Usage
  • 14 views
  • 30 downloads

Condorcet Attack Against Fair Transaction Ordering

  • Author / Creator
    Vafadar, Mohammad A.
  • We introduce the Condorcet attack, a new threat to fair transaction ordering. Specifically, the attack undermines batch-order-fairness, the strongest notion of transaction fair ordering proposed to date. The batch-order-fairness guarantees that a transaction tx is ordered before tx' if a majority of nodes in the system receive tx before tx'; the only exception (due to an impossibility result) is when tx and tx' fall into a so-called
    "Condorcet cycle". When this happens, tx and tx' along with other transactions within the cycle are placed in a batch, and any unfairness inside a batch is ignored.
    In the Condorcet attack, an adversary attempts to undermine the system's fairness by imposing Condorcet cycles to the system. In this work, we show that the adversary can indeed impose a Condorcet cycle by submitting as few as two otherwise legitimate transactions to the system. Remarkably, the adversary (e.g., a malicious client) can achieve this even when all the nodes in the system behave honestly. A notable feature of the attack is that it is capable of "trapping" transactions that do not naturally fall inside a cycle, i.e. those that are transmitted at significantly different times (with respect to the network latency). To mitigate the attack, we propose three methods based on three different complementary approaches. We show the effectiveness of the proposed mitigation methods through simulations and explain their limitations.

  • Subjects / Keywords
  • Graduation date
    Fall 2023
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/r3-jpgk-q917
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.