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Abstract

We introduce the Condorcet attack, a new threat to fair transaction ordering. Specif-

ically, the attack undermines batch-order-fairness, the strongest notion of transaction

fair ordering proposed to date. The batch-order-fairness guarantees that a transaction

tx is ordered before tx′ if a majority of nodes in the system receive tx before tx′; the

only exception (due to an impossibility result) is when tx and tx′ fall into a so-called

“Condorcet cycle”. When this happens, tx and tx′ along with other transactions

within the cycle are placed in a batch, and any unfairness inside a batch is ignored.

In the Condorcet attack, an adversary attempts to undermine the system’s fairness

by imposing Condorcet cycles to the system. In this work, we show that the adversary

can indeed impose a Condorcet cycle by submitting as few as two otherwise legitimate

transactions to the system. Remarkably, the adversary (e.g., a malicious client) can

achieve this even when all the nodes in the system behave honestly. A notable feature

of the attack is that it is capable of “trapping” transactions that do not naturally fall

inside a cycle, i.e. those that are transmitted at significantly different times (with

respect to the network latency). To mitigate the attack, we propose three methods

based on three different complementary approaches. We show the effectiveness of the

proposed mitigation methods through simulations and explain their limitations.
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Chapter 1

Introduction

1.1 Motivation

The first blockchain application, Bitcoin, emerged in the midst of the financial cri-

sis of 2008, caused in part by the excessive trust placed in centralized institutions.

Blockchain technology changed this. In blockchain, there is no central authority or

intermediary controlling the entire system. Instead, transactions are validated and

included through a consensus mechanism among the participating parties. Decentral-

ization also promotes transparency and reduces the possibility of fraud or corruption

since all transactions are publicly recorded and visible to all participants on the net-

work.

Despite the decentralized nature of blockchain systems, the ordering of transac-

tions is carried out in a centralized manner; the miner/validator who creates a block

determines the ordering of transactions within the block. This gives too much power

to a single entity as the success and profitability of a transaction can be determined

by the order in which the transaction appears in a block [1–5]. For instance, when

a Non-Fungible Token (NFT) is dropped in a given block, transactions positioned

earlier in the block have a higher chance of acquiring the NFT compared to those

placed later.

Manipulation of transaction orders can lead to critical issues, including unfairness

and a loss of trust in the blockchain [6–9], as well as loss of trust in Decentralized
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Exchanges (DEXes) and Decentralized Applications (dApps). Miners have the ability

to gain additional revenue by reordering, injecting, or censoring transactions during

the mining process [1]. These additional revenue sources beyond transaction fees

and block rewards are collectively referred to as Miner Extractable Value (MEV).

Analysis shows that the sophisticated bots and their associated miners are generating

substantial earnings, amounting to approximately 5 million USD within a 24-hour

period and a cumulative total exceeding 607 million USD from 2020 to the present,

solely on the Ethereum network by reordering-related attacks (e.g. front-running) [5].

For example, consider Alice who wants to exchange 1,000 ETH for 1,000 of a token

(say Bubble Token, or BBT for short) at current market prices. A miner seeing

Alice’s transaction could “front-run” Alice’s transaction by placing their own buy

order for 1,000 BBT using 1,000 ETH in the block immediately before Alice’s trade.

This sudden increased demand would drive up the price of BBT. When Alice’s trade

executes right after, she would receive less than 1,000 BBT, perhaps only 975 BBT,

for her 1,000 ETH. The miner could then immediately sell their 1,000 BBT, benefiting

from the inflated price and gaining a profit at Alice’s expense.

The ordering of transactions in a blockchain can also have a significant impact

on the state of the blockchain. To illustrate this, let’s consider a scenario involving

Alice, Bob, and Charlie. Suppose Alice intends to send 1 Ether (ETH) to Bob, and

Bob plans to forward the received 1 ETH to Charlie. However, the balance in Bob’s

account is currently less than 1 ETH. Let’s assume Alice initiates the transaction by

sending 1 ETH to Bob and informs Bob about the transfer. Bob promptly proceeds

to send 1 ETH to Charlie. If for any reason (e.g., Bob pays a higher transaction fee

than Alice) Bob’s transaction gets executed before Alice’s transaction, his transaction

will fail because Bob’s account balance is insufficient to cover the 1 ETH transfer.

This example demonstrates how the order of transactions can impact their validity

and subsequent outcomes.

To address this issue, several existing works [6–11] proposed decentralized methods
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for handling transaction ordering, where instead of a single node, a committee of

nodes collectively decide on the ordering of received transactions. At the core of

these methods, each node in the system reports a list of transactions in the order the

node has received them. The system then generates and agrees on a “fair” ordering

by taking the reported orderings into account.

Finding a fair ordering is not trivial. For instance, suppose that for any two

transactions tx1 and tx2, we require tx1 to be placed before tx2 if a large majority of

nodes in the system claim to have received tx1 before tx2. Despite being a primitive

requirement, no method can provide a guarantee due to an impossibility result rooted

in social choice theory [12]. As an example, consider a system consisting of three

nodes, where each node has received three transactions: tx1, tx2, and tx3. Suppose

the nodes report the ordering as [tx1, tx2, tx3], [tx2, tx3, tx1], and [tx3, tx1, tx2]. In

this case, tx1 is reported to be before tx2 by two nodes (i.e. the majority), tx2

is reported to be before tx3 by two nodes, and tx3 is reported to be before tx1

by two nodes. This essentially creates a cycle, referred to as Condorcet cycle [13],

which prevents any final ordering from respecting the views of the majority on how

transactions should be ordered.

The existing fair ordering methods adopt a relaxed approach to ordering transac-

tions inside a Condorcet cycle. For instance, Cachin et al. in Quick-Fairness [9] do

not mention any ordering mechanism for such transactions, and Kelkar et al. in Ae-

quitas [6] suggest a simple alphabetical ordering. This relaxed approach is, perhaps,

due to two reasons: 1) it is not possible to guarantee fair ordering of transactions

inside a cycle; 2) Condorcet cycles occur infrequently in practice, and when they do

occur, they usually involve transactions that are received around the same time by

the nodes in the system. Nevertheless, in this work, we show that Condorcet cycles

deserve more attention as they can be created “artificially” by adversaries through

what we refer to as the Condorcet attack. An interesting feature of the Condorcet at-

tack proposed in this work is that it can be conducted by a client outside the system.
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In particular, the attack can be effectively executed even when all the nodes in the

system are honest!

As will be explained later, in the Condorcet attack, an adversarial client sends a

small number of transactions to different nodes in the system. The adversary chooses

the timing and order of these transactions to create a Condorcet cycle that traps many

honest transactions in it. (a Condorcet cycle with only the adversary’s transactions

in it is all but harmless to the system.) This cycle has to be broken, by the leader

in a leader-based method, in order to establish a total ordering. Even if the leader is

honest, the act of breaking the cycle could change the order of honest transactions,

which would have otherwise been appropriately ordered1.

Defending the Condorcet attack is not straightforward. It is partly because it is

challenging to differentiate between honest transactions and otherwise valid transac-

tions that are submitted with the intention of creating a cycle. It becomes notably

more challenging to safeguard the system when, in addition to the adversarial client

outside the system, the leader and possibly a fraction of the nodes in the system are

adversarial. Nevertheless, in this work, we propose three mitigation techniques based

on three different approaches. The proposed techniques complement each other and

can work together harmoniously to maximize resistance against the attack.

1.2 Contributions

This thesis revolves around the introduction of a transaction reordering attack that

specifically targets batch-based methods [6, 7, 9]. Termed the “Condorcet Attack,”

our approach draws inspiration from a well-established concept in social choice theory

known as “Condorcet cycles” [13]. We exploit the inherent inability of batch-based

methods to order transactions within Condorcet cycles, allowing us to undermine

the system by creating such cycles deliberately by initiating a small sequence of

1Kelkar et al. [7] consider it a success for an adversary if the adversary places two transactions
into the same cycle when they should not have been.
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transactions. This constructed cycle entraps other honest transactions, effectively

disrupting their original ordering. Through extensive simulation, we demonstrate the

highly successful nature of this attack in trapping honest transactions and impeding

their intended order. The simulation utilized is accessible via the following link:

https://github.com/mavafadar/condorcet-attack-simulation

To address the pressing need for defense against the Condorcet Attack, we propose

three distinct techniques, each based on a complementary approach. These techniques

aim to counteract the attack’s disruptive effects and safeguard transaction ordering

integrity. Through comprehensive simulations, we showcase the effectiveness of each

proposed technique, solidifying their potential as reliable countermeasures.

1.3 Overview of Thesis

The remainder of this thesis is organized as follows. In Section 2, we begin with

a tour of the world of blockchain and Decentralized Finance (DeFi), providing the

reader with a foundation in these domains. Additionally, we introduce two different

attacks related to transaction reordering. We familiarize the reader with the proposed

methods for ordering transactions and shed light on their limitations. We delve into

the essential preliminaries necessary to grasp the proposed attacks and the counter-

measures. Moving on to Section 3, we describe the model on which our attack will

be conducted. By outlining the specifics of the chosen model, we provide clarity and

context for the subsequent sections. Furthermore, we present a detailed explanation

of the attack itself. Moreover, we explore strategies to improve the attack’s success

rate and analyze its potential impact on existing transaction ordering methods. In

addition, we propose three distinct methods to mitigate the attack, each with its own

set of limitations. These mitigation strategies are essential in establishing a robust

defense against potential front-running attacks, and their evaluation is crucial for a

comprehensive understanding of the overall security landscape. To assess the effec-

tiveness of our approach, we evaluate the success rate of the attack across different
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settings. Additionally, we gauge the efficiency of the provided mitigation methods,

providing valuable insights into their practical application. Finally, in Section 4, we

conclude with a summary of the key findings and a highlight of the broader implica-

tions of this research.
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Chapter 2

Background and Related Works

2.1 Transaction Mining

In this section, we will provide an explanation of the process involved in mining and

confirming a transaction on a blockchain. In our examples, we specifically focus on

the Ethereum blockchain as Ethereum’s design choices (e.g. support for complex

smart contracts) have positioned it as a versatile platform for creating a wide range

of decentralized applications.

Let’s consider an example where Alice wants to send 1 ETH to Bob. The first step

for Alice is to create a transaction that transfers 1 ETH from her account to Bob’s.

This transaction must then be signed by Alice and broadcasted to the Ethereum

blockchain. Wallet applications can facilitate the signing and sending process.

Once Alice’s transaction is broadcasted, it enters a pool of unconfirmed transac-

tions, where it awaits selection by a miner. Every transaction that is broadcasted to

the blockchain network must wait in this pool until a miner chooses it to be mined.

After a certain period of time, a miner selects Alice’s transaction along with sev-

eral other transactions to form a block. A block is simply a sequence of transactions

organized in a specific data structure with associated metadata. Once the block is cre-

ated, the miner must perform the mining process to add this block to the blockchain.

Miners receive mining rewards and transaction fees after mining the block.

To add the block to the blockchain, the miner must broadcast the block to other

7



miners. Upon receiving the block, other miners will verify the block and, if valid,

accept the block’s legitimacy, including all the transactions it contains. At this point,

the transaction has been successfully mined but is not yet confirmed. To achieve

confirmation, subsequent blocks need to be mined on top of the block containing

Alice’s transaction. Each new block added to the chain increases the confirmation

count of the previous block by one. For instance, if Alice’s transaction is mined in

block #203, and the latest mined block is #203, the subsequent mining of block #204

on top of #203 will provide one confirmation to #203.

2.2 Ordering Transactions in a Block

In the previous section, we discussed the lifecycle of a transaction from its creation

to being mined and confirmed. Now, let’s explore how miners select and order trans-

actions within a block. We note that the selection and ordering of transactions on

a blockchain are entirely determined by the miner. Miners typically select trans-

actions to include in a block based on a combination of factors, with the primary

considerations being financial incentives and the available block space.

The inclusion of a transaction inside a block requires resources such as compu-

tational resources to execute the transaction. To compensate for this, users pay

transaction fees to miners. To maximize their profits, miners prioritize transactions

based on their transaction fees. Transactions with higher transaction fees are more

lucrative for miners and are therefore selected and included in blocks first. Conversely,

transactions with lower transaction fees are mined later or may even be left out of

a block entirely for a specific amount of time, especially if the block’s capacity is

limited. By selecting transactions with higher transaction fees, miners ensure they

earn greater rewards.

8



2.3 Miner Extractable Value

Miners possess the capability to generate extra income by rearranging, injecting, or

censoring transactions while they mine. These supplementary sources of revenue,

which go beyond transaction fees and block rewards, are collectively known as Miner

Extractable Value (MEV). As mentioned in the previous chapter, an instance of MEV

is the so-called sandwich attack, a scenario in which the miner strategically positions

a transaction both before and after the victim transaction, effectively enclosing it and

potentially profiting from market fluctuations or vulnerabilities in the process.

Another example is the copy-paste attack [14]. In this attack, a miner duplicates

beneficial transactions from the mempool, replaces the recipient address with its own

address, and includes them in its block. For instance, consider the scenario where a

smart contract, specifically a Vault as shown in Listing 2.1, has a bug which enables

anyone to withdraw assets from the contract. Let’s examine the implications of this

contract when Alice attempts to withdraw funds from it:

1. Alice finds a bug in her contract and sends a transaction to withdraw funds.

2. Bob, who is a miner and has control over which transactions are included in the

block he is mining, chooses to censor Alice’s transaction and not include it in

the block.

3. Instead, Bob copies Alice’s transaction, replaces her address and signature with

his own, and includes the copied transaction in the block.

4. Bob’s transaction is successfully executed, allowing him to claim the assets

stored in the vault.

5. Alice’s transaction is executed after Bob’s transaction in a subsequent block

(perhaps by another miner), but cannot withdraw any funds since, thanks to

Bob’s transaction, the Vault contract does not have any funds.
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In this situation, Alice loses her opportunity to withdraw her funds, and Bob gains

revenue by exploiting his position as a miner to prioritize and execute his transaction

over Alice’s, effectively censoring her transaction.

1 contract Vault {

2 function withdraw(

3 bytes32 hash ,

4 uint8 v,

5 bytes32 r,

6 bytes32 s

7 ) external {

8 address signer = ecrecover(hash , v, r, s);

9 if (msg.sender == signer) {

10 msg.sender.transfer(address(this).balance);

11 }

12 }

13 }

Listing 2.1: Vault contract

2.4 Graph Terminology.

We use G = (V,E) to denote a graph with the set of vertices V and the set of edges E.

In this work, each vertex represents a transaction, therefore, we use the terms vertices

and transactions interchangeably. Unless otherwise specified, we use an unweighted

and directed graph. In the case of a weighted graph, the weight or cost associated

with the edge (u, v) ∈ E is represented by w(u, v).

A tournament graph is a directed graph where every pair of distinct vertices is

connected by a directed edge in either of two possible directions. A Strongly Connected

Component (SCC) in a graph is a maximal subgraph in which there is a path from

every vertex to every other vertex. A condensation graph is obtained from the original

graph by combining its SCCs into a single vertex. A Directed Acyclic Graph (DAG)

is a directed graph that contains no cycles, meaning it is possible to move from one

vertex to another along the directed edges, but it is not possible to return to the

original vertex by following a sequence of directed edges. A topological sort is an

ordering of the vertices in a DAG such that for every directed edge (u, v), vertex u
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appears before vertex v. In other words, if there is a directed edge from vertex u to

vertex v, then u must appear before v in the topological sort. A Hamiltonian Path

is a path in a graph that passes through every vertex exactly once. A Hamiltonian

Cycle is a cycle in a graph that passes through every vertex exactly once.

2.5 Themis.

Themis is the state-of-the-art ordering solution in which a committee of nodes col-

lectively decides on the order of transactions. Themis achieves the so-called “batch-

order-fairness” in the presence of an adversary who controls up to f < (2γ−1)n
4

nodes

out of n nodes. Themis categorized received transactions into three different cate-

gories.

• Solid Transactions: A transaction is solid if it has been received by at least

n−2f nodes. A solid transaction is one that has been received by enough honest

nodes that the leader can unambiguously include it in the current proposal while

respecting the fairness guarantees.

• Blank Transactions: A transaction is blank if it has not been received by at

least n(1 − γ) + f + 1 nodes. A blank transaction has not been received by

enough nodes yet, hence excluding it from the current proposal will not violate

fairness with respect to transactions that are included.

• Shaded Transactions: A shaded transaction is a transaction that is neither solid

nor blank. A shaded transactions is received by enough nodes to be included

to preserve fairness, but not enough nodes to finalize its position in the current

proposal.

Themis is a leader-based method and works in three phases, as described below.

• Phase 1 (Fair Propose): The Fair Propose phase is the first phase of the algo-

rithm, where each node proposes a set of transactions and their local orderings
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to the leader. The leader then uses the local orderings of n− f nodes to build

a dependency graph. In the dependency graph, an edge from a vertex v1 to

v2 indicates that the transaction v1 should be placed before the transaction v2.

From the dependency graph, the leader then computes the condensation graph

and its topological sorting to output a fair ordering.

• Phase 2 (Fair Update): The Fair Update phase is the second phase of the al-

gorithm, where the leader node updates the ordering for previous proposals.

This is necessary since this is part of the deferred ordering technique, and new

transactions may depend on previously proposed transactions, and these depen-

dencies need to be accounted for in the ordering. The Fair Update algorithm

takes the local transaction orderings of n − f nodes for previously proposed

shaded transactions as input and outputs the updated dependencies.

• Phase 3 (Fair Finalize): The Fair Finalize phase is the third and final phase of

the algorithm, where a sequence of proposals is finalized into a final ordering.

The Fair Finalize algorithm updates the graphs for each proposal and computes

the condensation graphs and their topological sorting. It then retrieves the final

transaction ordering for each proposal based on the Hamiltonian cycles of the

vertices in the sorted condensation graphs.

2.6 Condorcet Cycles.

As mentioned above, Themis constructs a dependency graph, a directed graph where

each vertex represents a transaction, and an edge from a vertex v1 to v2 indicates

that the transaction corresponding to v1 should be placed before the transaction

corresponding to v2. We refer to any cycle in this dependency graph as a Condorcet

cycle. We note that cycles can occur in a dependency graph because of the Condorcet

paradox [7].
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2.7 Related Works

The classical approach to mandating fair transaction ordering is through secure causal

ordering, a method introduced by Birman and Reiter in 1994 [15], and later improved

by Cachin et al. in 2001 [16]. This method uses encryption to conceal the content

of transactions during the ordering process, and allows decryption of transactions

only after the order of transactions is finalized. This prevents an adversary from

observing the content of transactions during the ordering process, thereby effectively

eliminating attacks such as the sandwich attack [5] that rely on inspecting transaction

contents. However, the method is unable to prevent “blind front-running attacks”

where, for instance, the adversary’s sole objective is to order her transaction first (to,

for example, get priority in purchasing a token). In addition, the method cannot

prevent attacks based on transactions’ metadata, as metadata (such as the source of

a transaction) is not encrypted.

The second approach to mandating fair transaction ordering involves a first-come,

first-served strategy. This approach is complementary to the first approach and has

been the focus of several recent studies. The existing methods that follow this strategy

can be broadly classified into two categories: timestamp-based methods and batch-

based methods. Timestamp-based methods are computationally inexpensive but re-

quire synchronized clocks. Batch-based methods, on the other hand, offer stronger

fairness than timestamp-based methods, but can tolerate fewer adversarial nodes.

2.7.1 Timestamp-based Methods

An example of a timestamp-based protocol is Pompe [8] due to Zhang et al. Pompe in-

troduces a notion of fairness called the ordering linearizability. This notion stipulates

that if the highest timestamp of a transaction tx is less than the lowest timestamp of

a transaction tx′ among honest nodes, then tx must be ordered before tx′ in the final

order of transactions. Although can enforce ordering linearizability, Pompe suffers
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from censorship issues, as noted in [7].

Kursawe’s Wendy protocol [11] is another timestamp-based protocol that defines a

notion of fairness called timed-relative-fairness. This notion requires that if all honest

nodes received a transaction tx before time τ , and transaction tx′ after τ , then tx

must be ordered before tx′.

2.7.2 Batch-based Methods

Aequitas [6] by Kelkar et al. is a batch-based method proposed for fair transaction

ordering. Aequitas enforces a fairness notion known as the γ-batch-order-fairness.

The notion requires that if two transactions tx and tx′ are received by all nodes in a

system with n nodes, and γn nodes received tx before tx′, then all honest nodes must

output tx no later than tx′. Aequitas suffers from high communication complexity

of O(n3), and can guarantee only a weak notion of liveness, one of the two pillars of

consensus security.

The second batch-based method is Quick-Fairness [9] proposed by Cachin et al.

This method enforces a fairness notion called the κ-differential-order-fairness. This

notion mandates that if the number of nodes that have received transaction tx before

tx′ exceeds κ+2f for some κ ≥ 0, then tx should be ordered no later than tx′, where

f is the maximum number of adversarial nodes in the system. Kelkar et al. [7] show

that this notion of fairness is indeed a re-parameterized version of the γ-batch-order-

fairness notion. They also demonstrate that the Quick-Fairness protocol satisfies

fairness only when all nodes are honest.

Kelkar et al. addressed the shortcomings of Aequitas in their protocol called

Themis [7]. Themis satisfies the γ-batch-order-fairness notion, and solves the live-

ness problem of Aequitas. Moreover, SNARK-Themis variant offers a communication

complexity of O(n) and standard Themis offers a communication complexity of O(n2)

instead of O(n3) offered by Aequitas. In addition, it satisfies a more generalized no-

tion of fairness than the one used in Quick-Fairness and a stronger notion of fairness
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than those used in the existing time-based methods. For these reasons, in our work,

we focus on Themis and Aequitas as the state-of-the-art fair transaction ordering

method.
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Chapter 3

Condorcet Attack and Mitigations

3.1 Model

3.1.1 System.

We consider a permissioned system with a committee of n nodes. The nodes receive

transactions directly from clients, and submit the list of their received transactions

together with the order in which the transactions were received to a special node

called the leader. The leader collects the lists of transactions from the nodes, and

proposes a final ordering using a pre-decided fair-ordering protocol. The leader in the

system is not fixed, and can change through a pre-determined protocol.

3.1.2 Fair Ordering.

We adopt the batch-order-fairness from [6, 7], the strongest notion of fair ordering

proposed to date. For a parameter 1
2
< γ ≤ 1, the batch-order-fairness specifies that

if a fraction γ of nodes receive a transaction tx before receiving another transaction

tx′, then tx must be placed in the order before tx′, with exceptions allowed only if tx

and tx′ are within the same Condorcet cycle. Transactions within a cycle are placed

in a batch, and are ordered by a method that we refer to as batch-ordering scheme.

The existing fair ordering protocols either do not specify a batch-ordering scheme or

propose a simple one (e.g., an alphabetical-based scheme [6]).
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3.1.3 Network.

The network utilizes public key infrastructure and secure digital signatures for com-

munications. As in [6], we consider two networks: the (standard) internal network (for

communication amongst nodes in the system) and the external network (for clients

to transmit their transactions to the system).

We assume that the network operates under partial synchrony [17], meaning that

there is a network delay ∆ (not known to the nodes) that limits the amount of time

it takes for messages to be delivered between nodes.

3.1.4 Adversary.

We consider an adversary who has control over f ≥ 0 out of n nodes, and also

possesses at least one client capable of submitting transactions to the system. The

adversary can deviate arbitrarily from the protocol. The adversary does not have

control over the external network, but may have full control over the internal network,

hence can delay and reorder messages up to the bound ∆.

3.2 Condorcet Attack

In this section, we present the framework of the Condorcet attack. The attack aims

at trapping honest transactions (i.e., transactions submitted by honest clients) inside

a Condorcet cycle. If there is no effective batch-ordering scheme in place (e.g., if the

batch-ordering scheme is alphabetical-based as suggested in [6]), this can change the

ordering of the honest transactions even when all the nodes in the system are honest.

An adversary can take different strategies to impose a Condorcet cycle. For in-

stance, suppose that the adversary controls f nodes, including the leader, in the

system. The adversary then controls f local orderings, and can manipulate these

orderings in a way to create a cycle. In the simulation section, we show that this

strategy can not only create a cycle but also chain the cycles to involve more honest
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Network
Environ-
ment

• The system utilizes a public key infrastructure and dig-
ital signatures for communication.

• An internal network is used for communication between
the consensus nodes.

• An external network is used for communication between
clients and nodes when submitting transactions.

• The system is assumed to operate under partial syn-
chrony conditions.

Adversarial
Model

• The adversary is assumed to control at least one client
that can submit transactions to the system. This client
alone is sufficient to mount the attack.

• The adversary has compromised f ≥ 0 out of n total
consensus nodes in the system.

• The adversary does not have control over the external
network used for client-to-node communication.

• The adversary does have control over the internal net-
work used for inter-node communication and can delay
messages on this network up to a bound of ∆.

Themis
Variant

• We consider a Themis variant that does not utilize
SNARKs.

• The choice of γ can be arbitrary in our simulations since
we assume all transactions will be received by all nodes
in a single round.

• We use the Hamiltonian cycle detection method pro-
posed by Yannis Manoussakis in [18] to find cycles in
O(n2) time, where n is the number of transactions in
the cycle.

• We break the cycles by removing the weakest depen-
dency link.

Table 3.1: Summary of the network environment, adversary model, and Themis vari-
ant that is used throughout this paper.
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transactions. Nevertheless, the length of these cycles is typically small and the chain

usually breaks rather quickly. As a result, this strategy is not effective in trapping

distant transactions1 (e.g., two transactions whose times of submission are separated

by a multiple of the average network latency).

Another strategy, which is the one we take in this work, is to create a Condorcet cy-

cle by injecting (valid) transactions into the system following a pre-described pattern.

This can be done by an adversarial client outside the system, and can be effective

even when all the nodes in the system are honest. The attack will be more effective

in creating cycles and bypassing potential countermeasures if the adversary controls

a fraction of nodes in the system (see Example 5).

The immediate damage of imposing a Condorcet cycle, as mentioned earlier, is

that it can change the true ordering of honest transactions. In addition to this, the

attack may be used to conduct other malicious activities; for instance, the adversary

can create a cycle and then with the help of an adversarial leader can try to place its

own transaction in desired positions in the final ordering.

Example 1 Let P = {P1, P2, P3} be a partition of nodes, where P1, P2 and P3 are

three parts with almost equal size. In this simple example, the adversary C uses/in-

jects two transactions A, B (i.e., S = {A, B}). In the initialization phase, C sends the

transaction A and then B to all the nodes in part P1, and sends the transaction B to

all the nodes in part P2 (it sends no transactions to the nodes in part P3). Then,

after the pause period, C sends A to all the nodes in part P2, and transaction A and

B, in that order, to all the nodes in part P3. Suppose that during the pause phase, the

nodes receive three honest transactions tx1, tx2, and tx3 all the in that order. The

local ordering of transactions at each part will be then:

P1 : [A, B, tx1, tx2, tx3]

P2 : [B, tx1, tx2, tx3, A]

P3 : [tx1, tx2, tx3, A, B]

1The analysis of why this occurs is left for future work.
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Note that without the adversarial client C disturbing the system (i.e., without trans-

actions A and B), the system would have had an easy job of ordering the honest

transactions as all the nodes in the system have received the honest transactions in

the same order, i.e. [tx1, tx2, tx3]. Because of the adversary’s transactions A and

B, however, we have a cycle now as illustrated in Figure 3.1. In this figure, an edge

from a transaction tx to a transaction tx′ indicates that the majority of the nodes

have received tx before tx′.

tx2

tx1 tx3

B A

Figure 3.1: A Condorcet cycle created using two transactions A and B

3.2.1 Attack Framework.

In this section, we provide a general construction that encompasses the different

variants of the Condorcet attack. Let C be a client controlled by the adversary, and

S be a set of arbitrary but valid transactions created by C . Let P be a partition

of the nodes in the system. In its general form, the Condorcet attack is executed in

three phases:

• Phase 1 (Initialization): In this phase, the client C sends a number of transac-

tions from the set S to each node in the system. The set of transactions sent to

a node can be different from that sent to another node. More specifically, the

client C assigns a subset Si of S (possibly an empty subset) to each part Pi in

the partition P . It then determines an ordering for each subset Si, and sends

the transactions in Si to all the nodes in part Pi with the determined order.
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• Phase 2 (Pause): In the second phase, the attacker waits for a specific amount

of time, referred to as the pause time, for the honest transactions to be received

by the nodes. The adversary can trap more transactions within a cycle as the

pause time increases. However, the pause time should be limited to a single

consensus round in the system as the attack should not extend across multiple

consensus rounds.

• Phase 3 (Finalization): The third and final phase is the finalization phase, where

the attacker completes the Condorcet cycle by sending a new set of transactions

to each part in the partition. More specifically, the client C assigns a subset

S ′
i of S (typically a different subset than Si, used in the initialization phase)

to each part Pi in the partition P . It then determines an ordering for each

subset S ′
i, and sends the transactions in S ′

i to all the nodes in part Pi with the

determined order.

Remark 2 In practice, nodes in the system may receive some honest transactions

during the initialization and/or finalization phases. These transactions may or may

not get trapped in the Condorcet cycle. Based on our simulation results, however, the

vast majority of honest solid transactions during the pause time fall into the Condorcet

cycle.

Remark 3 A potential issue that can impact the success of the Condorcet attack is

that the external network may deliver the transactions injected by the adversary out

of order. For instance, in Example 1, the transactions A and B may be received out

of order by the nodes in part P1, in which case a cycle does not occur. If the network

is prone to packet reordering, then to improve its success, the adversary can execute

multiple Condorcet attacks concurrently through what we refer to as cloning.
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3.2.2 Cloning.

Packet reordering can happen in a network because of various factors such as network

congestion, routing algorithms, and the physical distance between the source and the

destination. To conduct a successful Condorcet attack, it is important that nodes

receive the injected packets in the order they were transmitted; a deviation from the

intended order may result in the failure of the attack.

To increase the success probability of the attack in the presence of network re-

ordering, the adversary can send cloned transactions to the nodes: Instead of sending

a single transaction A, the adversary sends multiple clones of the transaction. For

instance, in Example 1, the adversary can send A1 and A2 instead of A, and sends

B1 and B2 instead of B. Essentially, the adversary interleaves the execution of two

Condorcet attacks (for better results, the adversary can interleave several instances

of the attack). Then, if the network does not change the order of the transactions,

the nodes in parts P1, P2, and P3 will receive transactions as follows:

P1 : [A1, A2, B1, B2, tx1, tx2, tx3]

P2 : [B1, B2, tx1, tx2, tx3, A1, A2]

P3 : [tx1, tx2, tx3, A1, A2, B1, B2]

In Section 3.4.3, we show that cloning can significantly increase the success rate of

the Condorcet attack in the presence of network reordering.

3.2.3 Impact on Current Solutions

The current fair transaction ordering protocols either do not offer a batch-ordering

scheme (e.g. [9]) or offer a primitive one (e.g. [6]). For instance, the proposed batch-

ordering scheme in Aequitas [6] is alphabetical ordering. Therefore, if an adversary

creates a Condorcet cycle, as in Example 1, the honest transactions will be ordered

alphabetically rather than by the time of their arrival.

Themis [7], proposes a more thoughtful batch-ordering scheme. In this scheme, a

Hamiltonian cycle is built and then used to order transactions in the cycle. The latest
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version of Themis at the time of writing this work suggests to break the weakest link

in the Hamiltonian cycle in order to convert it into a Hamiltonian path. We use this

version of Themis in our work. In the best-case scenario, the order of honest trans-

actions in the Hamiltonian cycle is preserved. Even in this case, the final ordering of

these transactions can change because the Hamiltonian cycle has to be converted into

a path by breaking the cycle at one point. It is at this point where honest transac-

tions can be divided into two groups. The ordering of the honest transactions within

each group remains correct, but the ordering of any two transactions from different

groups will be incorrect. Therefore, similar to [9] and [6], Themis is vulnerable to

the Condorcet attack even if all the nodes (including the leader) in the system are

honest.

To combat the Condorcet attack, a natural approach is to use a strong batch-

ordering scheme. For instance, in Example 1, we can observe that all the nodes

report tx1 before tx2, and all the nodes report tx2 before tx3, whereas only two

third of the nodes report A before B. In this example, the weakest link is between

adversarial transactions, and breaking it (as suggested by Themis) does not change

the true ordering of the honest transactions. This solution works for the scenario

described in Example 1. However, this solution may not work in other settings, for

example when the adversary controls a faction of nodes in the system (see Example 5).

3.3 Mitigation

Despite its simplicity, it is not straightforward to completely defeat the Condorcet

attack. In the following, we present three mitigation techniques based on three dif-

ferent approaches to hinder an adversary from successfully executing the attack. We

elaborate on the strength of each technique and confirm it through simulations later

in Section 3.4. We also explain the limitation of each technique, i.e. under what

settings/assumptions the technique may not be effective.

An interesting feature of the proposed mitigation methods is that they do not con-
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flict with each other, thus in practice, they can be applied together for the maximum

defense against the attack. Another interesting feature of the proposed mitigation

methods is that they can be easily applied to Themis, which is currently the strongest

fair-ordering solution in the literature. We elaborate on this when we cover each pro-

posed mitigation.

3.3.1 Ranked Pairs Batch-ordering

The approach we take in our first proposed mitigation is to use a strong batch-ordering

scheme to order transactions within a batch. Formally, a batch-ordering scheme is a

method that takes as input a strongly connected (possibly weighted) directed graph

G = (V,E), and returns an ordering of the vertices V . The strongly connected graph

represents the transactions that are in a batch/cycle.

The candidate for our batch-ordering scheme is ranked pairs, an electoral system

developed by Nicolaus Tideman in 1987 [19]. Ranked pairs satisfies many natural

and well-studied axiomatic properties in social choice theory2 and is resistance to

certain manipulations including adding, deleting and changing a fraction of orderings

reported by nodes [21]. In ranked pairs, the ordering is essentially achieved by choos-

ing a maximal subset E ′ of E in the inputted graph G = (V,E) with high weights

such that G′ = (V,E ′) is a DAG. The DAG is then used to establish an ordering of

the vertices V .

More specifically, our ranked pairs batch-ordering scheme takes as input a weighted

directed graph G = (V,E). Let E1 = E. In step i, i ≥ 1, the algorithm selects an

edge (u, v) ∈ Ei with the highest weight3. It then sets the order u ≺ v, unless

this violates the transitivity of the orders decided in previous steps. Finally, it sets

Ei+1 ← Ei\{(vi, vj)}, and terminates if Ei+1 = ∅.
2besides Schulze, ranked pairs is the only existing electoral system that satisfies anonymity, Con-

dorcet criterion, resolvability, Pareto optimality, reversal symmetry, monotonicity, and independence
of clones [20].

3When there are multiple edges with the highest weight, one can be chosen according to a fixed
tie-breaking method.
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We note that the idea in the above batch-ordering scheme is to establish an ordering

using the strongest edges in G. This will be an effective defense against the Condorcet

attack if the ordering of the honest transactions has “strong support” in the system.

In a special case where all the nodes are honest, and all support/report the same

ordering of honest transactions, the Condorcet attack can be fully prevented as stated

in the following theorem.

Proposition 4 Suppose that the Condorcet attack succeeds in creating a Condorcet

cycle.

Let tx1, tx2, . . . , txm be the set of honest transactions in the Condorcet cycle. Suppose

that all the nodes in the system are honest and report txi before txj for every 1 ≤

i < j ≤ m. Then the proposed ranked pairs batch-ordering scheme returns the true

ordering of the honest transaction, that is it orders txi before txj for every 1 ≤ i <

j ≤ m.

Proof. Let G = (V,E) be the graph with V representing the transactions in the

Condorcet cycle, and the weight of each edge (u, v) ∈ E, represented as w(u, v), be

equal to the number of nodes that reported u before v. Let u1, u2, . . . , um be the

vertices in V that represent the honest transactions. Let Ef ⊆ E be the set of all

edges with the full support of the nodes, that is

Ef = {e ∈ E|w(e) = n},

where n is the number of nods in the system. Since all the nodes in the system have

the same view on the ordering of the honest transactions, we get that (ui, uj) ∈ Ef

for every 1 ≤ i < j ≤ m. We note that the sub-graph G′ = (V,Ef ) of G is cycle free,

as otherwise there will be a cycle in the ordering of individual nodes. The ranked

pairs batch-ordering algorithm first chooses all the edges in Ef before proceeding with

other edges in E. When the algorithm covers all the edges in Ef the true ordering of

the honest transactions will be set, and cannot be changed by the remaining steps of

the algorithm.
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Limitation. Proposition 4 considers an ideal scenario where 1) all the nodes are

honest, and 2) they all report the honest transaction in the same order. If one of the

above two conditions does not hold, however, the Condorcet attack may be able to

create a cycle (see the following example).

Example 5 Consider a system with n = 5 nodes. Let tx1, tx2, tx3 be three honest

transactions. An adversarial client C can create a Condorcet cycle of the form

N1 : [A1, A2, A3, A4, tx1, tx2, tx3]

N2 : [A2, A3, A4, tx1, tx2, tx3, A1]

N3 : [A3, A4, tx1, tx2, tx3, A1, A2]

N4 : [A4, tx1, tx2, tx3, A1, A2, A3]

N5 : [tx3, tx2, tx1, A1, A2, A3, A4]

where A1, A2, A3, A4 are the transactions submitted by C . Note that all the nodes, except

node 5, report the order [tx1, tx2, tx3], while node 5 reports [tx3, tx2, tx1] (Node 5 is

either controlled by the adversary or is an honest node who has simply received the

transactions in this order). If we run the proposed ranked pairs batch-ordering scheme

on this cycle, the returned order of honest transactions may be inadmissible. The

fundamental determinant is that the ultimate sequence of transactions is contingent

upon the selection of a tie-breaking method employed for transaction ordering in this

instance. This is because the edge between any pair of transactions has a weight of 4

in the dependency graph. As a result, an edge between two honest transactions such

as tx1 and tx2 may be eliminated in the ranked pairs method, which would result in

tx2 and tx3 to be ordered before tx1.

Remark 6 To use the proposed ranked pairs batch-ordering scheme in Themis, we

can simply replace the Hamiltonian-based batch-ordering scheme of Themis with the

ranked pairs batch-ordering scheme in the FairFinalize algorithm. We remark that

the weight information of the dependency graph is available within the FairFinalize

algorithm, thus this replacement is possible.
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3.3.2 Post-decryption Resolution

In secure causal ordering, as mentioned earlier, transactions are ordered while they

are encrypted, and get decrypted only once a total ordering is committed [15, 16].

This prevents an adversary from observing the contents of transactions while they

are being ordered, hence eliminating those front-running attacks (e.g. the sandwich

attack [5]) that must examine the content of transactions.

To mitigate the Condorcet attack, we propose to maintain the above strategy,

except we leave the ordering of transactions inside a Condorcet cycle to after they

are decrypted. Note that after the decryption of these transactions, an adversary

cannot impose a change to the ordering as 1) there is already a consensus on the set

of transactions that must be included, thus the adversary cannot add or remove any

transaction to the set; 2) the ordering of the transactions is performed locally at each

node using a pre-determined algorithm. In other words, it is too late for the adversary

to manipulate the ordering of transactions, although the contents of transactions are

disclosed.

Once the transactions within a cycle are decrypted, their contents are disclosed,

enabling them to be partitioned into independent groups (i.e., transactions inside

different groups are independent of each other). Each group can then be ordered

independent of the others. By implementing this measure, the adversary is unable

to manipulate the ordering of honest transactions if the adversary’s transactions are

independent of honest transactions. This is because the adversary’s transactions will

not fall within any group that includes honest transactions. Note that we still need

to order the groups themselves (i.e. which group comes first, which comes second,

and so on). As transactions across various groups have no effect on one another, the

groups can be safely ordered using a pre-determined algorithm such as ranked pairs

as described in Section 3.3.1.

Remark 7 In the Themis protocol, we can apply the above post-decryption resolution
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method within the FairFinalize algorithm: If transactions A and B are independent,

the edge between them in the dependency graph can be safely removed.

Limitation. The post-decryption resolution prevents the adversary from manipu-

lating the order of honest transactions if the adversary’s transactions are independent

of the honest transactions. In certain scenarios, however, the adversary may be able

to create dependencies. For instance, consider a situation where a popular NFT is

dropping in a block currently being formed. Given the high demand, many transac-

tions are transmitted with the intention of acquiring this NFT. Recognizing this, the

adversary can execute the Condorcet attack by using transactions that fall within the

same dependency group as those attempting to acquire the NFT.

Another limitation of the post-decryption resolution is the computational burden

it places on the system to identify dependencies between transactions.

3.3.3 Broadcast

In the Condorcet attack, the adversary follows a well-structured three-phase strategy:

in the first phase, the adversary sends a set of transactions, then pauses in the second

phase, and then finishes the attack by sending another round of transactions in the

third phase. The idea behind our third mitigation technique is to disturb/break

the above pattern by broadcasting transactions inside the system as soon as they

arrive at an honest node. Because of the broadcast, the adversary’s transactions that

were submitted in the first phase will propagate in the system, which can nullify

the adversary’s target in the third phase since the transactions that the adversary

transmits in the third phase have already been received by the nodes (thus their order

has already been decided by the nodes).

In Section 3.4.5, we observe that this strategy proves highly effective in mitigating

the suggested Condorcet attack. However, it is important to note that this strategy

does incur increased communication overhead as a drawback. For instance, in Themis,

nodes transmit transactions only to the leader as opposed to broadcasting in the
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network by themselves. Therefore, when applied to Themis, the above strategy will

increase Themis’s communication overhead (although it does not increase Themis’s

quadratic communication complexity).

Limitation. The main limitation of the above broadcast-based mitigation technique

is that it will be ineffective if the adversary has strong control over the internal

network. For instance, in Themis and Aequitas, it is assumed that the adversary

controls all message delivery in the internal network, and can delay messages up to a

bound ∆. If ∆ is large enough (e.g., if it is larger than the duration of the Condorcet

attack) then the adversary can circumvent the proposed mitigation by delaying all

the broadcast transactions so they are delivered only after the attack is complete.

3.4 Simulation

To assess the impact of the Condorcet attack, as well as the effectiveness of the

proposed mitigation methods, we conduct a series of experiments through simulations.

In this section, we present the results of these experiments.

Environments. Our simulation encompasses four environments. The first en-

vironment captures the honest setting, where all the nodes and clients are honest,

thereby eliminating the possibility of a Condorcet attack. Even in this environment,

Condorcet cycles can occur. Therefore, we are interested to know if our proposed

ranked pairs batch-order scheme can more effectively order transactions within a cy-

cle than the Hamiltonian cycle-based scheme used in Themis.

In the second environment, all the nodes in the system are honest, but there is an

external adversary, who conducts the Condorcet attack from outside the system. In

this environment, we are interested to evaluate the success rate and impact of the

Condorcet attack (i.e., how many honest transactions the adversary can trap within

a cycle).

In the third environment, we introduce packet reordering to the external network.
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We evaluate the impact of this on the success rate of the Condorcet attack. We also

observe how the cloning method can help the adversary to improve its success rate.

The last environment that we consider is similar to the second environment, ex-

cept this time we guard the system using the proposed mitigation methods. In this

environment, we measure the impact of the Condorcet attack in order to examine the

strength of the proposed mitigation methods.

Clients. We use a sending process to submit all the clients’ transactions to the

system. The sending process transmits transactions in sequence at discrete times ti,

i ≥ 0. At each time instance, the process sends (n copies of) the transaction of a given

client to all the n nodes in the system. Each copy of the transaction will arrive at its

destination node with a random delay drawn independently from a distribution named

NetworkDist. We refer to this distribution as the network latency. We use another

distribution, GenerationDist, to determine the delay between two consecutive time

instances (i.e. ti+1 − ti follows the GenerationDist distribution). Similar to [7], we

set both GenerationDist and NetworkDist to exponential distributions with means

of one and r, respectively. We refer to r as external network ratio. One can think of

r as the expected number of clients who transmit transactions within a time frame

equal to the average network latency.

Themis Variant. In our simulations, we use the practical Themis variant with

the communication complexity of O(n2), instead of the the SNARK-Themis variant.

In our simulations, all transactions are eventually received by each node in a single

round. Therefore, the choice of γ does not have any impact on the simulation results

(hence, we simply set γ = 1). We used the latest version of Themis, which breaks the

Hamiltonian cycle by removing the weakest link. The weakest link is the link that

has the least weight or support in the Hamiltonian cycle. To construct a Hamiltonian

cycle, we used the proposed method by Yannis Manoussakis [18] as suggested by

Themis.
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3.4.1 Honest Environment

Honest Environment Setting. In this environment, all the nodes and clients are

honest, and consequently, there is no Condorcet attack. Nevertheless, as shown in

Figure 3.2, Condorcet cycles can occur particularly when the external network ratio

is greater than one.

To obtain the results plotted in Figure 3.2, we varied the external network ratio

from 0.01 to 1000. For each given network ratio, and each network size of n = 21

and n = 101, we conducted 100 simulation runs. In each run, the sending process

transmitted 100 transactions (at 100-time instances drawn from the GenerationDist

distribution). Once every node received all the transmitted transactions, we pro-

ceeded to generate the dependency graph using the Themis algorithm. By examining

the graph (i.e. extracting strongly connected components) we then identified all the

Condorcet cycles.

Cycle Creation Probability and Length. To ascertain the probability of Con-

dorcet cycle formation, we conducted 100 simulations and tallied the occurrences in

which a Condorcet cycle emerged during the ordering phase. An interesting observa-

tion from Figure 3.2 is that when the external network ratio is less than about one,

Condorcet cycles rarely occur. As the external network ratio becomes larger than one,

however, Condorcet cycles start to appear. For high values of the external network

ratio, as depicted in Figure 3.2, Condorcet cycles not only occur frequently, but also

include many of the transmitted transactions. Overall, this observation suggests a

critical threshold at which the system’s behavior, with respect to creating Condorcet

cycles, significantly changes.

Condorcet Cycles Categories. We refer to Condorcet cycles that are not cre-

ated by an adversary as natural Condorcet cycles. Conversely, we call a Condorcet

cycle adversarial if it is created by an adversary. In Section 3.3.1, we proposed a

ranked pairs batch-ordering scheme to handle the ordering of transactions within an
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(a) The chance of a Condorcet cycle (b) Number of transactions in cycles

Figure 3.2: Condorcet cycles in the honest environment

adversarial Condorcet cycle. Later in this section, we demonstrate that the proposed

scheme indeed alleviates the severity of the Condorcet attack.

Ranked Pairs Performance. Here, we show (Figure 3.3) that the proposed

ranked pairs batch-ordering scheme is also a good candidate for ordering transactions

within a natural Condorcet cycle. Consequently, even in an honest environment, we

can improve fairness in ordering transactions by replacing the existing batch-ordering

schemes (i.e., the alphabetical scheme, and the Hamiltonian-based scheme of Themis)

with the proposed ranked pairs batch-ordering scheme.

Batch Ordering-Schemes Performance Comparison. In Figure 3.3, the ex-

ternal network ratio (the x-axis) ranges from 1 to 1000; this is the range in which

Condorcet cycles naturally occur. The y-axis shows the fraction of transaction pairs

that are ordered correctly according to their transmission time. Each data point

in Figure 3.3 is the average of values obtained over 100 simulation runs. The data

presented in this figure demonstrate the superiority of the proposed ranked pairs

batch-ordering scheme for two network sizes of n = 21 and n = 101.

3.4.2 Adversarial Environment

Adversarial Environment Setting. In the existing adversarial environments in

the literature, there is often at least one (typically up to f = θ(n)) adversarial node
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(a) The number of nodes is n = 21 (b) The number of nodes is n = 101

Figure 3.3: Fraction of correctly ordered transactions in the honest environment

in the system. In our adversarial environment, in contrast, all the nodes in the

system can be honest. There is, however, an adversarial client in our environment

who orchestrates the Condorcet attack from outside the system.

In this section, we evaluate the performance of the Condorcet attack in this envi-

ronment. In particular, we measure the success rate of the attack in the number of

honest transactions it can trap within a cycle. The measurement is carried out for

external network ratios r less than one, as natural Condorcet cycles are rare in this

regime, particularly when r ≪ 1. This allows us to assess the strength of the attack

in creating cycles in a setting where Condorcet cycles do not naturally happen.

In our simulation, we simply use two adversarial transactions to create the Con-

dorcet cycle as described in Example 1. We set the pause time of the Condorcet

attack to τ ∈ {10, 50} times the mean of the GenerationDist distribution. This

means that, on average, τ honest transactions are transmitted to the system during

the pause time.

In parallel to the transmissions of honest transactions, the two adversarial transac-

tions are transmitted to create a Condorcet cycle. Once all transactions are received

by the nodes, we calculate two separate dependency graphs: one considering the ad-

versarial transactions, and one ignoring them. By comparing these two dependency
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graphs, we then assess the impact of the attack on the final ordering.

Condorcet Attack Performance. Figures 3.4 and 3.5 show the average number

of the honest transactions that the attack can trap within cycles over two different

settings: τ = 10 and τ = 50. As shown, for a wide range of external network ratios,

the attack can trap nearly all the honest transactions that are transmitted during the

pause time (about 9 honest transactions in the setting τ = 10, and nearly 49 honest

transactions in the setting τ = 50). This demonstrates the strength of the attack,

considering that, on average τ honest transactions are submitted to the system during

the pause time (and the attack traps nearly all of them).

(a) τ = 10, n = 21 (b) τ = 10, n = 101

Figure 3.4: Number of honest transactions trapped in Condorcet cycles for τ = 10.

(a) τ = 50, n = 21 (b) τ = 50, n = 101

Figure 3.5: Number of honest transactions trapped in Condorcet cycles for τ = 50.
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3.4.3 Network Reordering

In the Condorcet attack, the adversary sends a sequence of transactions in a particular

order to create a cycle. The external network may, however, change the order of

transactions transmitted, which can, in turn, reduce the attack’s success rate. To

evaluate this, we performed simulations over a network which changes the order of

two consecutively transmitted transactions with probability 0 ≤ p ≤ 0.5. For each

value of p, we performed 1000 runs of simulations. The success rate of the attack

was set to the fraction of runs in which the attack successfully trapped the honest

transactions in a Condorcet cycle.

Using the above setting, we conducted two instances of the Condorcet attack. The

first instance uses two adversarial transactions A and B as in Example 1, and takes

the following pattern:

P1 : A, B,Pause

P2 : B,Pause, A

P3 : Pause, A, B

As illustrated in Figure 3.6, this instance is sensitive to network reordering (the

success rate of the attack drops quickly with p). As shown in the figure, the attack’s

success rate increases when we use the second instance of cloning described below.

In our second instance (denote as tx = 4 in Figure 3.6), the adversary partitions

nodes into four parts P1, P2, P3 and P4, and uses four transactions (A, B, C and D)

instead of two, in the following pattern:

P1 : A, B, Pause , C, D

P2 : B, C, Pause , D, A

P3 : C, D, Pause , A, B

P4 : D, A, Pause , B, C

This instance of the Condorcet attack is more robust against network reordering as

demonstrated in Figure 3.6. As in the first instance, the success rate of the instance
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can be boosted using the cloning method. In particular, note that the second instance

together with a single clone is almost fully resistant to network transaction reordering.

(a) The number of nodes is n = 21 (b) The number of nodes is n = 101

Figure 3.6: Impact of network reordering on the success of the Condorcet attack.

3.4.4 A Non-Injective Condorcet Attack

Injecting transactions into the system is a key component of the proposed Condorcet

attack. Without this component, an adversary has limited power in creating cycles

even when the adversary controls the leader and a faction of all the nodes in the

system.

To illustrate the above point, we conducted simulations over two networks with

sizes: n = 21 and n = 101. In our simulation, the adversary controls the maximum

fraction of nodes, including the leader, allowed by Themis (a quarter of nodes minus

one). All these nodes report the order of their received transactions in reverse, in a

strategy to create Condorcet cycles4. The external network ratio is varied from 0.01 to

100 to capture a wide range of network conditions. The total number of transmitted

transactions is set to 100.

To evaluate the impact of the above strategy in creating cycles, we created two

4We note that this may not be an optimum strategy to create Condorcet cycles. Nevertheless,
we believe that an optimum strategy (which may be computationally intractable) may not be sig-
nificantly more successful than the adopted strategy. We leave the validation of this claim for future
work.
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dependency graphs. The first graph represents the scenario where the adversarial

nodes reverse their orderings, whereas the second graph represents the scenario where

the adversarial nodes report the true ordering. Figure 3.7 shows the results of our

simulation.

Non-Injective Condorcet Attack Performance. As shown in Figure 3.7, the

adversary’s attempts to create cycles are largely unsuccessful in the region where

the external network ratio is less than one. We note that in this region, the average

temporal gap between two different transaction transmissions is more than the average

network latency. In particular, when r ≪ 1 (i.e., when transactions are transmitted

far apart in time with respect to the network latency), honest nodes in the system

have a clear view of the true ordering of transactions. In this region, the adversary

is all but powerless in creating cycles5, as evident in Figure 3.7. In contrast, in the

same region, an external adversary can create a cycle using the proposed Condorcet

attack, even when all the nodes in the system are honest.

(a) The number of nodes is n = 21 (b) The number of nodes is n = 101

Figure 3.7: The non-injective attack has limited power in creating cycles.

5When r > 1 (i.e., in the region where Condorcet cycles naturally emerge) the adversary achieves
some degree of success in creating larger cycles than naturally occur.
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3.4.5 Mitigation

In this section, we evaluate the performance of our mitigation methods in preventing

or minimizing the impact of the Condorcet attack.

Ranked-pairs-based Mitigation Method. To evaluate the effectiveness of this

mitigation, we conducted a simulation over two network sizes of n = 21 and n = 101.

We set the pause time of the attack to 10 times the mean of GenerationDist, and set

the total number of honest transactions to 20. We varied the external network ratio

r from 0.001 to 1. Recall that in this range of external network ratio (i.e., r < 1),

Condorcet cycles do not emerge naturally; rather they are created by the Condorcet

attack. To evaluate the true impact of our ranked-pars mitigation method, therefore,

we focused on this region.

Ranked Pairs Mitigation Performance. Figure 3.8 compares the performance

of our proposed ranked-pairs-based mitigation method to the Hamiltonian-based

method used in Themis, and the simple alphabetical method. The results show

that the proposed ranked-pairs method achieves a low error rate, indicating that it

can effectively order honest transactions correctly even when they fall in a Condorcet

cycle. In contrast, the Themis algorithm’s error rate increases as the network ratio

increases, and reaches as high as about 25%. The error rate in the case of alphabeti-

cal ordering is 50%. Note that a random ordering method can, on average, correctly

orders 50% of all the pairs of transactions. In this sense, the worst-case transaction

ordering error is 50%, which is the case for the alphabetical method (this method is

essentially a random ordering method).

The Broadcast-based Mitigation Method. To evaluate the effectiveness of

the broadcast-based mitigation method, we conducted simulations using two network

sizes: n = 21 and n = 101. We introduced a new exponential distribution called

InternalNetworkDist, which captures the random delays experienced by messages

within the internal network. Specifically, we sample from InternalNetworkDist to
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(a) The number of nodes is n = 21 (b) The number of nodes is n = 101

Figure 3.8: The performance of the proposed ranked pairs-based mitigation method

determine the delay between sending a transaction from one node to another node.

This is in contrast to NetworkDist, which is used to determine the random delays

between a client and a node in the external network.

In our simulation, we set the mean of InternalNetworkDist to r′. We refer to r′

as the internal network ratio. In our simulations, we set τ to 10 times the mean of

GenerationDist (i.e. τ = 10 · r), and set the total number of honest transactions

to 20. We fixed the external network ratio to r = 0.1, to ensure that no natural

Condorcet cycles were created, and varied the internal network ratio r′ from 0.01 to

1000.

Broadcast Environment Categories. We analyzed the number of honest trans-

actions trapped in a Condorcet cycle under three different settings. In the first setting,

referred to as the “honest setting”, nodes did not broadcast and the adversary did

not conduct a Condorcet attack. In the second setting, nodes still did not broadcast,

but the adversary attempted a Condorcet attack. Finally, in the last setting, the

adversary launched an attack while the nodes employed the broadcasting method to

mitigate it.

Broadcast Mitigation Performance. Figure 3.9 shows the result of our sim-

ulations in the above three settings. The results demonstrate that the proposed
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broadcast-based mitigation is highly effective in preventing the adversary from cre-

ating a Condorcet cycle and trapping honest transactions. This can be attributed to

two key factors: Firstly, the mitigation strategy disrupts the completion of the pause

phase, thereby preventing honest transactions from being trapped in a Condorcet

cycle. When the internal network ratio r′ is smaller than the pause time, almost no

transactions are trapped. Interestingly, even when r′ exceeds the pause time, the

adversary cannot achieve the same level of performance. It is because the broadcast

of transactions with the internal network can still somewhat disturb the ordering of

adversarial transactions. This reduces the success rate of the attack as the specific

ordering of adversarial transactions is crucial for creating a Condorcet cycle. If, on

the other hand, the adversary has enough control over the internal network to delay

transactions as much as the pause time, it can circumvent the proposed broadcast-

based mitigation as the adversary can enforce the ordering of its transactions within

the internal network by delaying all the messages.

(a) The number of nodes is n = 21 (b) The number of nodes is n = 101

Figure 3.9: The performance of the proposed broadcast mitigation method
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Chapter 4

Conclusion

Condorcet cycles in social choice theory have significant implications for the stability

and reliability of voting systems. A Condorcet cycle occurs when the preferences of a

group of voters lead to a situation where no single option is preferred by a majority

over all other options. In other words, the cycle demonstrates that there is no clear

“winner” based on the majority’s preferences, leading to a paradox.

In a similar vein, Condorcet cycles can hold implications within the context of

fair transaction ordering. Here, a group of nodes in a system collectively determines

the ordering of a given collection of received transactions. In such a system, Con-

dorcet cycles can occur naturally. While these natural cycles may not significantly

disrupt fairness in the system since transactions falling within these cycles are typ-

ically received around the same time, the artificial creation of Condorcet cycles can

lead to significant unfairness in the system. In this paper, we showed that even with

all nodes in the system behaving honestly, it is relatively simple to generate such

artificial cycles. Furthermore, we demonstrated that these created cycles possess sig-

nificant power, as they can trap transactions submitted at widely different times that

would not naturally fall within a cycle.

To address this attack, we proposed three mitigation methods using different ap-

proaches. These methods complement one another and can be employed collectively

to fortify the defensive measures against the attack. Through simulations, we show-
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cased that despite their described limitations, the proposed mitigation methods can

substantially reduce the adverse impact of the Condorcet attack.
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