ui(p+ j)

−ui(q+ j))2 (2)

w(p,q) = e−
max(d2−2σ2 ,0.0)

h2 (3)

ûi(p) =
1

∑
q∈B(p,r)

w(p,q) ∑
q∈B(p,r)

ui(q)w(p,q) (4)

Following the denoising, the mean and standard deviation of
any outlier input image was adjusted to match the pixel dis-
tribution of the training data. If the mean of any of the color
channels of the input image were greater than 20 away from the
mean of the same channel in the training set, all channels of the
input image were normalized to match the distribution of the
training data. The model only has the capability to generalize
features based on the data available during training. The small
dataset used during training limited the variability of the fea-
tures belonging to the carbide class. Normalizing the outlying
images increased the mean IOU by 5%.

Image augmentation was employed to expand the size of the
dataset used during training in order to increase the model’s
ability to generalize across the range of features that belong to
the carbide class, and reduce the chances of overfitting to the
training data[55]. Prior to be fed into the CNN, the images
were randomly augmented with either a horizontal or vertical
shift by 51 pixels, a horizontal or vertical shearing of the image
by 5◦, a rotation by 25◦ both clockwise and counterclockwise, a
brightness shift by 0.8-1.2, and a shift in the intensity of one of
the three color channels by 10 (4%). Augmentations were cho-
sen to account for user errors that occur during the procurement
of images using an optical microscope.

2.3. Optimization

This section of the paper will outline the process taken to
optimize the CNN for the semantic segmentation of WC parti-
cles in Ni-WC optical images, which includes: Neural network
selection, hyperparameter search, and k-fold cross-validation.

2.3.1. Neural Network Selection
The primary convolutional neural network architecture used

for this work is the U-net developed by Ronneberger et al. [43],
which was originally developed for the segmentation of cell
structure images for biomedical applications. A visual depic-
tion of the U-Net is shown in Figure 5. The selection of this
architecture was primarily due to the similarity in the features
between cell structures and microstructural images, since both
contain areas of interest surrounded by background pixels with
a similar pixel distribution. Additionally, the U-Net was de-
veloped for optimal performance with limited data (30 train-
ing images [43]) available for training. Architecturally, the U-
net has a symmetrical encoder and decoder. In the context of
CNNs, the encoder creates low resolution feature maps from
the input image, and the decoder increases the resolution of
the feature maps to perform pixelwise classification [56]; both
the encoder and decoder use trained parameters. The encoder
consists of a repeated sequence of two 3x3 unpadded convo-
lutions rastered across images and their derived feature maps,
each followed by an activation function (eg. ReLU[57]), and
then downsampled using a 2x2 max pooling with a stride of 2.
The convolutional, and pooling layers are illustrated in Figure 5
by the purple, and blue rectangles, respectively. Following each
downsampling step, the amount of feature maps is doubled to
increase the models’ ability to learn complex structures. The in-
crease in depth and decrease in the size of the output increases
the model’s ability to extract features from the image but sacri-
fices the spatial context of these features. Thus, to expand the
dimensionality of the output to contain precise pixel-wise pre-
dictions, the model requires a symmetric decoder path. Each
upsampling block begins with a transpose convolution, causing
a reduction in the depth of the output while increasing the size,
shown by the red rectangles in Figure 5. The upsampled feature
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Figure 4: a) The input image before non-local means filtering and b) post non-local means filtering. The black square is the kernel surrounding the pixel p that is
being adjusted, which is shown in red. The red and purple kernels are used to calculate the weight by which p will be adjusted, with the green pixel denoting the
center q. The euclidean distance between the pixels belonging to the purple kernel is lower than that of the red kernel, causing the purple kernel to have a larger
weight than that of the red kernel.

map is concatenated with the feature maps from the encoder
block of the same depth, increasing the spatial precision of the
predictions. Similar to the encoder, the combined feature maps
and transposed convolution is passed through two 3x3 convolu-
tional layers, each followed by a ReLU. The final layer contains
a 1x1 convolutional layer, which maps the final feature vector
to the corresponding number of classes [43], shown in green in
Figure 5.

LinkNet, developed by Chaurasia et al.[58] and shown in
Figure 6, was also used for the segmentation of WC particles
from Ni-WC optical images and compared with the results from
the U-net. Convolutional layers used in this architecture are
all followed by batch normalization, where the activations are
rescaled to have a mean of 0 and a standard deviation of 1 [59],
and a ReLU activation function. The convolutional layers are
shown in green, and the relu is shown in purple in Figure 6.
The encoder begins with a 7x7 convolutional layer, followed
by a 3x3 max pooling with a stride of 2. This output enters
four consecutive residual blocks [60], each containing two sets
of 3x3 convolutional layers. Every two convolutional layers are
followed by a skip-connection, where the input and output of
the two convolutional layers are combined to reduce the like-
lihood of a vanishing gradient without impacting the model’s
performance. The residual connections are highlighted by the
combination of the blue arrows, and purple spheres in Figure 6.
Furthermore, the depth of the model can be increased without
sacrificing its ability to learn identity-like mappings [60]. The
decoder path includes four blocks containing two 1x1 convo-
lutional layers, with a 3x3 transpose convolutional layer in be-
tween. The output of each decoder block is combined with the
input from the corresponding encoder block to recover the spa-
tial knowledge that was lost during feature extraction; These are
illustrated by the red arrows in Figure 6. Before localization,
the output of the decoder is passed through two more transpose

convolutional layers, with a 3x3 convolutional layer in between
[58].

Along with the original architectures the encoders from
VGG16[34], resnet50[60], and mobilenet[61] were also tested.
The corresponding decoders were designed to conserve the
original U-net and LinkNet structure. The final layer activa-
tion was achieved using the sigmoid activation function, which
outputs the class probabilities between 0 and 1, shown in equa-
tion 5 [62]. The sigmoid activation was used for all models
analyzed in this work.

f (x) =
(

1
1+ exp−x

)
(5)

Keras[63], and Tensorflow [51] were used as the machine learn-
ing API for all the models in this work. The python/Keras
version of the models was written by Yakubovskiy et al., and
provided in the Segmentation Models Github repository [64].
Computing resources were provided by Industry Sandbox and
AI Computing (ISAIC) at the University of Alberta, which in-
cluded 2 16GB NVidia Tesla V100 GPUs.

2.3.2. Performance Metrics
The two performance metrics used in this work were the Jac-

card index [65], also known as intersection over union (IOU),
and the dice coefficient[66](DC), shown in equations 6 and 7,
respectively.

IOU =
T P

T P+FP+FN
(6)

DC =
2T P

2T P+FP+FN
(7)

Although their formulation is similar and the metrics are pos-
itively correlated, there are some differences when the evalua-
tion is across many instances. Though both the IOU and dice
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Figure 5: The U-Net CNN architecture proposed by Ronneberger et al. [43]. The depth of the output for each layer is shown at the bottom; However, magnitude
of these values reflect the current study. The blue arrows indicate where the feature maps from the encoder are added to the decoder.
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Figure 6: The LinkNet CNN architecture created by Chaurasia et al.[58]. The depth of the output from each layer are shown at the bottom, and these values are
the same as the original architecture. The blue arrows indicate the residual connections in the encoder, and the red arrows indicate where the feature maps from the
encoder and decoder are added.

coefficient metrics are positively correlated, it is of note that
the IOU is more sensitive to poorly performing outliers than
the dice coefficient and, therefore, their relative values will dif-
fer depending on the dataset. One disadvantage both the IOU
and the dice coefficient share is that the lower the percentage of
true positive pixels compared to background pixels, the higher
the penalty for having any type I or type II errors; though as
discussed previously it will likely be exacerbated for the IOU.
Thus, it is essential to consider the imbalances in the dataset
during the evaluation[67].

The receiver operating characteristic (ROC) curve measures
the model’s ability to correctly predict the features belonging
to a particular class. The use of the sigmoid activation function
causes the output of the CNN to be pixel-wise probabilities of
that pixel belonging to the carbide class. Thus, the ROC curve
allows for the selection of the optimal probability threshold to
maximize the predictive ability of the model. This is done by
plotting the true positive rate (TPR a.k.a. sensitivity) against
the false positive rate (FPR), which are shown in equations 8,

and 9, respectively.

T PR(Sensitivity) =
T P

T P+FN
(8)

FPR = 1−Speci f icity =
FP

T N +FP
(9)

The closer the area under the ROC curve (AUC-ROC) is to
unity, the higher the probability that the model will correctly
classify each pixel to the correct class. Since different prob-
ability thresholds will give rise to varying TPRs and FPRs, it
is important to determine the area under the ROC curve for a
range of values. This can be seen in Figure 7, where the ROC
curve for fold 1 of the U-net is plotted for various threshold val-
ues. For this particular model, the optimal threshold value was
0.77, where values higher and lower had reduced area under the
ROC curve. During the training of the models in this work, 50
threshold values between 0 and 1 were tested to find the best
possible threshold value. For the hyperparameter search, pre-
dictions were based on the validation set, and for k-fold cross-
validation, the predictions were from the test set.
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Figure 7: The ROC curve for fold 1 of the U-net used in this work at varying
thresholds. The threshold value for each line is given in the legend, along with
the corresponding area under the ROC curve. The dashed line represents the
lowest possible denomination of the ROC curve.

2.3.3. Hyperparameter Optimization
Machine learning models attempt to define the features in a

given dataset using a non-linear function. This is achieved by
using affine transformations that are dictated using learned pa-
rameters and non-linear activation functions, such as the ReLU.
The model parameters are internal coefficients that are updated
using a gradient-based optimization algorithm to produce the
smallest possible error on the dataset. Hyperparameters are
configurational arguments that are specified by the user to help
facilitate the training process and tailor a model’s performance
to a particular dataset. Typically, the general effect each hyper-
parameter has on the models functionality is known. However,
the various hyperparameters may have non-linear interactions,
resulting in drastic differences in performance.

The hyperparameters tested and their range of values for the
U-net are shown in Table 1, and the alternative backbones for
the U-net and LinkNet are shown in Table 2. As mentioned
above, batch normalization refers to rescaling all of the activa-
tions from the hidden layers to be between 0 and 1 [59]. Batch
size is the number of training images that are used to estimate
the expected value of the gradient for a particular loss func-
tion over the entire dataset[76]. Smaller batch sizes have been
shown to improve the model’s ability to generalize features
[77, 78, 79], while reducing the memory footprint during train-
ing. The learning rate controls the magnitude the weight pa-
rameters of the model are updated per epoch [80]. Decaying the
value of the learning rate during training has been shown to im-
prove the model’s ability to learn complex patterns and reduces
the chance of the model being stuck in a local minima[81]. The
decay patience is the number of epochs, with no improvement
to the validation loss, it takes for the learning rate to decrease by
the specified decay rate. The value for the learning rate decay
refers to the amount in which the learning rate drops after there
has been no improvement in validation loss after the epochs
specified by the patience. Dropout is a regularization technique

Table 1: The hyperparameters and their corresponding value ranges used for
the hyperparameter optimization of the U-net. Note that for SGD, momentum
was set to the default of 0 and for Adam β1 and β2 were set to the recommended
values of 0.9 and 0.999 respectively [68]. Larger incremental ranges are shown
in brackets (start,finish,increment)

Hyperparameter Value Range
Batch Normalization True, False

Batch Size 2, 4, 6, 8

Learning Rate 0.00001, 0.0001, 0.001, 0.01, 0.1

Learning Rate Decay 0, 0.25, 0.5, 0.75, 0.99

Dropout Rate (0, 1, 0.1)

L2 Regularization term 0, 0.0001, 0.001, 0.01, 0.1

Kernel Size 2, 3, 4, 5

Number of Filters 16, 32

Activation ReLU [57], ELU [69]

Loss Function
binary cross entropy (BCE)[70],
dice coefficient loss (DL)[71],

BCE plus dice coefficient loss (BCE+DL)[72]

Optimizer
stochastic gradient decent (SGD)[73][74],

RMSprop[75],
Adam[68]

that temporarily removes neurons and their connections from
the network based on the probability defined by the dropout rate

to help reduce overfitting[82]. L2 regularization adds a λ

p
∑
j=1

β 2
j

to the objective function to reduce the value of the weights to be
closer to zero. Kernel size is the size of the convolution window
that is used during the convolutional layers, while the number
of filters increases the depth of the convolutional layers. Kernel
weights were initialized from a truncated normal distribution,
with a mean of 0 and a standard deviation of

√
2/n , where n

is the number of input units in the weight tensor [83]. ReLU
[57] and ELU [69], shown in equations 10 and 11, are non-
linear activation functions that follow each convolutional layer,
to account for the complex nature of the pixel data.

R(z) =

{
z z > 0
0 z <= 0

(10)

R(z) =

{
z z > 0
α(ez−1) z <= 0

(11)

In deep learning, the objective function that is used to quan-
tify the model’s ability to perform a particular task is called
the loss function. The cumulative error associated with the en-
tirety of the model is distilled down to a single value, where
a reduction in this value indicates improvement in the model’s
performance. The loss functions tested in this work are pixel-
wise binary cross entropy[70], the dice coefficient loss[71], and
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Table 2: The hyperparameters and their corresponding value ranges used for the
hyperparameter optimization of the U-net and LinkNet for the different back-
bones. These ranges are the same for all of the different backbones trialed. Note
that for SGD, momentum was set to the default of 0 and for Adam β1 and β2
were set to the recommended values 0.9 and 0.999 respectively. [68]

Hyperparameter Value Range
Batch Normalization True, False

Batch Size 2, 4, 6, 8

Learning Rate 0.00001, 0.0001, 0.001, 0.01, 0.1

Learning Rate Decay 0, 0.25, 0.5, 0.75, 0.99

Decay Patience 5, 10, 20, 30

Decoder Block Type nearest-neighbor (nn) upsampling,
transpose convolution

Encoder Weights he normal, ImageNet

Freeze Encoder True, False

Loss Function
binary cross entropy (BCE)[70],

dice coefficient loss[71],
BCE plus dice coefficient loss[72]

Optimizer
stochastic gradient decent (SGD)[73][74],

RMSprop[75],
Adam[68]

a combination of the two[72], shown in equations 12, 13, and
14 respectively.

LBCE(y, p̂) =−(ylog(p̂)+(1− y)log(1− p̂)) (12)

LDL(y, p̂) = 1− 2yp̂+1
y+ p̂+1

(13)

LBCE,DL = βLBCE − (1−β )LDL (14)

Parameters of the model are updated after each batch through
gradient descent using an optimization algorithm. The op-
timizers trialed were stochastic gradient decent (SGD)[73],
RMSprop[75], and Adam [68].

Different hyperparameters were able to be analyzed for the
different backbones based on the input arguments specified by
Yakubovskiy’s Github repo [64], which include changing the
encoder weights, freezing the encoder weights, and altering the
decoder block type. Transfer learning [84] using an encoder
that was pre-trained on the ImageNet dataset[85] was used to
take advantage of the model’s ability to generalize and extract
features. Otherwise, the weights were initialized from a trun-
cated normal distribution [83]. These weights from ImageNet
could be frozen and prevented from being adjusted during train-
ing, resulting in only the decoder parameters being updated.
The decision to include freezing the weights was made so the
large gradient from the new dataset doesn’t override the Im-
ageNet weights, eliminating the feature extraction benefits of

Figure 8: A visual representation of the k-fold cross validation procedure.

the pre-trained encoder, potentially causing the entire model
to be trained from scratch. The decoder block type was also
altered between nearest-neighbor upsampling, which does not
use learned parameters, or a transpose convolution.

Hyperparameter optimization was done using the Talos
python package [86], using a random search method. The train-
ing was stopped after 50 epochs with no improvement to the
validation loss, with a max of 500 epochs, and only the top-
performing model was evaluated. The dataset was manually
split into training (80%) and validation (20%) to conserve class
balance between the datasets and to ensure comparable results
across the experiments. The metrics used to evaluate the raw
output were IOU (equation 6) and the dice coefficient (equation
7), averaged across the entire validation set.

2.3.4. K-fold Cross Validation
Once the optimal hyperparameters were determined for each

model, the evaluation was done using k-fold cross-validation.
This is a widely used technique for model evaluation since it
improves the models ability to generalize by using all of the
available data for training and validation [87]. A value of k=5
was selected to reduce the computational load, while being
large enough to reduce the bias and variance of the model’s
performance[88]. The total 229 training images were split into
a training set (192 images) and a test set (37 images), where
the test set was selected to closely match the class distribution
of the training set. During training, the training set is split into
five folds, one fold being used as the validation set and four
folds being used for training, as shown in Figure 8. The model
is trained for 500 epochs, with the goal being to minimize the
loss associated with the validation set as a representation of how
the model performs on new data. Following training, the test set
is passed through the model, and the mean IOU and dice coef-
ficient are determined across the entire test set. This process is
repeated five times, and the ultimate performance of the model
is the averaged performance across the folds.

2.4. Post-processing
The overall model performance was determined before and

after post-processing, using morphological operations, of the
CNN predictions. Morphological operations use a structuring
element that is rastered over the image to adjust the arrange-
ment of features in an image. For this work, the chosen struc-
turing element was a square, with the origin being at the center.
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Two morphological operations were used for post-processing
of the binary images, erosion, and dilation. Erosion eliminates
all pixels (reduces value from 1 to 0) within a structuring ele-
ment except for the origin, where that structuring element fits
within an object (all pixel values of the structuring element are
1). Dilation increases the dimensions of objects by changing
the value of the origin of the structuring element from 0 to 1 if
any part of the structuring element contacts a pixel with a value
of 1 [89]. A visual depiction of erosion and dilution of an arbi-
trary object by a 3x3 square structuring element can be seen in
Figure 9a and Figure 9b, respectively. Opening is erosion fol-
lowed by dilation, which removes noisy patches and spurs from
the image while maintaining the original shape and size of the
objects. Closing is dilation followed by erosion which helps in
filling small gaps found in the objects in the image[89]. The se-
quence of morphological operations that yielded the best results
was: erosion, opening, closing, and erosion. All morphologi-
cal transformations were performed using the python package
OpenCV [30]. For each morphological step, the structuring el-
ement size was iterated between 1x1 and 100x100, and the size
that yielded the greatest improvement to the IOU for that par-
ticular image was chosen.

3. Results

3.1. Hyperparameter Optimization

The raw output from the top 5 hyperparameter configurations
for the segmentation of WC in Ni-WC optical microscopy im-
ages using the vanilla U-Net CNN are shown in Table 3. The
top model had an area under the ROC curve (AUC-ROC) of
0.944, a mean IOU of 0.87, and a mean dice coefficient of
0.929. Although the hyperparameter values listed in the table
are similar in magnitude, the range in configurations between
the models is significant. One hyperparameter that was consis-
tent across the top 5 models was the SGD optimization function.
It is important to note that during the hyperparameter optimiza-
tion, only vanilla SGD (i.e. no momentum) was tested. There

Figure 9: The a) erosion and b) dilation morphological transformations used
in the post processing of the CNN output. For both processes the structuring
element is a 3x3 square.

is no conclusive evidence to show that one optimization func-
tion performs best across all types of data; however, for the
samples analyzed in this paper, SGD had the best performance
as shown in Table 3 [90]. Even exclusively using SGD as the
optimizer, model architectures varied enormously, and resulted
in large differences in performance. These differences in per-
formance are expected since each model differs in the way it
extracts features from the data [91]. Ultimately, it is the sym-
phony of hyperparameters and model architecture that dictate
the performance. SGD’s positive performance is possibly due
to the fact that it has been shown to generalize features better
than adaptive optimization methods (e.g. Adam) [92, 93]. One
known disadvantage of SGD is the potential to get stuck in local
minima, due to the gradient being small in all directions. Using
momentum, which incorporates a velocity vector of past gra-
dients to SGD, can help propel backpropagation through prob-
lematic areas and towards the global minima [94]. To determine
momentum’s effect on the top model’s performance, a second
hyperparameter search was done with momentum ranging from
0 to 1, in 0.1 increments. Incorporating a momentum of 0.8 in-
creased the mean IOU to 0.882 with a mean dice coefficient of
0.937.

Table 3: The hyperparameters and their corresponding value for the top 5
vanilla U-net models trained during the hyperparameter optimization. Note
that for SGD that momentum was set to the default of 0.

Hyperparameter 1 2 3 4 5
Batch Normalization True True True True True

Batch Size 2 2 2 6 6

Learning Rate 0.01 0.001 0.01 0.001 0.1

Learning Rate Decay 0.5 0.75 0.25 0.25 0.75

Dropout Rate 0.8 0.5 0.5 0.2 0.1

L2 Regularization term 0 0 0.0001 0.01 0.001

Kernel Size 4 3 5 3 2

Number of Filters 16 16 16 32 16

Activation elu elu elu relu elu

Loss Function DL BCE BCE + DL DL BCE

Optimizer SGD SGD SGD SGD SGD
AUC-ROC 0.944 0.942 0.942 0.936 0.935

Mean IOU 0.870 0.864 0.863 0.849 0.848

Mean DC 0.929 0.926 0.925 0.917 0.916

The results for the hyperparameter optimization of the vari-
ous backbones tested for both the U-Net and LinkNet are shown
in Table 4; These values are the raw outputs from the models
with no post-processing. No post-processing was done during
the hyperparameter search to ensure efficient use of the com-
putational resources provided by ISAIC. The best backbone for
the U-Net used the mobilenet encoder achieving an AUC-ROC
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of 0.939, a mean IOU of 0.855, and a mean dice coefficient of
0.922, which is slightly worse than the original U-Net archi-
tecture (IOU of 0.882 and DC of 0.937). Comparatively, the
top backbone for LinkNet was the resnet50 encoder, which had
slightly better performance than the U-Net with an AUC-ROC
of 0.945, a mean IOU of 0.879, and a mean dice coefficient
of 0.935. The resnet50 encoder maintains the original residual
block structure of the encoder of LinkNet, only slightly deeper
[58]. All of the models utilized BCE as part of the loss function.
BCE is a common loss function for binary classification as it
mimics using maximum likelihood estimation to fit the model.
It also pairs well with the sigmoid activation function during
backpropagation since the sigmoid function outputs values be-
tween 0 and 1, which are the required range for p̂ in equation
12[95].

The only instance where transfer learning outperformed
training a model from scratch is the U-net using the VGG16 en-
coder, Here the encoder weights from training the model on the
ImageNet dataset [85] were unchanged during training. Thus,
the model’s learned ability to generalize and extract features
was able to be transferred to the Ni-WC optical images used in
this work. The success of transfer learning highlights the power
of a large dataset (e.g. ImageNet [85]), and the models trained
on it, to generalize to a variety of problems. Even though there
is a stark difference between the features belonging to natural
images compared to microstructures, the model was still able to
achieve a mean IOU of 0.851. Due to time and resource con-
straints, fine-tuning the ImageNet weights was not able to be
done; however, this could potentially increase the accuracy of
the predictions.

Table 4: The hyperparameters and their corresponding value used for the train-
ing of the top performing model for each backbone and model architecture.
Note that for SGD that momentum was set to the default of 0 and for Adam β1
and β2 were set to 0.9 and 0.999 respectively.

Hyperparameter
Model Architecture

Unet LinkNet
mobilenet renet50 vgg16 mobilenet resnet50

Batch Normalization True True True True False

Batch Size 2 4 4 2 4

Learning Rate 0.1 0.01 0.001 0.01 0.01

Learning Rate Decay 0.75 0.75 0.99 0.25 0.75

Decay Patience 5 5 10 20 30

Decoder Block Type nn upsampling transpose nn upsampling transpose transpose

Encoder Weights he normal he normal ImageNet he normal he normal

Freeze Encoder False False True False False

Loss Function BCE+DL BCE BCE+DL BCE+DL BCE

Optimizer SGD Adam RMSprop SGD RMSprop
AUC-ROC 0.939 0.927 0.937 0.939 0.945

mean IOU 0.855 0.834 0.851 0.859 0.879

mean DC 0.922 0.903 0.918 0.923 0.935

3.2. K-fold Cross Validation
The results from the 5-fold cross-validation experiments on

the test dataset are shown in Table 5. The values shown are

Table 5: The 5-fold cross validation performance of each model on the Ni-WC
test dataset. The final column shows the mean performance across all of the
folds, with the raw output values in brackets.

Model Metric Value for each for each fold Mean1 2 3 4 5

U-Net
AUC-ROC 0.968 0.962 0.964 0.967 0.966 0.965 (0.935)
Mean IOU 0.918 0.904 0.909 0.914 0.911 0.911 (0.841)
Mean DC 0.957 0.949 0.952 0.955 0.953 0.953 (0.913)

U-Net/mobilenet
AUC-ROC 0.889 0.902 0.947 0.857 0.854 0.890 (0.871)
Mean IOU 0.769 0.782 0.872 0.711 0.702 0.767 (0.741)
Mean DC 0.868 0.876 0.829 0.932 0.824 0.866 (0.848)

U-Net/resnet50
AUC-ROC 0.926 0.925 0.941 0.926 0.936 0.931 (0.910)
Mean IOU 0.831 0.829 0.864 0.833 0.854 0.843 (0.814)
Mean DC 0.907 0.906 0.927 0.908 0.921 0.914 (0.896)

U-Net/VGG16
AUC-ROC 0.941 0.951 0.900 0.951 0.959 0.940 (0.913)
Mean IOU 0.870 0.874 0.782 0.878 0.900 0.860 (0.808)
Mean DC 0.930 0.932 0.876 0.935 0.945 0.924 (0.892)

LinkNet/mobilenet
AUC-ROC 0.955 0.947 0.946 0.952 0.947 0.950 (0.910)
Mean IOU 0.890 0.871 0.894 0.881 0.869 0.876 (0.803)
Mean DC 0.941 0.931 0.931 0.936 0.929 0.934 (0.889)

LinkNet/resnet50
AUC-ROC 0.945 0.937 0.937 0.935 0.938 0.939 (0.911)
Mean IOU 0.867 0.861 0.855 0.850 0.855 0.858 (0.814)
Mean DC 0.928 0.925 0.921 0.918 0.921 0.922 (0.898)

after post-processing to illustrate the best performance that can
be achieved with an automated pipeline. In the final column,
the mean of the raw outputs are shown in brackets. The aver-
age increase in performance with post-processing is 0.02 - 0.07
across all metrics. When comparing the raw outputs from k-
fold cross validation with the hyperparameter search, the gen-
eralization error increased for all models. A slight decrease in
performance of the U-Net was achieved compared to the results
of the top model during the hyperparameter optimization shown
in Table 3. Since the test set is unseen by the model it is used
to showcase the model’s classification ability; the minimal in-
crease in error on the test set compared to the validation set dur-
ing the hyperparameter search highlights the model’s ability to
perform on unseen data. Similar results were found when com-
paring the cross-validated and hyperparameter search results
for the different model architectures of the U-Net and LinkNet,
with the exception of the U-Net with a mobilenet encoder. This
could be due to this model being biased towards the validation
set during the hyperparameter search, giving a false sense of the
model’s ability to perform on unseen data.

The CNN struggled to properly classify the various defects
that can be formed during deposition. These problems were
consistent across all models used in this work. Thus, to reduce
redundancy, only the output of the U-Net will be explicitly dis-
cussed. One specific instance is cracking in the sample, which
can be found at the bottom of the input image shown in Fig-
ure 10a. Although this crack is classified as part of the back-
ground, as seen in the ground truth in Figure 10b, the CNN
falsely classified it as part of the carbide class, shown in Fig-
ure 10c. The type I error still remained after post-processing
which can be seen in Figure 10d. Similar results were also
found with pores in the carbides, where the model preferred
to classify them as part of the carbide. This is expected given
that both show similar pixel intensity values under optical mi-
croscopy. During the grinding and polishing stage of metal-
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Figure 10: Visual depiction of the segmentation results where a) and e) show the input images into the CNN; b) and f) show the corresponding ground truth for
images a) and e) respectively; c) and g) show the raw outputs of the CNN; d) and h) show the post-processed output. For all images the white pixels show the true
positives, the black pixels show the true negatives, the magenta pixels show the false positives, and the teal pixels show the false negatives.

lurgical sample perperation, the softer Ni matrix is preferen-
tially worn, resulting in the WC particles being elevated in the
sample. This is characterized by the dark outline that is found
around each particle, that share a similar pixel distribution as
the pores and cracks. During the ground truth labelling there
were instances where the dark outline was included in the mask
of the carbide. Therefore, the model was being trained to rec-
ognize the distribution of pixels that belong to the pores and
cracks as belonging to the carbide particle, contributing to the
type I errors found in the predictions.

Thermal degradation of the WC particles was another defect
that was largely falsely classified by the CNN. Dissolution of
WC in NiCrBSi has been shown to form W-Ni-Cr intermetallics
along the particle boundary during PTA deposition [2]. A large
dissolution zone can be seen at the bottom of Figure 10a that re-
sulted in a false positive error due to the similarity in the pixel
distributions between these regions and the WC particles, rel-
ative to the matrix. The model also performed poorly at accu-
rately determining the edge of the WC particles, shown by the
ring of type I errors surrounding the particles in Figure 10c and
Figure 10g. Downsampling is important for CNNs to reduce
the dimensionality of the image data, to reduce the chance of
overfitting, and to allow the network to learn larger spatial con-
text. The trade-off to this methodology is the model reduces
its ability to distinguish high-frequency details, reducing the
accuracy of classifying object boundaries[96]. Therefore, the
coupling of the dissolution of W and C surrounding the WC
particles, and the poor edge definition of the model’s output,
resulted in poor resolution when classifying WC particles ex-
hibiting thermal degradation. In the development of the U-Net,

Ronneberger et al. integrated an energy function into the loss
function that increased the cost associated with the incorrect
classification of border pixels around HeLa cells [43]. The ad-
ditional cost forced the model to learn the boundaries around
cells and could also be used to improve the boundary detection
of WC particles. This may reduce the error caused by the poor
classification of the thermal degradation of WC.

Similar to the inability to consistently characterize carbide
that experience thermal degradation, the model also struggled
to separate the carbides that had boundaries close together. In-
stead, the CNN tends to connect these areas reducing the in-
dividual particle count found in each image. This tends to be
exacerbated by post-processing, as seen in the bottom right of
Figure 10g and h, where type I errors are introduced after post-
processing. The post-processing pipeline only accepts changes
to the image that will result in an increase in the IOU of the
image. Although new type I errors are introduced, the objec-
tive outcome does improve. Using simple non-local morpho-
logical transformations may not be the optimal choice for the
post-processing of CNN output. Other post-processing meth-
ods such as conditional random fields [97], and localized adap-
tive methods [98] may improve the end results.

3.3. Model Uncertainty

For this work, the model’s uncertainty was not quantified.
Quantification of the carbide characteristics in Ni-WC mi-
crostructures in the context of PTA-AM will be used as a tool
for maximizing the retention of WC during deposition. In a
research context, the amount of data pertaining to a single sam-
ple is minimal, and the bottleneck for creating samples lies in
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the time required for sample preparation prior to optical mi-
croscopy. The size of the features is large enough to visually de-
termine whether the model’s prediction is correct, and the risk
associated with uncertain predictions is low. Thus, the com-
putational expense for quantifying the model’s uncertainty out-
weighed the potential risk.

4. Calculating Carbide Percent and Mean Free Path

The carbide percent and the mean free path were determined
for the entire test dataset and compared with the values from
the ground truth images as seen in Table 6. The carbide per-
cent was calculated by determining the area of the white pixels
over the total area of the image. Mean free path was quan-
tified using two different methods. One of the methods uses
equation 1, where NL is determined by drawing 25 lines hori-
zontally across the image, and counting the number of carbide
intercepts, as described in ASTM STP 839 [22]. The location
of these lines is randomly generated to try and mimic the man-
ual calculation described in the ASTM standard. This process
is repeated 15 times to have a valid statistical representation of
the range of possible values for the mean free path. A problem
with automating this process is that a carbide/matrix intercept
of a binary image is when the pixels change from back to white
or vise versa. The transition in pixel value is not always indica-
tive of a carbide/matrix intercept. For example, the model tends
to incorrectly classify pores and cracks as belonging to the car-
bide class, which would underestimate the mean free path. The
second method used for calculating the mean free path was by
simply scanning the image horizontally and counting the num-
ber of black pixels in between white pixels. This method op-
erates under the assumption that all black pixels belong to the
matrix, which is not always correct. Pores, cracks, and false
negatives incurred during the model’s prediction are all cases
that reject this assumption.

Table 6: The carbide percent and mean free path calculated over the entire
testing dataset. The values stated are the mean ± the standard deviation for
the test set. Mean free path (ASTM) refers to the methods described in ASTM
STP 839 [22], and mean free path (CBP) refers to the method of counting the
number of black pixels between areas of white pixels.

Measurement Ground Truth Model Prediction
Carbide Percent (Area %) 40 ± 11 41 ± 11

Mean Free Path (ASTM) (µm) 64.4 ± 30 79.9 ± 40
Mean Free Path (CBP) (µm) 89.7 ± 29.4 115 ± 35

A minor discrepancy can be seen between the values of the
carbide percent for the ground truth images and the model’s
predictions, even though the model’s predictions contain type
I errors. During the post-processing step, the elimination of
a large portion of type I errors also tend to incorporate more
type II errors due to the global application of the morpholog-
ical operations. The addition of type II errors offsets some of
the type I errors in images that the model predicted poorer on,
resulting in the carbide percentage being closer to that of the
ground truth. Both the ground truth and the predictions had

similar standard deviations in carbide percentages. These re-
sults empirically show that the carbide percent determined from
the model’s predictions are reflective of what is contained in the
optical image.

The difference of mean free path values for the ground truth
using the ASTM calculation and the counting black pixels
(CBP) method are within 25 microns of the model’s predic-
tions. A difference of 25 microns in the mean free path could
drastically effect the MMCs ability to resist abrasive wear de-
pending on the size distribution on the abrasive [4]. One major
contributing factor to the large difference is including defects in
the background class of the ground truth images, highlighted in
Figure 10f. Since these areas are represented by small areas of
black in the ground truth images, they will be falsely included
in the quantification of the mean free path for the ground truth;
this will drastically decrease the average value. The models pre-
dictions typically included defects as being part of the carbide
class, thus not including them in the mean free path. Also, the
intricate details of the carbides are smoothed out in the models
predictions, omitting them from the mean free path calculation.
Therefore, the lower value for mean free path from the ground
truth images may be inaccurate, and the higher values from the
models predictions may be a closer estimation of the mean free
path.

Another important thing to note from Table 6 is the large
standard deviation in the MFP values for both the models pre-
dictions and the ground truth. It is evident in Figure 3 that the
physical phenomena of particle settling could be a large con-
tributing factor, since there would be large discrepancy in the
MFP depending on where the test image originated in the sam-
ple. The impact the depth where the image was taken from on
the MFP is shown in Table 7, and a visual representation of the
data for the CPB method can be seen in Figure 11. All points
shown are from test images taken from the same sample, and
the distance values reported are from the bottom of the sample.
The mean free path tends to be smaller when comparing the
bottom and the top of the sample; the middle contains a range
of values. When the effects of particle settling are removed,
the mean and standard deviation of the mean free path for the
predictions and the ground truth, as well as the general trend
of the values, are similar. The large overlap in the mean free
path highlights the accuracy of the predictions. However, im-
ages that were taken at similar depths in the sample still display
large deviations in the mean free path. Therefore, the stochastic
nature of the particle settling that occurs during deposition cre-
ates local deviations in the mean free path, based on the particle
shape, size, and orientation in the melt. The local differences
in mean free path are also exacerbated by taking 256x256 pixel
crops during the image acquisition process. Therefore, analyz-
ing the mean free path from 256x256 crops of random portions
of the image may not be representative of the entire image, and
stitching the images together prior to determining the mean free
path may help reduce the deviation. This could not be done in
the current study, due to the sparseness of the crops used for the
test set; stitching them together would not be metallurgically
representative of the sample and result in a poor comparison.

When comparing the ASTM and the CBP methods for de-
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Table 7: The mean free path calculated at different depths in the sample. The
values stated are the mean± the standard deviation for the specific depth. Mean
free path (ASTM) refers to the methods described in ASTM STP 839 [22], and
mean free path (CBP) refers to the method of counting the number of black
pixels between areas of white pixels. Note that depth is measured from the
bottom of the sample.

Depth Ground Truth (ASTM) Model Prediction (ASTM) Ground Truth (CBP) Model Prediction (CBP)
300 46.9 ± 12.2 55.5 ± 12.4 71.4 ± 15.6 90 ± 17.8

1200 79.2 ± 30.6 106.2 ± 36.1 103.9 ± 27.2 147.6 ± 38.9
1300 69.3 ± 10.9 67.5 ± 7.6 81.1 ± 16.6 106.4 ± 6.8
1500 60.5 ± 16.8 76.8 ± 21.2 88.4 ± 21.8 114.7 ± 31
1750 60 ± 13.6 72.4 ± 12.3 87.6 ± 17.1 105.5 ± 16.3
2100 52 ± 4.9 65.4 ± 6.9 77.6 ± 4.1 108 ± 6.4
2300 140.9 ± 27 175.1 ± 49.3 158.7 ± 16.3 184.3 ± 22.5

termining the mean free path, the CBP method tends to have
higher values for the predictions, and ground truth. The differ-
ence in the mean free path between the ground truth and the
models predictions is also greater for the CPB method. A key
distinction between the two methods is the representation of
the mean free path. The ASTM method is an estimation of the
average distance between the particles, since it uses multiple
horizontal lines to sample the image to estimate the number of
carbide particles per length. The CBP method is a direct quan-
tification of the mean free path and accounts for all of the data
provided by the image. In the context of digital images, count-
ing the number of carbide intercepts is rudimentary compared
to physically measuring the distance between particles over the
entire image. Additionally, performing the physical measure-
ments is computationally inexpensive. Therefore, for compu-
tationally determining MFP, the methods described in ASTM
STP 839 may be outdated and may need to be improved to re-
flect the current state-of-the-art.

4.1. Uncertainty of Measuring Carbide Characteristics

The uncertainty of measuring carbide percentage and the
mean free path is an extension of the epistemic and aleatoric
uncertainty from the model. This is due to the calculations of
the carbide percent and mean free path being direct quantifica-
tions of models output. Therefore, without the quantification of

Figure 11: The mean free path as a function of depth in the sample. All points
are the mean free path of test images that were taken from the same sample.
The depth is measured from the bottom of the sample.

the uncertainty of the model, the calculations of carbide percent
and mean free path should be taken as qualitative evidence.

5. Discussion

5.1. Reduction in Processing Time

Although the predictions made by the model are not as ac-
curate as those achieved by manually labeling the image, the
average mean free path and carbide percent are within 25 µm
and 1%, respectively. The largest difference between the two
methods is in the processing time. Manually segmenting im-
ages from a sample that has a height of 30mm and a length of
100mm would take on the order of hours, whereas the model
can semantically segment that sample in less than a minute. In
the context of PTA-AM, the lower processing time could dras-
tically reduce the time to optimize the deposition strategy to
maximize the carbide percent and minimize the mean free path
for the context of abrasive wear resistance.

5.2. CNN Transferability

As mentioned above, the training set only contained images
of monocrystalline WC in a NiCrBSi matrix. Spherical eu-
tectic WC is also used in industrial applications as they have
been shown to have improved wear resistance under high-stress
conditions compared to monocrystalline WC, warranted to the
combination of high hardness and toughness [2]. Creating a
ground truth for spherical WC has proven to be a difficult task,
as many of the carbides undergo considerable dissolution dur-
ing deposition. Degraded carbides have a fractured appearance,
as seen in Figure 12a, making them challenging to accurately
hand label. However, since spherical eutectic WC are still
prevalent in the industry, it would be beneficial for the model
to have the capability to segment them from optical images.

To test whether a U-Net only trained on angular monocrys-
talline WC has the robustness to also predict on spherical WC,
the image shown in Figure 12a was cropped into 256x256 sec-
tions, totalling 48 images. The images were passed through the
same post-processing pipeline prior to being passed through the
model. Only the top fold from the original U-Net architecture
was tested, and the classification threshold that performed best
for the test set was also used for these images. No ground truths
were made for these images due to the morphological complex-
ity of the spherical carbides induced by the thermal degradation.
No post-processing was done due to the inability to optimize the
IOU against the ground truth. Manual application of morpho-
logical operations could have been used to improve the results,
but the goal of this section was to show what is capable in an
automated process that can be applied to any image. Addition-
ally, no evaluation of the carbide percent or mean free path was
done since there was no ground truth images to compare the re-
sults to.

The raw predictions made by the model can be seen in Fig-
ure 12b. There are some sources of errors and uncertainty that
became apparent during this experiment. One of those being
bevelling of the corners of the sample, illustrated by the shad-
owing seen in the top left of Figure 12b, resulting in type I
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Figure 12: a) Image of a PTA-AM sample containing monocrystalline angular WC and spherical eutectic WC. The scale bar size is increased for reader clarity. b)
The raw output from the U-Net on image a).

errors. Another source of error is artifacts left behind from pol-
ishing that resulted in additional type I errors. The model’s
predictions also tended to vary based on the other features con-
tained within the cropped images that aren’t representative of
the sample as a whole; this was typically a source of type II
errors in the prediction. An area where the U-Net seemed to
improve on over images with just angular WC is the ability to
correctly label the thermal degradation of the WC. The model
was also better at separating particles that were close together.
Even though it is apparent that many errors are present in the
predictions, a visual comparison between the0 input image and
the model predictions, the U-Net is capable of segmenting the
spherical eutectic WC. It is speculated that significant improve-
ment would be made if some data containing spherical eutectic
carbides were added to the training dataset, and the model opti-
mization process was repeated with the new dataset.

5.3. Machine Learning in Materials Science
The results of this study show that CNNs are capable of ex-

tracting the carbide percent and mean free path from optical im-
ages. Extrapolating these results to other materials systems, the
equivalents of these measurements would be phase fraction and
secondary dendrite arm spacing; both of which involve signifi-
cant manual intervention to determine. Based on the ability of
a U-Net trained only on angular WC to be able to also segment
spherical WC, it can be speculated that if a dataset of optical mi-
crostructural images with the same intraclass feature variance
as the ImageNet [85] dataset was developed, the model’s abil-
ity to generalize features contained in microstructures would
be able to be transferred to a multitude of metallic systems.
The model’s ability to extract information from images could
be coupled with compositional data from energy-dispersive x-
ray spectroscopy (EDX) and phase data from x-ray diffraction
to create an automated phase-detection pipeline. This could re-
duce the need for using advanced characterization methods to
extract microstructural information from material systems and
allow for the same information to be gathered by using simpler,
more cost-effective methods. With the rapid advancement of
new manufacturing technologies like additive manufacturing,

reducing the need for advanced imaging techniques to properly
characterize microstructures would decrease the time to opti-
mize the deposition strategy for new materials. Compiling a
dataset of this caliber would require significant collaboration
across the materials science research community. However,
such an effort would allow materials scientists to be able to
fully exploit the capabilities of machine learning models, and
revolutionize the way that materials research is done.

6. Conclusion

The effectiveness of semantically segmenting optical images
of NiCrBSi-WC metal matrix composites using an automated
convolutional neural network (CNN) pipeline has been demon-
strated. The methodology described in this work is capable of
more accurate segmentation of WC particles when compared
with conventional image processing methods discussed in sec-
tion 1. From the output of the U-Net CNN, the mean free path
and carbide percent can be quantified as an effective empirical
estimation of what is present in the sample. There is a signifi-
cant reduction in the required user time to perform quantitative
metallography on Ni-WC optical images. This may allow for
better optimization of deposition strategies for maximum car-
bide retention and correlations between the carbide distribution
and wear resistance that may not have been made previously.
The robustness of the U-Net was also tested by applying the
best-performing model to images that contained spherical eu-
tectic WC that were not present in any of the training data. The
model was able to segment the spherical WC with considerable
accuracy. These results show that the applications of computer
vision for materials science are not limited to complex imaging
modalities and can be applied to more accessible methods like
optical microscopy. Continued development of computer vision
models will likely lead to CNNs replacing humans for the task
of microstructure quantification.
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