Usage
  • 19 views
  • 27 downloads

A Framework for Vibration based Damage Detection of Bridges under Varying Temperature Effects using Artificial Neural Networks and Time Series Analysis

  • Author / Creator
    Kostic, Branislav Z.
  • Structural Health Monitoring (SHM) has become a very important area in civil engineering for evaluating the performance of critical civil infrastructure systems such as bridges. One of the most important issues with continuous SHM is the environmental effects (such as temperature, humidity, wind) on the measurement data, which can produce bigger effects in the response of the structures than the damage itself. Damage detection is considered as one of the most important components of SHM and without appropriately considering the environmental factors in the damage detection process, the efficiency and accuracy of this process may be questionable for practical applications. Temperature is considered as one of the most important and influential environmental effects on structures, especially in bridges. In this study, an artificial neural network based approach integrated with a sensor clustering based time series analysis is employed for damage detection under the temperature effects. Damage features from the time series analysis method (will be referred as DFARX) can indicate the damage, if there is no presence of detrimental temperature effect. However, if present, temperature effect can lead to false indication of the damage existence in the structure. Neural network damage features (DFANN) are used to compensate these effects. Final damage features (DF) are computed as absolute difference between these two damage features. The proposed methodology is applied to a footbridge finite element model and it is demonstrated that the method can successfully determine the existence, location and extent of the damage for different types of damage cases under environmental temperature variability, and with different levels of the noise. Finally, recommendations for the future work, as well as the limitations of the proposed methodology are addressed.

  • Subjects / Keywords
  • Graduation date
    2015-11
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3FJ29N4B
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
    • Department of Civil and Environmental Engineering
  • Specialization
    • Structural Engineering
  • Supervisor / co-supervisor and their department(s)
    • Gül, Mustafa (Civil and Environmental Engineering)
  • Examining committee members and their departments
    • Cheng, J.J. Roger (Civil and Environmental Engineering)
    • Driver, Robert (Civil and Environmental Engineering)