This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results-
Fall 2021
The optimization of non-convex objective functions is a topic of central interest in machine learning. Remarkably, it has recently been shown that simple gradient-based optimization can achieve globally optimal solutions in important non-convex problems that arise in machine learning, including...
-
Spring 2021
This dissertation demonstrates how to utilize data collected previously from different sources to facilitate learning and inference for a target task. Learning from scratch for a target task or environment can be expensive and time-consuming. To address this problem, we make three contributions...