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Abstract 

Structural Health Monitoring (SHM) has become a very important area in civil 

engineering for evaluating the performance of critical civil infrastructure systems such as 

bridges. One of the most important issues with continuous SHM is the environmental 

effects (such as temperature, humidity, wind) on the measurement data, which can 

produce bigger effects in the response of the structures than the damage itself. Damage 

detection is considered as one of the most important components of SHM and without 

appropriately considering the environmental factors in the damage detection process, the 

efficiency and accuracy of this process may be questionable for practical applications. 

Temperature is considered as one of the most important and influential environmental 

effects on structures, especially in bridges. In this study, an artificial neural network 

based approach integrated with a sensor clustering based time series analysis is employed 

for damage detection under the temperature effects. Damage features from the time series 

analysis method (will be referred as DFARX) can indicate the damage, if there is no 

presence of detrimental temperature effect. However, if present, temperature effect can 

lead to false indication of the damage existence in the structure. Neural network damage 

features (DFANN) are used to compensate these effects. Final damage features (DF) are 

computed as absolute difference between these two damage features. The proposed 

methodology is applied to a footbridge finite element model and it is demonstrated that 

the method can successfully determine the existence, location and extent of the damage 

for different types of damage cases under environmental temperature variability, and with 

different levels of the noise. Finally, recommendations for the future work, as well as the 

limitations of the proposed methodology are addressed.  
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CHAPTER 1: INTRODUCTION 

1.1 Introduction to Structural Health Monitoring 

Due to the complex and progressing problem of deterioration of aging civil infrastructure, 

Structural Health Monitoring (SHM) has become a very important area in civil 

engineering for assessing the performance of civil infrastructure systems. SHM is 

considered to be one of the most critical components of civil infrastructure management 

for providing an objective, versatile, and innovative decision-making support tool for 

infrastructure owners and decision-makers to increase the safety and reliability of our 

infrastructure system. Bridges are among the most critical infrastructures and most of 

them are reaching or have already reached their life span. In Canada one-third of 75,000 

highway bridges are with structural or functional deficiencies (NRCC 2013). Similarly, 

the most recent Report Card for America’s Infrastructure (2013) graded the US 

infrastructure with a D+, and C+ for bridges (one in nine of the nation’s bridges are rated 

as structurally deficient). 

Although the SHM is a relatively new concept in bridge engineering community, testing 

of bridge structures dates before 1900s (ISIS Canada 2001). SHM methodology can be 

very effective in complementing the visual inspection techniques for determination of 

condition of structures. Condition of the bridge network can be improved by continuous 

evaluation of bridges using SHM systems. Continuous monitoring of bridges improves 

safety, reduces response time and it has economic impact on the bridge maintenance 

practices. Besides the regular continuous monitoring of the structures, SHM can be 

utilized after the incidental events, such as earthquakes. SHM can then provide relevant 

information on the new condition of the structure, and determine its operational safety. 

Structural Health Monitoring (SHM) term can be defined in many ways. For example, 

Wenzel (2009) indicates that “SHM is the implementation of a damage identification 

strategy to the civil engineering infrastructure”. Karbhari and Ansari (2009) define SHM 

as “an attempt at deriving knowledge about the actual condition of a structure”. 

According to Sohn and Farrar (2000), “SHM is best studied in the context of a statistical 

pattern recognition paradigm”, composed of the following components: 
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1. Operational Evaluation;  

2. Data Acquisition;  

3. Feature Extraction;  

4. Statistical Model Development. 

Operational Evaluation comprises several steps of SHM process. Data acquisition system 

is specified based on the adopted methodology. Also, damage features are defined for 

damage detection algorithm.  

In Data Acquisition part, response of the structure is recorded and transmitted. Cleansing 

process can also be performed. If necessary, compression of data and data fusion from 

multiple sources can be conducted. Data is either archived or used simultaneously with 

the process. Deciding on excitation method is also an important part of data acquisition 

process. Forced excitation can be used in the form shakers, or other impacting devices. 

Another option is to use ambient excitation of the structures – pedestrian or vehicular 

traffic for the bridge structures, wind load, etc. 

Feature extraction process determines features that indicate the presence of damage in a 

structure. Sets of data measured on the structure are transformed to a different form, 

which can indicate the damage. As an example, damage features in vibration based 

models can take different forms: coherence functions, modal strain energy, modal 

assurance criteria, etc.  

Final step includes use of statistical models in order to separate damage features from 

damaged and undamaged states. Considering that the damage features can be sensitive to 

other factors than the damage, normalization can be conducted.  

If damage detection methodology includes input data and desired output data, that type of 

learning is considered supervised learning. Unsupervised learning refers to 

methodologies with input data only. For bridge structures, it is usually very impractical to 

retrieve desired output data, therefore unsupervised learning is preferred.  

Another classification of methods can be done depending on whether the physical models 

or models based on data are used (Aktan et al. 1999; Worden and Manson 2007). Former 

group of methods belongs to the model-based methods, and the latter one to data-driven 
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methods. For example, finite element based models belong to the first group, considering 

that they are based on physical properties of the structure. On the other side, data-driven 

methods depend on data from the measurements only. Considering that there is no 

knowledge needed on structural system in second group of methods, these methods are 

more practical for continuous monitoring of bridges, even though model-based methods 

may provide more information in certain cases. 

1.2 Damage Detection under Varying Environmental Conditions 

Considering that all materials contain some defects (Worden et al. 2007) that can 

propagate during the lifetime of the structure, detecting these defects is of major 

importance for safe and proper service of the structures. Therefore, damage detection is 

considered as one of the most important components of SHM. In damage detection 

methods, global or local techniques can be used. The issue with the local techniques is 

that the approximate location of the damage should be known in advance, which is not 

always practical. On the other hand, such issues are minimized with vibration based 

global monitoring methods. These methods have been employed for a few decades 

(Doebling et al. 1996; Farrar and Jauregui 1998; Guan 2006; Fan and Qiao 2011; 

Brownjohn et al. 2011). They are based on the fact that modal characteristics of the 

structure are related to the physical characteristics of the structure (stiffness, mass, 

damping) and that any change in these characteristics would cause change in modal 

properties, causing the change in dynamic response of the structure. Vibration response 

of the structure is usually measured at several locations, and this data is then used for 

determination of modal parameters of the structure (or other damage features based on 

the dynamic characteristics of the structure), which can then be used for damage 

detection process. 

One of the most important issues with vibration based continuous SHM is the 

environmental effects on the measurement data. This is especially true for civil 

infrastructure systems, such as bridges, where environmental factors, such as temperature, 

humidity and wind, can produce bigger effects in the response of the structure than the 

damage itself (Sohn 2007; Sohn and Oh 2009). Considering that the real damage can be 

masked by the environmental effects, this can lead to false conclusions on the damage. In 
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order to compensate environmental effects, one can use the measurements of the 

environmental data, or perform the analysis without direct measurement of these 

parameters. If measured, parameters should be determined from a wide range of different 

environmental conditions in order to comprehensively define baseline condition of the 

structure (Sohn 2007).  

Temperature is considered the most significant and influential environmental effect on 

bridges. Temperature variation alters dynamic characteristics, such as natural frequencies, 

of the structure (Sohn et al. 1999), and affects the performance of the vibration based 

methodologies. As an example, Cornwell et al. (1999) presented that for the single span 

bridge structure, modal frequencies varied up to 6% over a 24-hour period. Temperature 

changes mainly affect the stiffness of the structure (Wood 1992; Khanukhov et al. 1986; 

Sabeur et al. 2007), and support conditions (Moorty and Roeder 1992; Sohn 2007; 

Siddique et al. 2007). Besides these two effects, temperature effects can cause additional 

thermal stresses in structures, which can also alter the vibration response of the structure. 

Without appropriately considering the environmental factors in the damage detection 

process, the efficiency and accuracy of this process may be questionable for practical 

applications.  

Another difficulty for assessing the temperature effects on modal properties of structures 

is the non-uniform distribution of temperature in the structure, especially bridges. Bridges 

are usually designed as unique structures, with specific boundary conditions, geometry, 

location and types of loads (Wenzel 2009). Temperature distribution in bridges depends 

on orientation, shape and environment of the bridge structure. Therefore, this distribution 

will also be specific for different bridges. Moreover, surface temperatures are usually 

different compared to the inner temperature of the elements, because of the thermal 

inertia effect. It is also determined that temperature gradients provided in the codes are 

usually smaller than the measured temperature gradients for stiff structures (Wenzel 

2009). All of these effects contribute to the randomness of the temperature distribution in 

the structure. Besides the environmental effects, operational effects, such as traffic, can 

have disturbing effect on the vibration measurements. However, changes in the 

operational conditions, and other environmental variable parameters, such as humidity 
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and wind, have not been considered in this study. These conditions can be included as 

future steps within the framework study presented here. 

1.3 Objectives and Scope 

As discussed above, vibration based damage detection methods can experience 

detrimental effects from variable environmental factors, since change in these factors 

influences dynamic response of the structure, and therefore alters the measured data. 

Therefore, in order to successfully perform damage detection process, these effects must 

be minimized. Temperature is considered as one of the most common and influential 

environmental effect. Thus, the objective of this thesis is to develop a damage detection 

framework based on the vibration response of the structure, where temperature effects on 

damage detection process are compensated. The developed framework uses a sensor 

clustering based time series analysis method for damage detection (Gül 2011) along with 

artificial neural networks for temperature compensation. After discussing the theoretical 

developments, the methodology is tested using the finite element of a footbridge. 

1.4 Organisation of the Thesis 

This thesis comprises following chapters: 

- Chapter 2 includes literature review of relevant structural health monitoring 

research. Firstly, a variety of publications regarding the damage detection 

methods are discussed. Then, papers that consider the effect of environmental 

factor on bridges and damage detection methodologies are presented. Final 

publications presented in this chapter are the publications where compensation of 

these effects is discussed.  

- In Chapter 3, time series analysis and backpropagation neural networks are briefly 

explained. Then, a novel methodology using these two components for 

compensation of temperature effects within damage detection algorithm is 

presented.  

- Chapter 4 describes the footbridge model used for verification of the developed 

methodology, along with the analysis steps performed. Also, damage cases and 

temperature distribution used in the model are introduced.  
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- Chapter 5 includes damage detection analysis of the finite element footbridge 

model under variable temperature effects. Five damage cases are applied to the 

footbridge model under different temperature scenarios. The results of the 

proposed methodology are then presented.  

- Chapter 6 presents conclusions about most relevant issues discussed in the thesis, 

and recommendations for the future work.  
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CHAPTER 2: LITERATURE REVIEW 

Literature review of the most relevant structural health monitoring publications is 

presented in this chapter. Considering that this thesis focuses on temperature effect 

compensation in damage detection processes, papers regarding the damage detection 

methodologies are presented first. Following are the papers which analyze the 

environmental effects on bridges and damage detection methods. Finally, publications 

investigating compensation of environmental effects are presented.  

2.1 Literature Review of Methods for Damage Detection 

Damage detection is considered as one of the most important components of SHM. A 

variety of damage detection methods is presented in this section. According to Rytter 

(1993), damage detection methods can be used for different levels of assessment: 

Level 1: Is there damage in the system (existence)? 

Level 2: Where is the damage in the system (location)? 

Level 3: How severe is the damage (extent)? 

Level 4: How much useful (safe) life remains (prognosis)? 

Pandey et al. (1991) analyzed cantilever and simply supported beam models, and 

concluded that changes in curvatures of the mode shapes can indicate the location of the 

damage. Hamey et al. (2004) confirmed that damage detection process can be conducted 

with curvature of the modes, which can be measured by the piezoelectric sensors. 

Nakamura et al. (1998) investigated the application of neural-networks for damage 

detection process in a steel building structure. The structure was damaged under 

earthquake loads in Kobe, Japan in 1995. Vibration measurements were performed after 

the damage, and also after the repairs. State of the structure after the repairs was used as a 

baseline state. Neural-network based methodology was able to successfully identify 

locations of the damages that were subsequently repaired afterwards. 

Lamb waves, as non-destructive methods, have also been used for damage detection 

algorithms. Lamb waves are used along with the piezoelectric sensors, which are power 
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efficient. Monnier et al. (2000) analyzed a plate-like composite structure for localization 

of flaws. They indicated that sensitivity of lamb waves with regards to the type of the 

damage can be improved with adjusting the excitation of the sensor. Kessler (2002) 

indicated that lamb waves are more sensitive to local damage, compared to the frequency 

response methods. It was also concluded that the shortcoming of these methods is that 

they require a mechanism for wave propagation. Sohn et al. (2003) successfully detected 

delamination damage case on composite plate with variable temperature effects and 

boundary conditions. 

Yam et al. (2003) investigated a damage detection methodology applied to composite 

sandwich plate structures with crack damage. The methodology employed vibration data, 

wavelet transform and artificial neural networks (ANN). Damage features were based on 

the energy variation of wavelet signals before and after the damage, where neural 

networks were used for statistical pattern recognition. It was indicated that excitation 

signals should be consistent for the baseline and damaged case, and should contain 

sufficient number of frequency components.  

Giraldo et al. (2006) analyzed an analytical model of a benchmark structure using the 

vibration data along with the applied noise. Structural properties were obtained from this 

data, and principal component analysis (PCA) was then applied. Damage indicator in this 

method is based on the residual error of PCA method. Damage was simulated in the 

analytical model as a loss of stiffness. It was concluded that particular damage detection 

techniques may not be applicable to all types of damages in different structures.  

Bakhary et al. (2007) employed an ANN algorithm along with the substructure technique, 

in order to adapt the algorithm to be more sensitive to local damage in two span concrete 

slab model. With this method, ANN models were defined for each part of the 

substructure, and all of the substructure parts were analyzed progressively. ANN used 

modal frequencies and shapes as an input data. Eventually, the method successfully 

detected the damage, which was applied as a reduction of the local stiffness along the 

slab. 

Mehrjoo et al. (2008) used a backpropagation neural network for the analysis of damage 

cases for joints of a truss bridge. Input data comprised natural frequencies and mode 
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shapes of the structure. It was indicated that five modes were sufficient for this algorithm 

to function, and that the average errors for the testing data were 1%. 

Gül and Catbas (2009) investigated application of statistical pattern recognition based 

methods for damage detection process of a simply supported steel beam and a steel grid 

laboratory structure. AR models were defined based on the obtained vibration data, and 

were used along with the Mahalanobis distance in order to retrieve damage indicators for 

this method. Methodology was successful for most of the damage cases. Importance of 

proper determination of threshold values for damage indicators was emphasized. 

Gül and Catbas (2011) introduced a time series analysis based damage detection 

algorithm. This process was based on determining Auto-Regressive models with 

eXogenous input (ARX) from the free vibration response of the structure. Important 

feature of this methodology is that the sensor nodes were grouped in different clusters. 

ARX models were then defined by vibration data from neighbour sensors within one 

sensor cluster, in order to predict behaviour of the reference sensor in the cluster. Damage 

features used in this methodology were the fit ratios of the ARX model. This 

methodology was applied to a four DOF numerical model, and to the steel grid laboratory 

model. It successfully determined the existence, location and extent of the damage (levels 

1, 2 & 3 by Rytter (1993)). 

Shiradhonkar and Shrikhande (2011) employed a finite element model updating method 

for determination of damage location in a moment resistant frame structure. Vibration 

data from the structure, initialized by several strong earthquakes, was used to obtain 

modal parameters needed for the updating algorithm. Possible effects of the noise on the 

updating process were also discussed.  

Samali et al. (2012) investigated combination of artificial neural networks (ANN), 

frequency response functions (FRF) & principal component analysis (PCA) as a vibration 

based damage detection process. PCA was utilized to determine principal components of 

the difference between FRF components in damaged and undamaged state. PCA was also 

employed to compensate the noise effects of 10% applied in this study. ANN was finally 

used for damage detection, where FRFs from different locations in the baseline model 

were used for training of the network, and then for the simulation process. Similar 
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algorithms were employed by Li et al. (2011), Dackermann and Samali (2013) and 

Bandara et al. (2014). 

Shu et al. (2013) analyzed a finite element model of a simply supported railway bridge. 

Acceleration and displacement data from the bridge were used for determination of the 

changes of variances and covariances between baseline and damaged condition of the 

structure. A backpropagation neural network was then trained with the data from pre-

defined damage cases in order to successfully determine location and extent of the 

damage. Influence of noise and train properties is indicated. The methodology could 

successfully detect damage cases with reduction of element stiffness above 10%.  

Fassois and Kopsaftopoulos (2013) discussed different statistical time series methods 

based on the vibration data, and applied them to a laboratory truss structure for damage 

detection. Time series methods were classified as non-parametric and parametric based 

methods, and properties of both groups were analyzed. It was indicated that although 

parametric based methods were more effective with damage detection, they required 

parameter estimation to be conducted more accurately and elaborately. It was also 

concluded that adequate damage threshold should be determined in order to properly 

conduct the damage detection process. Finally, importance of using random 

excitation/vibration based data was emphasized. 

Liu et al. (2015) employed guided ultrasonic waves along with the singular value 

decomposition (SVD) method for damage detection in a pipeline structure. Field 

experimental data of a hot water piping system had been collected for a period of seven 

months. Damage detection process was based on the orthogonality between singular 

vectors from damage and environmental effects. Method was able to detect the damage 

from the mass scatterer. 

As indicated in this chapter, a variety of damage detection methods can be employed in 

SHM process. Every type of methodology experiences some limitations. Some of the 

localized methods (such as non-destructive evaluation NDE methods) need to know the 

location of the damage in advance. Other global methods, e.g. based on the modal 

parameters of the structure, do not have this issue. However, methods that are based on 

modal parameters can be conducted at only several points in the structure. Challenge with 
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the global methods is that damage usually occurs locally, which means that lower 

frequency response of the structure, usually measured during ambient excitation, may not 

be significantly affected with this damage.  

2.2 Literature Review of Environmental Effects on the Behaviour of Bridges 

and Damage Detection Process 

As already emphasized, environmental effects can have detrimental effects on damage 

detection methodologies. Here, different studies are listed, where effects of the 

environmental variability in bridges and damage detection of structures are indicated. 

Moorty and Roeder (1992) examined temperature dependent bridge movements. It was 

concluded that increase in bridge temperature causes uniform expansion in all directions 

of the bridge. Considering that some bearings allow movement only in one direction, 

large thermal forces can be introduced to the structure from temperature variation. Also, 

condition of the bearing is an important factor, considering that the deterioration of the 

supports can increase stiffness of the bearings and resistance to movement, which can 

cause increase of the thermal forces in the bridge.  

Wahab and De Roeck (1997) concluded that the temperature variation mostly influences 

the elasticity modulus in the bridge structure. Also, frequency variation of 4-5% was 

indicated due to 15°C temperature variation. Alampalli (1998) investigated support 

freezing effect at the bridge structure, and concluded that this condition can have bigger 

effects on the change of modal frequencies than the damage cases.  

Modal frequencies of the Alamosa Canyon Bridge (Doebling et al. 2000; Cornwell et al. 

1999) varied approximately 6% during a 24 hour test period. Modal frequencies varied 

mostly because of the material changes due to the temperature change, and due to the 

changes in the boundary conditions, considering that debris in the support location 

obstructed free expansion of the joints. 

Fujino et al. (2000) analyzed wind effects on a 720m suspension bridge, and compared it 

to the wind tunnel experiments. Natural frequency variation was not confirmed from the 

field measurements, considering that the natural frequency decreased with the increase of 

the wind speed up to 14.9m/s. However, it was expected that natural frequency would 
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increase after some level of the wind speed. Damping ratio significantly decreased up to a 

wind speed of 8m/s, and then it behaved in increasing manner, as in the wind tunnel 

experiment.  

Fu and DeWolf (2001) analyzed a two span steel girder bridge with temperature variation. 

FE modeling was used to verify the field measurements, where vibration data was used 

for the model calibration. Increase of the natural frequencies occurred with the drop of 

the temperature. It was also concluded that increased friction in the bearings for the lower 

temperatures partly restrained rotation of the supports, causing axial tensions forces in the 

structure. With the temperature increase from -17.8°C to 15.6°C, first three natural 

frequencies decreased by 12.3%, 16.8%, and 8.96%.  

Simonsen et al. (2002) investigated change of resilient modulus of coarse and fine 

grained subgrade soils due to temperature change. It was concluded that all soils 

experience reduction of the modulus due to the freeze-thaw process, therefore affecting 

the support conditions of structures.  

Breccolotti et al. (2004) analyzed a simply supported internal span of the reinforced 

concrete bridge over the Tiber River. They concluded that level of frequency change due 

to the damage and temperature variation is comparable, which means that temperature 

effects can mask the effects of the damage. They also indicated that methods based on 

pattern recognition, statistical analysis and neural networks may be more efficient for 

damage detection, compared to the frequency based methods.   

Catbas et al. (2008) analyzed reliability of cantilever truss bridge, with one year of 

temperature monitoring data. During that year temperature values varied between 15°F 

and 90°F. It was determined that annual peak-to-peak strain differential is ten times 

higher than strains caused by the traffic, which demonstrates the importance of 

temperature influence regarding the system reliability. It was also concluded that 

monitoring of the structure should be performed at bigger number of locations for better 

determination of temperature.  

Zhou et al. (2008) performed damage detection on cable-stayed Ting Kau Bridge with 

relative flexibility change (RFC) index, which was formulated from modal frequencies 
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and mode shape vectors of the structure. Seventeen damage cases were analyzed, 

incorporating measurement noise, traffic and temperature effects. While RFC index 

identified damage location successfully with no ambient effects, it encountered 

difficulties when these effects were added. Finally, it was concluded that data should be 

retrieved from a range of ambient conditions for successful elimination of ambient effects.  

Xu and Wu (2007) investigated a long-span cable stayed bridge and its mode shapes, as 

well as frequency variability due to the temperature changes. It was indicated that 

uniform temperature variation in a structure can be caused by seasonal weather changes, 

and non-uniform temperature distribution by radiation of sunshine during the day. 

Frequency change due to temperature variation from 40°C to -20°C was around 2%. It is 

also mentioned that asymmetric temperature distribution causes similar variation 

behaviour of frequency and mode shape variation as with the symmetric temperature 

distribution. Finally, it was determined that temperature variation causes bigger 

frequency changes than damage of cables and girders in the structure.  

Pham (2009) analyzed the Attridge Drive Overpass in Saskatoon, Saskatchewan. Due to 

the temperature change from -12°C to 40°C, first three natural frequencies decreased by 

8.3 %, 12.3 %, and 12 %. It was indicated that the major factor for frequency change was 

the reduction of the modulus of elasticity of bridge materials. Considering that the asphalt 

layer was present, relationship between the temperature variability and frequency change 

was bilinear.  

Shoukry et al. (2009) analyzed the environmental effects on Star City Bridge in West 

Virginia. Temperature varied between -8°C and +38°C. It was concluded that non-

uniform temperature gradient across the bridge was around 6.5°C.  

Li et al. (2010) used a combination of NLPCA (non-linear principal component analysis) 

and ANN (artificial neural network) for analysis of Tianjin Yonghe cable-stayed bridge 

in order to analyze the effects of temperature and wind on modal parameters. NLPCA 

was first used to separate effects of temperature and wind on vibration behaviour of the 

bridge, and to determine pre-processed modal parameters. In the next step, environmental 

factors were used as an input data for ANN regression model, where relationship between 
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these factors and modal parameters from the first step was analyzed. They concluded that 

temperature variation can affect material properties and boundary conditions.  

A simple RC slab was analyzed by Xia et al. (2011), where temperature distribution of 

the slab was confirmed using thermal analysis in the FE model. Also, natural frequencies 

were obtained from the vibration data, and were then verified with the FE model. Linear 

regression models between the structural temperature and modal frequencies were also 

determined. No clear relation between the temperature and the damping change was 

determined. Finally, it was concluded that modal analysis could be improved with 

analyzing temperature distribution of the entire structure. Xia et al. (2006) also concluded 

that natural frequencies decreased with the temperature increase in the RC slab. The same 

pattern of natural frequencies reduction occurred with the increase of humidity 

environment, considering that the mass of the RC slab increased. With the increase of 

temperature and humidity, damping also increased, but no clear relationship was 

determined. Finally, it was indicated that temperature of the structure lags to the air 

temperature because of thermal inertia effects. Considering that ARX models define the 

relationship between present outputs and previous output and input data (Ljung 1999), 

AR models or dynamic regression models were recommended as more suitable to capture 

this lag effect than the linear regression models.  

Operational and environmental factors of Tamar Suspension Bridge were analyzed by 

Koo et al (2013) with long-term monitoring data. Ambient vibration testing was also 

conducted as a part of this study. It was concluded that compared to the minor effects 

from wind, thermal effects were the major contributor to the deformation of the bridge. 

Modal frequencies also experienced large variations during the monitoring. The same 

structure was investigated by Cross et al. (2013), where acceleration data was used to 

observe changes in the modal frequencies of the deck. It was determined that daily 

frequency change was caused mainly by the traffic loading, and that seasonal frequency 

change was mostly affected by the temperature changes.  

Zhou and Yi (2014) analyzed the difficulties of defining the relationship between varying 

temperatures and vibration properties of long-span bridges. Firstly, it was presented that 

temperature effects cause change of several percent of bridge’s modal properties, which 
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indicates that modal properties should be defined with improved precision. Also, 

introduction of new materials to bridge structures was mentioned as another difficulty in 

regards to variability of vibration characteristics. Numerical and thermodynamic analysis 

was indicated as reliable part of any temperature compensation process, especially if field 

data is unavailable.  

Baptista et al. (2014) analyzed temperature effects on an electrical impedance damage 

detection algorithm. It was concluded that temperature effects cause the change of the 

amplitude and frequency shift of the resonance peaks, which demonstrated the 

detrimental effect of temperature on impedance signatures. It was determined that narrow 

range of frequency should be used for damage detection algorithm. 

As indicated in the mentioned studies, the governing factor in environmental variability 

of bridge structures is the temperature change. Thus, in order to achieve a successful 

continuous damage monitoring system, the effect of the temperature should be 

compensated.  

2.3 Literature Review of Methods for Compensation of Temperature Effects 

Relevant and recent studies where compensation of temperature effects is applied in 

different methodologies are presented in this section.  

Peeters and De Roeck (2001) investigated the Z24 Bridge in Switzerland during a period 

of one year. They observed bilinear behaviour of natural frequencies versus the 

temperature, due to the increased stiffness of the asphalt layer for temperature below 0°C. 

Besides the temperature - wind, rainfall and humidity were also monitored, but no clear 

relation was found between natural frequencies of the bridge and these parameters. It was 

recommended that data collecting should be performed after initial significant increase of 

concrete Young’s modulus in newly built concrete bridges. Only one temperature 

location was employed for collecting temperature input data used for determining ARX 

models, which were used for simulation of natural frequencies. Damage was confirmed if 

simulated natural frequencies from ARX models were outside of the confidence intervals. 

It was also concluded that ARX models were more suitable to static regression models 

when considering thermal effects in the dynamic behaviour of the structure.  
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Sohn et al. (2002) utilized a non-linear principal component analysis with auto-

associative neural network (AANN) in the data normalization process under variable 

environmental effects. AANN used parameters of the ARX model as input and output 

training data. Damage index was formulated based on the standard deviation of the 

residual error. The damage index used in this study was able to indicate the existence of 

the damage only (level 1).  

Sohn et al. (2003) performed damage detection of delamination on composite structures 

using lamb-waves, where input waveforms were designed to be damage sensitive.  

Damage detection included the effect of temperature and boundary support variability, 

and was conducted on laboratory models. The method was able to detect damage in the 

form of delamination. It was indicated that the methodology depends on the spacing of 

sensors, actuating frequency, and the wavelength of the waves.    

Principal component analysis (PCA) was applied by Yan et al. (2005a) for temperature 

effect compensation of simulated and experiment bridge models. This method was based 

on the fact that environmental effects and damage effects act as separate components in 

the damage process. Important feature of this method is that temperature measurements 

were not required. PCA was conducted on vibration data of the structures in the baseline 

state with the environmental effects. Next step was to conduct PCA analysis on models 

with variable environmental effects, and with the damage cases. Novelty index used for 

this method was a residual error of the prediction, which successfully detected different 

levels of damage. Method was later improved with non-linear models (Yan et al. 2005b).  

Ko and Ni (2005) indicated that modal frequency change due to the temperature effect 

can reach 5% to 10% for highway bridges. Ko et al. (2003) and Ni et al. (2008) 

monitored cable stayed Ting Kau Bridge continuously for one year. They determined that 

different frequencies were affected with different levels by temperature variation. Feed-

forward neural networks with backpropagation training algorithm were utilized for 

prediction of natural frequencies from 20 temperature measurements, with separate 

neural networks for each natural frequency. Finally, neural networks successfully 

performed the mapping between the measured temperatures and natural frequencies of 

the bridge.  
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Kullaa proposed a damage detection algorithm based on the missing data analysis (2004, 

2005, 2009) and the data analysis (2002). An experimental bridge structure and numerical 

model of a vehicle crane were analyzed with algorithm based on the missing data analysis 

(Kullaa 2009). Significant feature of this method is that there is no need of measuring 

environmental parameters, and the only data needed  for the training process is from the 

baseline state of the structure. Missing data analysis considers estimation of features by 

utilizing other available features, based on the assumption that the features are cross 

correlated. Considering that with estimation of each feature matrix inversion process is 

applied, this algorithm performs slower than the methods based on data analysis. Damage 

features from this algorithm are based on the maximum principal components of the 

residual. This method performed successfully with identification of the damage levels in 

two structures.  

Sohn (2007) summarized data normalization methods regarding the temperature 

variability effects. Methods were divided in groups, depending on whether the 

temperature data is available for analysis, or not. When temperature measurements are 

feasible, usually regression or interpolation analysis methods are conducted in order to 

conduct damage detection (Peeters and De Roeck 2001). Second group includes methods 

which do not use temperature for determination of damage features (Yan et al. 2005). 

Kim et al. (2007) analyzed a model of a plate-girder bridge for damage detection under 

variable temperature conditions. Vibration data of the bridge was used for determining 

existence, location and extent of the damage (levels 1, 2 & 3 by Rytter (1993)). 

Temperatures between 0°C and 30°C were considered, and the damage was introduced at 

23°C. Damage detection process employed frequency based & modal strain energy based 

methods, as well as temperature-frequency control charts. Eventually, empirical formulas 

for frequency correction were determined as a part of data normalization process. The 

method was less effective as the temperature gap between the baseline and damage case 

increased. 

He (2008) analyzed the Voigt bridge structure over a period of 50 days, under different 

environmental conditions, and used ARX models for simulation of natural frequencies of 

the structure. Air and element temperatures, as well as the wind speed were the inputs to 
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the ARX model. Output data were the natural frequencies. Damage detection was based 

on the comparison between the measured natural frequencies and ARX simulated 

frequencies – if identified frequencies were lower than simulated ones, and outside of the 

confidence interval, damage was indicated. 

Balmès et al. (2008) proposed an extension of parametric subspace identification method 

based on a residual of a covariance matrix. A non-parametric algorithm was proposed for 

compensation of temperature effects on modal parameters of the structure. This 

methodology was based on the fact that any non-stationarities present in the signal can be 

distinguished from the rest of the signal. This algorithm was applied to the simulation of 

bridge deck model and laboratory clamped beam structure. 

Deraemaeker et al. (2008) employed factor analysis in order to compensate 

environmental effects on the modal parameters of a bridge structure. Output-only 

vibration measurements were used. Modal features of the structure were ranked in terms 

of sensitivity, with or without the effect of the noise. It was indicated that the mode 

shapes seem to be the most optimal parameter for output-only damage detection 

methodology under average levels of noise and variable environmental conditions. 

Hu et al. (2009) used PCA in order to compensate the effects of the environmental factors 

on modal frequencies of the Coimbra footbridge. It was determined that temperature 

effects cause modal frequency variation of 1.7%. Hu et al. (2015) also utilized PCA 

method for compensation of temperature effects on damage detection algorithm for wind 

turbine system. PCA algorithm considers temperature effects as embedded variables in 

the system. The novelty index used for damage detection is then expected to be sensitive 

only to the damage. 

Oh and Sohn (2009) analyzed an eight degree of freedom mass-spring model with 

application of principal component analysis based damage detection algorithm. Firstly, 

AR-ARX models were defined based on the baseline vibration data from random 

excitation sources. Coefficients of these models were then used as an input data to the 

non-linear principal component analysis, where the correlation between these coefficients 

and the environmental parameters was analyzed. After the introduction of the damage, 

entire process was repeated, and AR-ARX parameters that are the closest to the new case, 
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were selected from the previous baseline data. Prediction errors from this algorithm were 

then used for determination of damage features. 

Zhou et al. (2009, 2010, 2012) investigated Ting Kau Bridge along with its FE model. 

This model was used for determination of corresponding modal properties at different 

temperature conditions. A combination of backpropagation neural network (BPNN) and 

auto-associative neural network algorithms was then used for damage detection process. 

BPNN was employed to normalize modal features of the structure from different 

temperature levels. A BPNN was determined for each modal frequency separately in 

order to compensate for the temperature effects. An AANN was then utilized for damage 

detection, where normalized modal properties were used for training and simulation, and 

novelty index was in the form of Euclidean norm of the reconstruction error. The 

maximum change of natural frequencies was 6.7%, and the methodology was successful 

at detecting the damage for frequency change of more than 1%. It was indicated that the 

method should be verified on another structure in order to confirm robustness of the 

method. It was also concluded that the relationship between the modal frequencies and 

the temperature can be improved if principal components of the temperature are used as 

input to the BPNN. 

Hsu and Loh (2010) analyzed a bridge model for the compensation of the effects of 

temperature, temperature gradient, frozen supports and humidity. Non-linear principal 

component analysis was utilized with auto associative neural networks, where residual 

error of the simulation algorithm was used for damage identification. It was mentioned 

that data should be collected for variety of different environmental conditions, in order to 

successfully train the neural network. Also, it was indicated that temperature, as an 

important environmental factor, is experiencing periodic behaviour annually. 

Basseville et al. (2010) conducted damage detection of a laboratory test beam with a 

climatic chamber using two subspace-based damage detection methods. In the first case 

null space is modified to temperature effects, where in the second case temperature 

effects are considered as nuisance effect. Model considered only axial thermal prestress 

forces, and it was indicated that three-dimensional temperature effects should be analyzed 

in the future research. 

19 



Figueiredo et al. (2011) analyzed a laboratory three-story frame structure with 

comparison of four methods for damage detection process under variable environmental 

conditions: auto-associative neural network, factor analysis, Mahalanobis squared 

distance (MSD), and singular value decomposition. Environmental variability was 

applied as a mass and stiffness change in the structure, assuming that the same effect 

would be produced from environmental variability effect in the real structure. Damage 

was introduced by a bumper mechanism simulating cracks and loose connections, and 

introducing non-linear effects in the structure. Parameters of AR time series model were 

used as damage features. An important feature of these procedures was that direct 

measurement of the environmental parameters was not needed. All of the algorithms 

performed satisfactorily, where the MSD algorithm was most successful considering the 

classification performance. It was indicated that the training process should be performed 

properly with adequately representative set of operational and environmental data. Also, 

adequateness of AR models for feature extraction was indicated considering that they 

could be used for cases when there was only output set of data, and that they responded 

well to non-linear damages. 

Sepehry et al. (2011) investigated effect of temperature on impedance-based structural 

health monitoring process. Piezoelectric wafer active sensors (PWAS) were used for this 

algorithm, where damage detection was based on the electrical coupling effect of these 

sensors. If there was any damage introduced in the structure, mechanical impedance 

would change, and electrical impedance of these sensors could detect this by the coupling 

effect. The study was based on the theoretical model of the Euler Bernoulli beam, which 

included coupling of the sensors and the structure by using corresponding kinetic and 

strain. The beam was tested under different conditions, and modal properties detected 

with PWAS sensors were in accordance with the properties from the theoretical model. 

Moser and Moaveni (2011) analyzed the relationship between modal frequencies and 

temperature changes for Dowling Hall footbridge, using ambient vibration data. 

Temperature range was from -14°C to 39°C, and modal frequency relationship to 

temperature was determined to be bi-linear, with no clear relationship between 

temperature and damping, or mode shapes. A static linear model, ARX model, bi-linear 
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model, and polynomial models were used for the analysis. Moaveni and Behnamesh 

(2012) also analyzed effect of the temperature on finite element model updating process. 

They concluded that damage detection process can be improved if temperature effects are 

considered in the FE model updating process. 

Hong et al. (2012) performed damage detection on laboratory steel girder model with 

bolted connections. Damage detection algorithm employs vibration and 

electromechanical impedance signatures from the sensor nodes. Global damage detection 

was based on vibration data, where correlation coefficient of power spectral density was 

used as a damage feature. Local damage was then based on the change in 

electromechanical impedance, where cross coefficient of impedance was used as a 

damage feature. Temperature compensation was performed with linear regression 

between the temperature values and corresponding cross coefficients. Damage detection 

and localization were performed successfully, with less successful results for 

determination of damage extent level. 

Meruane and Heylen (2012) investigated a model-based damage detection methodology 

based on the parallel genetic algorithm. This algorithm employed an objective function of 

the relationship between natural frequencies and mode shapes of the structure. The 

methodology was validated with simulated three-span bridge and experimental I-40 

bridge. Three-span bridge was analyzed for 30% of stiffness reduction in the middle span 

region, under temperature variation between 0°C and 30°C. I-40 bridge was tested for 4 

damage cases, where the smallest damage detected with this methodology was 10% 

stiffness reduction of the plate girder. Damage detection was performed for temperature 

above 0°C. It was indicated that in the future study gradient of temperature throughout 

the height and width of the bridge should be included, and that the change of boundary 

conditions and non-linear behaviour of the materials due to the temperature effect should 

be considered. 

Mosavi et al. (2012) analyzed damage cases in a steel bridge girder using random 

vibration data simulated by a hydraulic actuator, where white noise signal sets were used 

as the input to the actuator. Vibration data was used to define multivariate vector 

autoregressive models, and Mahalanobis distance was applied to coefficients of these 
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vectors in order to determine damage features. It was indicated that optimum distance of 

vibration sensors should be determined for successful damage detection process. 

Fritzen et al. (2013) analyzed compensation of environmental effects for a wind turbine 

structure. Acceleration data was used for the analysis. Damage detection was performed 

with the space based fault detection method along with the fuzzy-classification algorithm. 

The need for future studies on the effect of the noise was indicated. 

Reynders et al. (2014) applied a damage detection methodology under environmental and 

operational effects for the Z24 Bridge in Switzerland. This methodology employed non-

linear principal component analysis, and it did not require measurement of environmental 

parameters. Prediction error of the model between baseline and damaged cases was used 

as a damage indicator. 

Kullaa (2014) analyzed Z24 bridge damage detection process under variable 

environmental effects. Firstly, non-linear effects from the environmental factors were 

compensated with a data based Gaussian mixture model (GMM), where the measurement 

of environmental variables was not needed. After defining GMMs, minimum mean 

square error was applied to all components of the model, where control charts were then 

used for detection of any novelties. It was indicated that this method depended on the 

signal to noise ratio (SNR), and that the method could work even for relatively lower 

SNR. 

Laory et al. (2014) analyzed Tamar Suspension Bridge natural frequency relationship to 

variable environmental parameters, utilizing five methods: regression tree, random forest, 

artificial neural networks, support vector regression and multiple linear regression. Data 

from three years of monitoring was used, and it was determined that support vector 

regression and random forest were the most optimal methods for modal frequency 

prediction, probably because of the non-linear behaviour. 

Kromanis et al. (2014) used several regression models for determining a relationship 

between temperature and thermal response of a concrete footbridge - multiple linear 

regression (MLR), robust regression (RR), artificial neural networks (ANN) and support 

vector regression (SVR). With the use of this methodology, thermal response of the 

bridges due to the variable environmental influences was predicted successfully. Thermal 
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inertia effects were also considered by providing current and past temperature 

measurement values to the models. 

Hios and Fassois (2014) analyzed a composite beam structure using a vibration based 

stochastic global model in order to define damage detection algorithm under variable 

environmental effects. Functionally Pooled Vector AutoRegressive models used in this 

study were based either on modal parameters or discrete-time model parameter estimates, 

along with the principal component analysis data compression step. Finally, method 

proved to be effective in damage detection. 

Yarnold and Moon (2015) introduced a 3D baseline methodology for tracing any 

introduction of the damage to the bridge structure. It was determined that temperature 

changes and corresponding strains and displacements of the structure define unique 

baseline state, which in 3D space corresponds to near-flat surface. Sensitive to the 

damage effect and insensitive to the environmental effects are the bounds and orientation 

angles of these surfaces, which are used for damage detection. 

Torres-Arredondo et al. (2015) used guided ultrasonic waves in order to compensate for 

the variable environmental effects in a pipeline structure. It was indicated that the 

variable temperature effects can affect wave-propagation damage detection methods. 

Optimal baseline selection (OBS) and optimal signal stretch temperature compensation 

techniques were applied in this method. OBS method uses waveform from the baseline 

set closest to the recorded signal, which was then stretched based on the baseline signal. 

This methodology was successful in compensating the temperature effects. It was also 

concluded that modes of the guided waves should be determined for the optimal damage 

detection algorithm. 

Hu et al. (2015) analyzed effect of operational and environmental influences on modal 

properties of a wind turbine system, in order to successfully compensate these effects for 

the damage detection algorithm. Correlation analysis indicated that modal frequencies of 

the wind turbine are mostly influenced by the nacelle position, rotation speed, wind speed 

and the temperature. Two damage cases were simulated in a numerical model. Principal 

component analysis was applied for compensation of the temperature effects in the 
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damage detection process, where relation between temperatures and modal frequencies 

was determined. 

As discussed above, there are variety of methods investigated for damage detection under 

variable temperature effects. Authors have demonstrated that these methodologies can 

compensate temperature effects up to a certain level, for specific type of structures. 

However, there are certain limitations which affect the robustness and effectiveness of 

these methods. Some of the methods are only able to detect the existence of the damage 

(level 1 by Rytter). Certain methodologies need to know the location of the damage in 

advance (local methods), or are used for only one type of damage cases. In some methods 

only positive temperatures were considered for the analysis. 

The purpose of this thesis is to develop a new framework for effective damage detection 

under temperature effects. As demonstrated in later phases of this thesis, the methodology 

presented in this study is able to detect existence, location and extent of the damage 

(levels 1, 2 & 3 by Rytter). Temperature range used in this study incorporates the entire 

range that can occur for real type bridge structures. Damage location or type of the 

damage is not expected to affect the effectiveness of this methodology. 
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CHAPTER 3: PROPOSED METHODOLOGY FOR 

DAMAGE DETECTION UNDER TEMPERATURE 

EFFECTS 

As already indicated in the previous chapters, the objective of this thesis is to develop a 

damage detection algorithm based on the vibration response of a structure, where 

temperature effects on damage detection process are successfully compensated. In order 

to assess the damage under temperature effects, a sensor clustering based time series 

analysis method is employed along with backpropagation algorithm based artificial 

neural networks.  

Time series based damage detection algorithm described in Chapter 3.1 was originally 

proposed by Gül and Catbas (2011). It employs free vibration output-only data in order to 

define ARX models for different sensor locations. This methodology introduces a novelty 

approach where sensors are grouped in different sensor clusters, which are composed of 

one reference channel and other neighbour channels. Output data of the neighbour 

channels is used for predicting the behaviour of the reference channel. Changes in these 

models indicate the existence, location and severity of the damage in structure. Damage 

features are defined as the fit ratio of the ARX models (which will be referred as DFARX) 

and are sensitive to damage. However, they are also sensitive to the effects of 

temperature on the output vibration data of the structure. Therefore, effects of the 

temperature on vibrational properties of the structure must be compensated for efficient 

damage detection process. 

This thesis uses backpropagation algorithm based artificial neural networks (ANN) to 

improve the method proposed by Gül and Catbas (2011) for compensating the 

temperature effects (Chapter 3.2). First step with the ANN application is to train the 

network with DFARX from different temperature scenarios in the structure without 

introducing any artificial damage. Input data for the training process are temperature 

values from specific parts of the structure, where the output data are the mentioned DFARX 

values. Output of the ANN will be referred as DFANN, which represents damage features 
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from the time series analysis based method under temperature effects only, without any 

damage being present.  

Final damage features are presented in Chapter 3.3. They are determined as absolute 

value of the difference between the damage features from Chapter 3.1 and from Chapter 

3.2. In order to prove its effectiveness, this methodology is applied to a footbridge FE 

model with five damage cases. Characteristics of the model are presented in Chapter 4, 

and the results are explained and discussed in Chapter 5. 

3.1 Time Series Modeling for Structural Dynamics 

Time series modeling enables creation of systems based on sequence of data points in 

time, measured at uniform time intervals. Time series models can be applied to various 

problems in SHM. In this research, they are utilized for defining dynamic behaviour of 

the structure. Time series models that are relevant to this research are Auto-Regressive 

Moving Average model with eXogenous input (ARMAX model) and the Auto-

Regressive model with eXogenous input (ARX model). A more detailed description of 

these models is given in (Ljung 1999; Box et al. 2013). 

Linear time series difference equation is shown in Eq. 3.1 (Ljung 1999), which represents 

the relationship of the input, output and the error terms: 

)e(t-n)+...+ce(t-)+e(t)+cu(t-n)+...+bu(t-b
)=y(t-n)+...+ay(t-y(t)+a

ccnbbn

aan

11

1

11

1

      
(3.1)

 Where y(t) is the output of the model, u(t) is the input to the model, and e(t) is the error 

term. The unknown parameters of the model are ai, bi, and ci, and the model orders are na, 

nb, and nc. A reduced form of this expression is given in Eq. 3.2, and it represents an 

ARMAX model:  

A(q)y(t)=B(q)u(t)+C(q)e(t)          (3.2) 

where A(q), B(q), and C(q) are polynomials in the back shift operator q-1, given in Eq. 

3.3: 
-na

na
-- q+...+aq+aq+aA(q)= 2

2
1

11  
-nb

nb
-- q+...+bq+bqB(q)=b 2

2
1

1           (3.3) 
-nc

nc
-- q+...+cq+cq+cC(q)= 2

2
1

11  
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A(q)y(t) represents an AutoRegressive model, B(q)u(t) is an external input and C(q)e(t) is 

moving average of error.  

AutoRegressive implies that the current values of the variables y(t) do not depend solely 

on the other variables, but also on their own past values. Back shift operator q-1 is used 

for determining previous values of variables. Moving average part relates current value of 

the output to the current and previous values of the error terms in the system. Assumption 

in this algorithm is that the error terms are not measurable, but added to the input and 

output signals. 

The exogenous input u(t) is an observable quantity, and it is usually independent of other 

system variables. Linear time-invariance is one of the important assumptions of this 

system. As the final step of defining the time series models, parameters of the model are 

determined in order to provide the best fit for the data observed. In this study, time series 

models are fitted to the free vibration (acceleration) data from the structure. 

Block diagram of ARMAX model is indicated in Figure 3.1:  

 

Figure 3.1. ARMAX model block diagram (adapted from Ljung 1999) 

If the model orders for different components are adjusted, different time series models 

can be defined. If nb and nc are both zero, an AR model is formulated. Also, if na and nb 

are zero, an MA model is defined. In this method, by setting nc equal to zero, the ARX 

model, used in this study, is formulated:  

)+e(t)u(t-n)+...+bu(t-)=by(t-n)+...+ay(t-y(t)+a bbnaan 11 11                                       (3.4) 

which can be also written as: 

e(t)

D(q)/A(q)

+B(q)/A(q)u(t) y(t)
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t)(q)u(t)+e(A(q)y(t)=B           (3.5) 

All the parameters defined in ARMAX follow the same definition in the ARX model. 

Block diagram of ARX model is indicated in Figure 3.2:  

 

Figure 3.2. ARX model block diagram (adapted from Ljung 1999) 

Gül and Catbas (2011) proposed a damage detection methodology, based on the ARX 

models. The basis of this methodology is the equation of motion of N degrees of freedom 

(DOF) for linear dynamic system:  

t)=f(t) (t)+[K]x(x(t)+[C] x[M]                           (3.6) 
where [M] is the mass matrix, [C] is the damping matrix, and [K] is the stiffness matrix. 

If only the first row of the Eq. 3.6 is considered, and rearranged for the free vibration case, 

the following equation for the acceleration output of the 1st DOF is obtained: 

11

111111111212
1 m

)xk...x(k)xc...x(c)xm...x(mx NNNNNN ++++++++
−=


                                    (3.7)

 

Using this relation, output of a reference DOF can be obtained using the outputs of the 

neighbouring DOFs in one sensor cluster. Example of a sensor cluster scheme is given in 

Figure 3.3, where reference channel is channel L1, and neighbour channels are channels 

L2, R1 & R2. In the ARX model this means that a model for predicting the output of any 

DOF can be created, with employing the outputs of the neighbour channels as the input 

terms u(t) in Eq. 3.5. Acceleration of the reference channel in a sensor cluster is then 

defined as y(t) component, and u(t) is the acceleration of the neighbour channels in one 

cluster. Considering that this approach is using acceleration data only, one of the 

e(t)

1/A(q)

+B(q)/A(q)u(t) y(t)
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assumptions is that the model is inherently considering velocity and displacement to be 

dependent on the acceleration response. 

)(])()()()[()()( 211 tetxtxtxqBtxqA T
k +=                                                           (3.8) 

This is the ARX model for determination of output of the first DOF, utilizing other 

neighbour’s DOF, in a cluster with k sensors. Different sensor clusters which contain a 

reference channel and its neighbour channels can be formed. Any change in these models 

is expected indicate property change of the particular part of the structure. Basically, 

these models are then used for indication of the existence, location and severity of the 

damage in the structure. Kostić and Gül (2014) further verified this methodology with an 

experimental four span bridge model. 

 

Figure 3.3. Scheme of sensor cluster 1 

3.2 Artificial Neural Network – Backpropagation Algorithm 

Rumerlhart et al. (1986) were among the first to introduce backpropagation algorithm for 

multilayer perceptrons, where they proposed adjustment of the weights from input to 

hidden layers. Backpropagation along with the Levenberg-Marquardt algorithm, which is 

the algorithm used in this thesis, are described in this chapter. A typical artificial 

multilayer neural network is depicted in Figure 3.4: 
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Figure 3.4. Multilayer network algorithm (adapted from Hagan et al. 1996) 

The net input to unit i in layer k+1 is defined as (Hagan et al. 1996):  

( ) ( ) ( ) ( )ibjajiwin kk
Sk

j

kk 1

1

11 , +

=

++ += ∑             (3.9) 

The output of unit i will then be:  

( ) ( )( )infia kkk 111 +++ =             (3.10) 

If the network has M layers, equations in matrix form can be defined as:  

pa =0 ; ( )1111 ++++ += kkkkk baWfa ; 1,...,1,0 −= Mk                    (3.11) 

For the effective performance, network should be successfully trained with input and 

output data sets: ( ) ( ) ( ){ }QQ tptptp ,,...,,,, 2211 . 

In the Levenberg-Marquardt method, performance index is used to minimize the sum of 

the squares of errors, with optimizing β parameter vector:  

( )[ ]
2

1
,)( ∑

=

−=
m

i
ii xfyS ββ            (3.12) 

where iy  is measured vector, and ( )ixf  is estimated measurement vector. 
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This is an iterative procedure, and in each step β is replaced with β+δ, with δ being the 

increment. In order to find optimal δ, LM algorithm uses linear approximation of f in the 

neighbourhood of ix :  

( ) ( ) δβδβ iii Jxfxf +≈+ ,,            (3.13) 

where iJ  is gradient of f with respect to β: 

( )
β
β

∂
∂

=
,i

i

xfJ              (3.14) 

As mentioned before, at each step parameter δ, that minimizes Eq. 3.15, should be 

determined (Lourakis 2005):  

( ) ( ) δδβδβ iiiiii JeJxfyxfy −=−−≈+− ,,         (3.15) 

Minimum is reached when eJi −δ  is orthogonal to the column space of J , which leads 

to the following equation in vector notation: 

( ) 0=− eJJ T δ             (3.16) 

This can be arranged as:  

eJJJ TT =δ              (3.17) 

J is the Jacobian matrix which contains first derivatives of the network errors with 

respect to weights and biases; JJ T is the approximate Hessian matrix - approximation to 

the matrix of second order derivatives; eJ T is the gradient, and e  is a vector of network 

errors. LM algorithm practically solves a slight variation of previous equation, known as 

augmented normal equation (Lourakis 2005):  

eJN T=δ              (3.18) 

In this equation, off-diagonal elements of N are identical to the corresponding elements 

of the approximate Hessian matrix, and the diagonal elements are given as:  

[ ]iiT
ii JJIN += µ             (3.19) 
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I is the identity matrix, and µ  is the damping coefficient. Introduction of the damping 

coefficient µ  was Levenberg's contribution to the method.  

Previous equation can be arranged as:  

( ) eJJJI TT =+ δµ            (3.20) 

[ ] eJJJI TT 1−+= µδ             (3.21) 

If the damping coefficient is too large, then instead of inverting matrix IJJ T µ+ , 

Marquardt proposed to replace the identity matrix I  with the diagonal matrix consisting 

of the diagonal elements of JJ T , which gives us the Levenberg-Marquardt algorithm: 

[ ] eJJJJJdiag TTT 1)( −+= µδ                       (3.22) 

In this algorithm, values of the damping coefficient are modified throughout the steps. If 

the error is reduced with the new increment, update is accepted and the process continues 

with a decreased damping coefficient. If the error increases, then augmented normal 

equations are solved again and the process is repeated until error decreases. If µ  is large, 

this algorithm is known as steepest descent method, and for small values of µ  it is 

known as Gauss-Newton method.  

The final order for all the steps of this algorithm is:  

• All inputs are presented to the network, and outputs are calculated with Eq. 

3.11, along with the errors. Sum of squares of errors is then computed for all 

inputs. 

• Jacobian matrix is then calculated, and δ  is obtained with Eq. 3.22.  

• Sum of squares of errors is computed again. If it is smaller than the value 

in the first step, µ  is reduced by β, and algorithm goes to step 1. If not, then it is 

increased by β, and algorithm solves for δ  again.  

• Algorithm terminates when one of the stop training criteria conditions is 

achieved. 
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3.3 Methodology of the Damage Detection Analysis 

Time series analysis and neural network method represent the basis of the methodology 

used for damage detection process in this study. The main goal of this research is to 

develop methodology for damage detection under temperature effects. Time series 

analysis method is utilized here as a non-parametric method, whose output values are 

defined as damage features (DFARX). In order to obtain these damage features, time series 

models are fitted to the free vibration acceleration data of the structure, using a procedure 

explained in Chapter 3.1. When these ARX models are defined, the predicted output 

acceleration values for all the reference channels can be determined. With this data, Fit 

ratio (FR) values can be obtained with the following equation:  

100
ˆ

1 ×
−
−

−= )
}y{{y}
}y{{y}

(FR            (3.23) 

where {y} is the measured output, }ˆ{y  is the predicted output, }{y  is the mean of {y} and 

‖{y} − {y�}‖ is the norm of {y} − {y�}. 

The difference between the fit ratios of the ARX models from the baseline healthy case 

and damage case is used as a damage indicating feature (DFARX), which can successfully 

indicate the location and severity of the damage if no detrimental temperature effects are 

present. DFARX values are calculated as described in Chapter 3.1 (Gül and Catbas 2011; 

Kostić and Gül 2014):  

100×
−

=
Healthy

DamagedHealthy
ARX FR

FRFR
DF                      (3.24) 

DFARX indicates the change in the stiffness of the structure at the damage location, in 

regards to the baseline case (assuming mass of the structure is time invariant). However, 

different changes in the system that act simultaneously, can produce opposite effect on 

the stiffness change in regards to the baseline case. Specifically, if temperature effects 

cause the increase of the stiffness, and the damage case decreases the stiffness, these two 

cases will have opposite effect on the damage features (Figure 3.5 – case 1). If both 

changes cause increase of the stiffness, then they will both have the same effect on the 

damage features (Figure 3.5– case 2). In order to formulate efficient damage detection 
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methodology, where different damage and temperature cases will produce the same 

stiffness change in regards to the baseline case, three baseline cases are used for the 

analysis. Two baseline cases are defined for environmental temperatures at maximum 

negative and positive values, and one at the time of construction. With this arrangement, 

for every combination of damage case and temperature distribution, there will be at least 

one baseline case for which damage and temperature effects will produce the same 

stiffness change in regards to that baseline case. For that particular combination of 

baseline, temperature and damage case, damage features will have maximum values, 

compared to combinations with other baseline cases. Therefore, envelope of the damage 

features is adopted for the damage detection. The reason for multiple baseline cases is 

due to the fact that the damage type cannot be anticipated in advance. 

In Figure 3.5 two sets of damage features with environmental temperature load of -10°C 

are indicated. Considering that the environmental load is lower compared to the baseline 

case, it causes increase in stiffness of the structure. First set includes reduction of the 

steel modulus between channels L2 & L3 and R2 & R3, and the second set includes 

increase of the steel modulus in the same location. It is indicated that the damage features 

in the other span have almost the exact values for both cases, which means that they are 

indicating damage from the temperature only. However, in the span where the damage is 

occurring, it is indicated that damage features are much higher for the second case, where 

temperature and the damage act simultaneously, increasing the steel modulus. This 

confirms that if both damage cases have the same effect on the stiffness of the structure, 

they will have the same effect on the damage features.  
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Figure 3.5. DFARX for damage case with 20% Edecrease (case 1) and 20% Eincrease   (case 2) 

with environmental temperature at -10°C 

Damage detection algorithm is explained in detail in Figure 3.6, where all the steps are 

indicated. First step is to adopt three baseline cases, with environmental temperature 

loads at -10°C, +15°C and +30°C, and no damage applied. Second step is to define 500 

finite element models with random environmental temperature load from -10°C to +30°C, 

and with no damage applied. However, temperature change in the model is treated as 

another damage case, considering that it alters the natural frequencies and vibration 

response of the structure. Therefore, these 500 models are used as damage case models, 

and the first three cases are used as the baseline cases. DFARX are determined for all 500 

models, compared to each of the baseline cases. These damage features (DFARX) are the 

result of the temperature difference between the damage case and the baseline case.  

Neural network training part is conducted with 500 input sets of data, with 3 different 

temperature values. These temperatures represent environmental temperature values for 

three groups of bridge elements: top steel beams, bottom steel beams and concrete deck. 

Temperatures of these groups of elements are all related to the environmental temperature, 

and they can obtain a random value between -25°C and 55°C. Randomness of the 

temperature values is improved with introducing random value of ±2.5°C for temperature 

of each group. Corresponding output data comprises 500 sets of damage features values 

(DFARX) from temperature load only.  

Next step of damage detection analysis under temperature effects includes formation of 

100 finite element models, with appropriate damage case, and with random 
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environmental temperature load from -10°C to +30°C.  Damage Features (DFARX) are 

then computed for finite element models of the footbridge with temperature load and 

introduced damage cases. For damage cases with noise effect, average value of 5 

simulations was used for final value of DFARX. With this approach, random effect of the 

noise on DFARX parameters is minimized. In order to compensate these temperature 

effects, artificial neural networks are then employed. Neural network is first trained with 

the DFARX parameters from the healthy state, with random temperature effects, where 

DFARX parameters are used as output data. Also, temperature values for three groups of 

elements are used as the input data. Simulation output data of the Neural Network are the 

DFANN parameters, which represent damage features from the time series analysis based 

method. These damage features are result of temperature acting in the damage case, but 

without the damage effect on the parameters. Finally, Damage Features (DFANN) are used 

for determination of final Damage Features (DF) which are then used for damage 

detection under temperature effects. 

Final Damage features are defined as:  

)( ANNARX DFDFabsDF −=                                                                                         (3.25) 

Damage Features from all three baseline cases were analyzed, and the envelope of all the 

DFs was adopted at the end. This algorithm was performed for noise levels of 0%, 1%, 3% 

and 5%.  
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Figure 3.6. Proposed framework for damage detection under temperature effects  
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CHAPTER 4: CASE STUDY – FOOTBRIDGE FINITE 

ELEMENT MODEL 

4.1 Introduction 

The proposed method presented in Chapter 3 is applied to a finite element model of a 

44.1m footbridge structure for verification. This model is inspired by the footbridge 

structure shown in Figure 4.1, analysed by Moser and Moaveni (2011). It should be noted 

that bridge geometry and properties are adopted as similar, but not the same, as in the 

paper from Moser and Moaveni (2011). Also, some details of the structural configuration 

in the model are different than that to the bridge presented in Moser and Moaveni (2011). 

 

Figure 4.1. Dowling Hall Footbridge (from Moser and Moaveni 2011 with permission) 

Footbridge structure is composed of two equal spans of 22.05m. It is 4.1m wide and 1.8m 

high. The 19cm thick concrete slab is supported by HS 152x102x6 transverse steel beams 

located beneath the slab at 2.45m grid intervals. Longitudinal, vertical and diagonal steel 

elements in the vertical plane are rigidly connected and have the same cross section - HS 

152x102x6. Based on the geometry of this footbridge, temperature is expected to produce 

the biggest effects in the structure, compared to other environmental factors. Therefore, 

this model was adopted as adequate one for analysis of temperature effects.  
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Figure 4.2. General overview of the finite element model of a footbridge structure 

modeled in SAP2000 

The analysis was conducted in SAP2000 finite element software. Finite elements have 

the following dimensions: area elements size is adopted to be maximum 0.4m, and frame 

elements have maximum dimension of 0.6m. Orientation of frame elements is such that 

the larger dimension is in the horizontal direction (Figure 4.3) 

 

Figure 4.3. Cross section of steel elements in the footbridge structure 

Footbridge structure is supported by six pinned supports, restrained in all three 

orthogonal directions (x, y, z). Fixity of supports in bridge structures can be affected by 

different factors – deterioration of supports (Moorty and Roeder 1992), increased friction 

due to low temperatures (Fu and De Wolf 2001), freezing of accumulated moisture 

(Alampalli 1998), presence of debris at support location (Cornwell et al. 1999). Also, 

increased fixity of supports is present at bridges with internal construction, where bridge 

structure is monolithically connected to substructure. If the bridge supports are not free to 

translate, additional thermal axial forces are caused by temperature effects. These axial 

forces affect the structural stiffness of the bridge, changing the vibration response of the 

bridge structure. In this study, pinned supports were adopted in order to maximize the 

effect from these additional thermal forces on stiffness of the footbridge structure.  
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Considering that the analysis method is based on vibrational behaviour of the structure, 

vertical acceleration data was simulated for 16 joints (channels) located at the ends of the 

transverse beams (Figure 4.4). Vibration of the supports was not analyzed considering 

that these nodes are fixed in the vertical direction, resulting in no vibration, which would 

cause instability in the ARX models.  

 

Figure 4.4. Arrangement of reference sensors (channels) in footbridge structure 

 

 

Figure 4.5. Plan arrangement of reference sensors (channels) in the footbridge structure 
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Table 4.1. Sensor cluster arrangement for the footbridge structure 

Sensor Cluster Reference Channel Neighbour Channels 

1 L1 L1, L2, R1, R2 

2 L2 L1, L2, L3, R1, R2, R3 

3 L3 L2, L3, L4, R2, R3, R4 

4 L4 L3, L4, L5, R3, R4, R5 

5 L5 L4, L5, L6, R4, R5, R6 

6 L6 L5, L6, L7, R5, R6, R7 

7 L7 L6, L7, L8, R6, R7, R8 

8 L8 L7, L8, R7, R8 

9 R1 L1, L2, R1, R2 

10 R2 L1, L2, L3, R1, R2, R3 

11 R3 L2, L3, L4, R2, R3, R4 

12 R4 L3, L4, L5, R3, R4, R5 

13 R5 L4, L5, L6, R4, R5, R6 

14 R6 L5, L6, L7, R5, R6, R7 

15 R7 L6, L7, L8, R6, R7, R8 

16 R8 L7, L8, R7, R8 

Channels were grouped in 16 sensor clusters, where each cluster is composed of the 

reference channel and neighbour channels (Table 4.1). As explained in the methodology 

of the ARX method, neighbour channels are used to predict vibration behaviour of the 

reference channel.  

Vibration of the footbridge structure was initiated with a set of two vertical rectangular 

pulse forces, located at channel L7 and between channels R6 & R7 (Figure 4.6). 

Amplitude of these forces is defined with time history function in Figure 4.7: 
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Figure 4.6. Triggering forces arrangement for the footbridge structure 

 

Figure 4.7. Time history function for triggering forces in the footbridge structure 

Modal analysis of the footbridge model is performed considering the first 14 modes, with 

the modal participating mass ratio in vertical direction of 90%. This is considered to be 

adequate for the presented analysis method. First step of the modal analysis is to 

determine natural frequencies and modes for the model without any thermal effects on 

modal properties. Next step of the modal analysis includes calculation of the modal 

parameters with the stiffness properties of the structure that incorporates effects of axial 

forces from the temperature effect. Eigen vectors method are used for modal analysis in 

both steps. These modal parameters are then used for determination of acceleration 

response of the structure from the time history load case from the two rectangular pulse 
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forces. With this procedure, temperature effect is included in the vibration response of the 

structure.  

Acceleration data of 16 channels indicated was used for the analysis (Figure 4.8). The 

sampling rate used in this analysis is 0.005, which corresponds to a sampling frequency 

of 200Hz. Modal analysis of the footbridge structure is conducted with first 14 natural 

modes, where the highest frequency is 17.7Hz.  

A constant damping ratio of 1.2% was adopted for all modes of the structure. Starting 

point of the acceleration signal was shifted 6 seconds from the force impact moment, in 

order to capture free vibration data for the ARX model. Although it is not in the scope of 

this thesis, this methodology is also applicable to ambient vibration data where different 

techniques can be used a pseudo-free response data (Gül 2009). Based on the iterative 

process of determining the optimal value for the ARX model order (nb in Eq. 3.4), a 

model order of nb=8 was adopted as the optimal one. 
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Figure 4.8. Acceleration data for channels L1-L8 & R1-R8 
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4.2 Temperature Variation 

Temperature variation in the model was applied in two ways. Firstly, elastic modulus for 

steel and concrete was defined based on the temperature of these elements. Also, 

temperature load, acting uniformly across the cross section of the elements, was applied 

to the model, which is based on the temperature at the time of construction (default 

condition) and the current temperature. Temperature variation was defined for three 

groups of elements separately, where elements of each group had uniform temperature 

values: 

- 1st group: concrete slab 

- 2nd group: steel beams at concrete slab elevation 

- 3rd group: vertical, diagonal and top steel beams.  

Temperature arrangement that is used in this thesis represents one of the possible 

temperature distributions in bridge structures defined by different standards: BS 5400-2, 

AASHTO LRFD, German Bridge Code DIN 1072, Canadian Standard CAN/CSA-S6-06. 

A more detailed analysis of thermal effect distribution is not in scope of this thesis. 

Following summarises the temperature variations in bridges for different standards: 

- BS 5400-2 states that the maximum bridge temperature is higher than maximum 

shade air temperature by maximum 20°C for bridges with steel decks, and by 

11°C for bridges with concrete decks. Minimum effective bridge temperatures for 

steel elements is indicated to be -28°C, and for concrete elements -14°C. As for 

the maximum effective temperatures, for steel elements 47°C is defined, and for 

concrete elements 37°C is indicated. Temperature difference between top and 

bottom side of concrete slab is 10°C. This standard also mentions that temperature 

variation in a bridge is influenced by temperature fluctuations in shade, solar 

radiation, wind, convection, conduction and re-radiation of heat between the 

structure and surrounding environment. 

- In AASHTO LRFD code, for a moderate climate, a range from -18°C to +49°C is 

given for temperature of bridge elements, and for a cold climate from -34°C to 
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+49°C. Maximum temperature difference between top and bottom side of the 

concrete slab is indicated to be 10°C. Temperature range for the steel elements 

specifically is indicated to vary from -35°C to +50°C, and for concrete elements 

from -18°C to +27°C.  

- German code DIN 1072 indicates that a variation of ±35°C from the construction 

temperature should be considered, with differential temperature of 15°C between 

parts of the structure. Also, increase of 20°C for the top of the slab, and 35°C 

increase for the bottom edge of the steel girder is specified, compared to the 

construction temperature.  

- Canadian Standard CAN/CSA-S6-06 mentions that steel has relatively high 

conductivity, which causes larger range of effective temperatures than in concrete 

structures (Emerson 1976a, 1976b). It is also suggested that an effective 

construction temperature of 15°C should be assumed, and that thermal gradient 

effects should be considered for continuous structures. Range of maximum 

effective temperatures varies from 10°C to 20°C above maximum daily mean 

temperature, and range of minimum effective temperatures varies from 5°C to 

10°C below minimum daily mean temperature. 

Based on provisions of these standards, temperature variability in footbridge 

model was adopted as following:  

 Environmental temperature range is from -10°C to +30°C.  

 Temperature range for 1st group of elements (concrete slab) is from -10°C 

to +32.5°C. 

 Temperature range for 2nd group of elements (steel beams at concrete slab 

elevation) is from -15°C to +40°C.  

 Temperature range for 3rd group of elements (vertical, diagonal and top 

steel beams) is from -25°C to +55°C.  

46 



 Temperature in bridge elements depends on the environmental 

temperature (Figure 4.9). To provide more realistic distribution of 

temperature in bridge elements, randomness of ±2.5°C was adopted.  

 Linear temperature distribution between left and right side of the concrete 

slab was adopted. Total temperature difference between these two sides is 

5°C.  

 Temperature load (Figure 4.10) in steel elements is based on the 

construction temperature (baseline case), which is adopted as 15°C. 

Temperature difference between the environmental temperature, and the 

construction temperature in the elements is then applied as the temperature 

load.  

 Linear temperature gradient (Figure 4.11) between top and bottom side of 

the concrete side was adopted. For the minimum temperatures, this 

difference is 10°C, with the top side having smaller temperatures, while 

for the maximum temperatures this difference is 15°C, with higher 

temperatures for the top side.  

 Elastic moduli of concrete (Figure 4.12) and steel (Figure 4.13) are 

assumed to have linear relation with temperature based on the references 

from Khanukhov et al. (1986) and Sabeur et al. (2007). 
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Figure 4.9. Relation between element temperature and environmental temperature 

 

Figure 4.10. Relation between element temperature load and environmental temperature 
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Figure 4.11. Relation between thermal gradient of slab and environmental temperature 

 

Figure 4.12. Relation between elastic modulus of concrete and element temperature 

 

Figure 4.13. Relation between elastic modulus of steel and element temperature 

-100

-50

0

50

100

-10 0 10 20 30

Th
er

m
al

 G
ra

di
en

t [
°C

/m
]

Environmental Temperature [°C]

23.5
24

24.5
25

25.5
26

26.5
27

27.5

-10 0 10 20 30

El
as

tic
 M

od
ul

us
 [G

Pa
]

Element Temperature [°C]

194

196

198

200

202

204

206

-10 0 10 20 30

El
as

tic
 M

od
ul

us
 [G

Pa
]

Element Temperature [°C]

49 



4.3 Damage Cases 

Damage cases applied in this research are:  

 Damage case 1 (DC1): Reduction of steel elastic modulus of 20% for all steel 

beams between channels L2 & L3 and R2 & R3 (Figure 4.14) 

 Damage case 2 (DC2): Reduction of steel elastic modulus of 10% for all steel 

beams between channels L2 & L3 and R2 & R3 (Figure 4.14) 

 
Figure 4.14. Damage cases 1 & 2 arrangement 

 Damage case 3 (DC3): Assigning fixed support at channel R8 location, instead of 

the pinned support (Figure 4.15) 

 
Figure 4.15. Damage case 3 arrangement 
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 Damage case 4 (DC4): Reduction of steel elastic modulus of 20% for all steel 

beams between channels L6 & L7 and R6 & R7 – symmetric case compared to 

DC1 (Figure 4.16) 

 
Figure 4.16. Damage case 4 arrangement 

 

 Damage case 5 (DC5): Reduction of concrete elastic modulus of 25% for concrete 

deck between channels L2 & L3 and R2 & R3 (Figure 4.17) 

 
Figure 4.17. Damage case 5 arrangement 
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Damage cases analyzed in this research were chosen to represent some typical damage 

types that can occur at a footbridge structure. The way that the damage was simulated in 

the models is aligned with previous literature mentioned in Chapter 2. Giraldo et al. 

(2006) simulated damage as a loss of stiffness in a model. Wahab and De Roeck (1997) 

determined that elastic modulus is mostly influenced by the temperature variation. 

Doebling et al. (2000) and Cornwell et al. (1999) also concluded that temperature change 

influences modal frequencies mostly because of the material changes and the changes in 

the boundary conditions. Moorty and Roeder (1992) mentioned that stiffness of supports 

can be increased due to deterioration of the supports, considering that resistance to 

movement is also increased. Fu and De Wolf (2001) concluded that lower temperatures 

can increase friction in the bearings, and restrain rotation of the supports, causing axial 

tensions forces in the structure from the temperature effects. 

Most of the damage cases in this study cause reduction of the stiffness in the footbridge 

structure, and they were applied as a reduction of the material’s elastic modulus for the 

specific location in the structure. Several studies defined damage cases similarly 

(Meruane and Heylen 2012; Bakhary et al. 2007). In a real type structure this reduction 

can occur if there is a reduction in cross section of elements - due to corrosion of steel 

and reinforcement, chemical attack, wear, delamination, cracks, etc… Contrary to the 

reduction of stiffness in the structure, damage case 3 introduces fixed end support at 

channel R8, instead of the pinned support, which increases the stiffness of the structure 

(Moorty and Roeder 1992). Increased support fixity can occur at real type structures due 

to the effect of freezing, or obstruction of expansion by debris. This damage case is also 

more general in nature, considering that it affects support condition of the whole 

structure, and not just the elements in the specific location. 

Damage case 2 (DC2) is adopted for comparing with damage case 1 (DC1), considering 

that damage type and location is the same as in DC1, with the smaller extent of the 

damage. Damage case 4 (DC4) is also adopted for comparison with the DC1, considering 

that DC4 has the same characteristics as DC1, only with the symmetric location 

compared to the middle supports. Finally, DC5 was adopted to investigate the damage 

effect on the slab element with concrete material.  
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4.4 Damage Detection Procedure 

Damage detection procedure developed for this study comprises several sequential steps, 

indicated in Figure 3.6. For the purpose of this study damage detection procedure 

employed acceleration data of 16 channels, obtained from the SAP2000 software. 

Location of sensor channels, sampling rate, duration of the acceleration signal and 

location of the triggering forces were directly defined in SAP2000 software. VBA codes 

were employed in order to define SAP2000 input files, where variable temperature 

effects were applied to footbridge finite element models. Automatic analysis of SAP2000 

models was performed using windows batch files.  

Acceleration data obtained from the SAP2000 software was then utilized for time series 

analysis procedure, performed in the MATLAB software. MATLAB codes contained 

data about sampling rate, arrangement of the sensor clusters, duration of the acceleration 

signal used for the analysis, noise levels, delay values and time series analysis model 

orders. Time series analysis procedure employed acceleration data from baseline and 

damage cases of the footbridge model, where the output data of this procedure 

represented damage features (DFARX).  

Final step of this methodology included neural network analysis with backpropagation 

algorithm. This analysis was performed using MATLAB Neural Network Toolbox, 

where number of input, hidden and output nodes was defined. Chapter 5.3 contains 

detailed description of the relevant parameters needed for the neural network analysis 

used in this thesis. Input data for the neural network analysis contained temperature 

values from the footbridge model. Output data used for the neural network training step 

contained DFARX features, obtained from the time series analysis step. Temperature values 

used as input data were automatically obtained from the SAP2000 input files using 

MATLAB codes. Output data of the neural network procedure represented damage 

features (DFANN) from the temperature effects only.  

Final damage features (DF) were obtained using damage features from the time series 

analysis (DFARX) and neural network analysis (DFANN). All of the steps used in damage 

detection procedure were automated using MATLAB codes.  
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CHAPTER 5: ANALYSIS, RESULTS AND 

DISCUSSION 

Damage detection analysis results and discussion for the introduced methodology are 

presented in this chapter. Five damage cases are introduced to the footbridge model as 

discussed in the previous chapter, along with addition of artificial noise of 0%, 1%, 3% 

and 5%. Also, frequency variation due to the temperature effects, threshold determination 

as well as influence of the location of the triggering forces on final damage features are 

discussed in this chapter.  

5.1 Threshold Determination 

In order to correctly identify damage in a structure, a threshold value of the damage 

features for the baseline structure for different tests should be determined. Threshold 

value was adopted based on the confidence level of 90% for damage features (DFARX) 

determined from the effect of noise on the structure. Three different threshold values 

have been determined – for the noise level of 1%, 3% and 5% (Figure 5.1, Figure 5.2 & 

Figure 5.3), where two baseline cases are compared with 100 simulations. 

 

Figure 5.1. DF for 100 cases with 1% noise 
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Figure 5.2. DF for 100 cases with 3% noise 

 

Figure 5.3. DF for 100 cases with 5% noise 
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mostly linear. Due to the fact that cross sectional properties are not identical between 

these two models, natural frequencies also do not have identical values. However, it can 

be concluded that frequency values and frequency change due to the temperature 

variation follow similar pattern in both cases, which indicates that both models are 

experiencing similar dynamic behaviour due to temperature effects. This is also verified 

in Figure 5.6 and Figure 5.7, where mode shapes of both models are displayed. Therefore, 

based on this model verification analysis, footbridge model adopted for this study can be 

considered as a representative model of a real type structure.  

Based on the mode shapes indicated in Figure 5.6, it can be concluded that the governing 

direction affecting vibrational properties of the footbridge structure is the vertical 

direction. Therefore, vertical acceleration data obtained from 16 sensors at the footbridge 

structure can be considered to be representative enough for dynamic analysis of the 

structure needed for this study.   

Sample output vibration data for the baseline case, used for determination of ARX 

models are shown in Figure 4.8. Finally, in Table 5.1 frequency variation due to the 

damage cases is also presented. Frequency variation is more pronounced for bigger 

reduction of the material modulus. It is also observed that the concrete slab is not 

contributing significantly in the structure’s stiffness as the steel beams. Change in the 

value of the first natural frequency for DC5 is only 0.147%, compared to the DC2 where 

this change is 0.9%. It can also be concluded that if the concrete modulus reduces to 0%, 

change in first 4 modes is below 5%. Also, DC3 increases stiffness of the structures, 

which is indicated with opposite sign of the frequency change, whereas other damage 

cases introduce reduction of stiffness in the structure.   
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Figure 5.4. Relation between first 6 natural frequencies and the element temperature 

 

Figure 5.5. Identified natural frequencies versus western abutment temperature (from 

Moser and Moaveni 2011 with permission) 
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Figure 5.6. First 6 mode shapes of the footbridge structure 

 

 

Figure 5.7. Mode shapes identified from a preliminary test on April 4, 2009 (from Moser 

and Moaveni 2011 with permission) 
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Table 5.1. Relation between first 14 natural frequencies and damage cases 

Mode 
DC1 – 

Esteel 80% 
(%) 

DC2 –   Esteel 
90% (%) 

DC 3 -
Support fixed 

(%) 

DC4 -
Symmetric case 
Esteel 80% (%) 

DC5 –      
Econc 75% 

(%) 
Econc 0% 

(%) 

1 -2.005 -0.900 0.432 -2.005 -0.147 -3.257 
2 -1.212 -0.578 0.345 -1.212 -0.203 -4.617 
3 -1.453 -0.656 0.299 -1.453 -0.112 -1.546 
4 -0.989 -0.471 0.243 -0.989 -0.134 -2.155 
5 -0.919 -0.389 0.360 -0.919 -0.209 -19.020 
6 -0.502 -0.256 0.411 -0.502 -0.155 -18.796 
7 -0.373 -0.162 0.733 -0.373 -0.204 -24.364 
8 -0.381 -0.184 2.407 -0.381 -0.272 -23.861 
9 -1.792 -0.290 1.730 -1.792 -0.111 -12.020 

10 -2.297 -1.390 0.562 -2.297 -1.021 -11.368 
11 -0.425 -0.353 0.060 -0.425 -0.323 -11.624 
12 -1.910 -0.404 0.058 -1.910 -0.092 -10.964 
13 -2.167 -0.827 0.125 -2.167 -0.143 -10.006 
14 -0.962 -0.475 0.617 -0.962 -0.141 -8.114 

5.3 Neural Network Model Development & Results 

Artificial Neural Networks (ANNs) can generally be employed for problems for 

classification of data or prediction of data. Neural network in this thesis was used for 

prediction of data, and it belongs to the supervised network type, considering that the 

input and the output data are used for training.  

Considering that the purpose of this research is to compensate temperature effects from 

damage effects using vibration monitoring data, input data set used for training consists 

of 500 sets of 3 different temperature values, ranging from -25°C to 55°C. These 

temperatures represent environmental temperature values of three groups of bridge 

elements: top steel beams, bottom steel beams and concrete deck. Corresponding output 

data comprises 500 sets of damage features (DFARX) for the 16 channels shown in the 

previous chapters. These damage features are the result of damage detection of bridge 

model under the environmental temperature load only (i.e. no damage cases are 

introduced to the model at this point).  

The ANN is trained to predict damage features in regards to the environmental 

temperature data of three groups of bridge elements. When the damage is introduced to 
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the model, simulation of the ANN is performed with input data consisting of 3 sets of 

temperatures, applied within the damage cases. Outputs of the Neural Network (DFANN) 

are the damage features from the temperature effect only. These damage features (DFANN) 

are then used for temperature compensation process, along with the damage features 

calculated from the damage cases (Chapter 3.3).  

The ANN used for this process consists of one hidden layer with 10 nodes, and of one 

output layer with 16 nodes, which corresponds to the number of channels on the bridge. 

After conducting the analysis with different configurations of nodes, ten hidden neurons 

were finally adopted considering that the network performed satisfactorily. Determining 

the number of units for the hidden layer is usually not straightforward procedure as for 

the input and output layers (Freeman and Skapura 1991). With too few nodes, network 

may not be powerful enough for a given task. With a large number of nodes, computation 

is too expensive, and the ANN can memorize input training samples – become over-fitted 

(Mehrotra et al. 1997). Number of hidden nodes should usually be between the number of 

input and output nodes (Heaton 2008). Number of input nodes is equal to number of input 

data sets, and the number of output nodes is equal to number of output data sets. 

 

Figure 5.8. Neural network topology (MATLAB output) 

The total input data is then divided into three groups - training, validation and testing 

group. Data division method used in this network is a random method (dividerand 

comment in MATLAB), which divides the data randomly into sets for training (70%), 

validation (15%) and testing (15%). During the training phase, gradient is computed, and 

weights and biases are updated. As mentioned earlier, backpropagation training method 

adopted for this network is the Levenberg-Marquardt method (trainlm comment in 

MATLAB). 

60 



Training can also be classified as incremental training or as batch training. Batch training 

was used for this network, considering that training occurred after all the input and output 

data was presented to the network. Weights are updated only after all samples are 

presented to the network (Mehrotra et al. 1997). After the whole data is presented to the 

network, cumulative error is computed (Jagannathan 2006). In the incremental training, 

training occurs after each input is applied to the network. Batch training usually produces 

smaller errors during the training, making the process faster (Demuth and Beale 2002).  

Network should be trained with the sufficient number of input sets, and with proper set of 

data, which means that the training data should be fully representative of the 

environmental data. Training process can be controlled with the error rates. However, 

small learning error does not mean that the network is properly trained (Figure 5.9). Also, 

adding too many hidden layer units always decreases error in learning set, but it increases 

error in the test set after a point due to over-fitting (Kröse & van der Smagt 1994). 

 

 

Figure 5.9. Error rate for test & learning set compared to number of learning 

samples (left) & number of hidden units (right) (adapted from Kröse & van der Smagt 

1994) 
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goal of algorithm is to distribute active region of neurons evenly over the input space 

(Demuth and Beale 2002). This algorithm requires that the appropriate transfer function 

has a finite input range. Based on this criterion, Tansig function was selected. Advantages 

of this algorithm are that less neurons are wasted than in ordinary random weight 

methods, and that the training is faster (Demuth and Beale 2002). Considering that these 

values are random, each the network is run, results will be slightly different. After 

assigning initial values of weight and bias, input function in the layers defines how the 

input data is processed in the layer. It defines input of the layer based on the weights and 

bias values, and it combines input data by summation. 

 

Figure 5.10. Backpropagation algorithm for single neuron (adapted from Hu and Hwang 

2000) 

 

Figure 5.11. Backpropagation algorithm used in this thesis (adapted from Demuth and 

Beale 2002) 
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values to the next layer (output layer in this thesis). Function that defines output of the 

layer is a transfer function. In this thesis, Tan-Sigmoid Transfer function is used for 
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hidden layer, which is a MATLAB equivalent of tanh function (Figure 5.12). Certain 

transfer functions constrain output data values between some maximum and minimum 

limit values, which means that they rescale the summation data. This is the case with the 

tansig function, which limits output data values between -1 & 1. Some transfer functions 

introduce limits between 0 & 1, but considering that the input data of this network is the 

temperature of the bridge elements, which can have negative values, choosing transfer 

function with negative limits is more appropriate. This data is then transferred to the 

output layer.  

 

Figure 5.12. Activation functions of hidden and output layer with n input vectors 

(adapted from Demuth and Beale 2002) 

With this data, the output layer produces the output values, which are basically prediction 

values based on the input data. Transfer function of the output layer is the purelin 

function (Figure 5.12). It does not have limit values, but returns the values passed to it. 

This is important, considering that network output can have any range of values. When 

these values are compared to the desired output values, error is calculated and "back 

propagated" to the hidden layer. However, every node receives a portion of the error, 

because of the corresponding weight. Process is repeated until each node in the network 

has received an error signal that describes its relative contribution to the total error. Based 

on this signal, connection weights are updated (Freeman and Skapura 1991). Weights on 

the output layer are updated first. Network tries to minimize the network performance 

function (calibration process), which is the mean square error (mse) function in our 

network. If the new introduced data comprises similar patterns as in the training data, 

hidden layers will be activated with the corresponding output data. One step of modifying 

the connection weights is defined as an epoch (all the weights are modified once). 
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One of the standard backpropagation algorithms is the gradient descent algorithm. With 

this algorithm, the network is updated in the direction of negative gradient of the 

performance function. With this type of training, learning rate, which refers to the rate of 

how the network learns and retains patterns from the data, is constant during the process. 

This can cause the algorithm to converge slowly. In conjugate gradient method, 

algorithms are being updated along conjugate directions, which makes the process faster 

than with gradient descent algorithm. Speed of training can also be improved with 

adaptive learning rate, learning with momentum, or with the application of better initial 

conditions - weights and activation functions (Jagannathan 2006). Newton's method is 

one of the alternatives to these conjugate gradient methods. However, it includes the 

calculation of the Hessian matrix, which can be a complex step for feed-forward neural 

networks. The Levenberg-Marquardt (LM) method (Chapter 3.2) is the method used for 

this network, and it does not involve calculation of the Hessian matrix, as in the Newton's 

method. It computes the approximate Hessian matrix. This method belongs to category of 

fast algorithms, which use standard numerical optimization techniques. It is also 

considered to be the fastest for moderate-sized feed-forward networks (Demuth and 

Beale 2002). It has characteristics of the Newton's method - speed, and of steepest 

descent method - convergence (Hagan and Demuth 1996). 

In the backpropagation procedure, some steps include calculation of the derivatives of the 

transfer functions. For a static network, as in this thesis, static derivative algorithm is 

employed. It uses chain rule to determine derivatives from the networks performance 

(Demuth and Beale 2002). During the training, several indicators of neural network 

performance are displayed in output window of MATLAB: performance, magnitude of 

the gradient of performance, and validation check number.  

 

Figure 5.13. Neural network training progress 
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Output data of the neural network part of the methodology are also presented in this 

chapter. First, several plots are presented for comparison of how well the network fit the 

data: Error Histogram, Performance Plot, Regression Plot. In Figure 5.14 it is indicated 

that as the noise level increases from 0% to 5%, range of errors also increases. In Figure 

5.15 graphs indicate that all three error curves are with similar shape, which is a good 

indicator of the network behaviour.  

 

Figure 5.14. Neural network histograms for different levels of noise 

 

Figure 5.15. ANN validation performance diagrams for different levels of noise 
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Figure 5.16. Neural network R values for different values of noise 

This arrangement (topology) of the neural network performed satisfactory, which is 

proven by the correlation coefficient (R) value of 0.908 for noise of 5%, 0.981 for noise 

of 3%, 0.997 for noise of 1%, and 0.999 for the training case with no noise as shown in 

Figure 5.16. Perfect correlation in the regression analysis of the network, gives value of 

R=1 - exact linear relationship between target values and actual outputs.  
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It is also observed that the R value decreases as the level of the noise is increased. Noise 

in the data set of the real structure can occur due to instrumentation and operational 

issues. Considering that this is a numerical analysis, noise of 1%, 3% & 5% is introduced 

artificially. Adding noise to training sometimes helps the network to converge even if no 

noise is expected on the inputs (Freeman and Skapura 1991). This is especially the case 

when the size of the training set is small (Merhotra et al. 1997).  

Criteria for stopping the procedure are usually when the number of these epochs reaches 

certain value, or when the error reaches some minimum value (convergence). These 

criteria are called "Stop Training Criteria". For this network, maximum number of epochs 

was 1000, minimum gradient value was 1e-07, and maximum number of validation 

checks was 6, which means that validation error fails to decrease for 6 iterations. 

All the parameters from the MATLAB NN Toolbox indicated that the Neural Network 

successfully fitted the data needed for compensation of temperature effects on vibration 

monitoring data. In the following sections, results for the damage cases are presented. 

5.4 Damage case 1 (DC1): Reduction of steel elastic modulus of 20% for all steel 

beams between channels L2 & L3 and R2 & R3 

5.4.1 DC1 with 0% noise 

Damage Features (DFARX) for DC1, indicated in Figure 5.17a, are damage features 

determined without any detrimental effect from the temperature. They clearly show the 

exact location of the damage, with the appropriate damage feature values. Channels L2 & 

L3 and R2 & R3 have the highest damage features as expected. Considering that this is a 

continuous structure, channels that are the closest to the mentioned channels have also 

high damage features, compared to the channels in the opposite span. This demonstrates 

that the location and the extent of the damage are clearly identified when there is no 

temperature effect in the structure. However, Figure 5.17b indicates that when there is 

temperature effect included in the response of the structure, DFARX for the most of the 

random temperatures cannot clearly indicate the location and severity of the damage. For 

clarity purposes only first 10 out of 100 cases with random temperature are indicated in 

Figure 5.17b and Figure 5.17c. 

67 



In the Figure 5.17c DFANN for the first 10 random temperatures are presented, which are 

the outputs of the Neural Network. They represent damage features for the temperature 

effect only, with no damage in the structure. These damage features are then employed 

for determination of final DFs, which are presented in Figure 5.17d. It can be concluded 

that these DFs can clearly indicate the existence, location and severity of the damage 

even when the damage and temperature changes are applied simultaneously. Moreover, 

the DF values in this graph are very similar to the reference DF values in Figure 5.17a. 

 

 

 

Figure 5.17. DC1 with 0% noise diagrams – (a) DFARX with damage only; (b) DFARX with 

damage and temperature effects; (c) Neural network output (DFANN); (d) Final values of 

DFs after correction using DFANN ; (e) Damage location 
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5.4.2 DC1 with 1%, 3% & 5% Noise effect 

In Figure 5.18a, Figure 5.19a & Figure 5.20a DFARX values are indicated for the structure 

with temperature effect, noise effect and damage. In Figure 5.18b, Figure 5.19b & Figure 

5.20b final DF values are presented, where damage is still clearly indicated, but not 

uniformly as for the case with 0% noise. It can be concluded that as the level of noise 

increases, final DFs have less uniform pattern. This is due to the nature of the noise effect 

on the damage features. Noise introduces irregularity in the vibration signals, and mainly 

decreases the values of the damage features. Higher levels of noise will decrease damage 

features to a greater extent. Moreover, same levels of the noise will have different effects 

on the different levels of damage features. This means that specific noise will have 

smaller effect on the higher damage features, than on the lower damage features. This is 

why there is a bigger gap between the extreme values of the damage features for the 

higher levels of the noise. Nevertheless, even with the biggest level of noise, DFs in 

Figure 5.20b can still detect, locate and indicate severity of the damage in the structure. It 

is indicated that for the adjacent span, all the damage features have smaller values than 

the threshold, which confirms that there is no damage present in the mentioned span.  

 

Figure 5.18. DC1 with 1% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 
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Figure 5.19. DC1 with 3% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 

 
Figure 5.20. DC1 with 5% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 

5.5 Damage case 2 (DC2): Reduction of steel elastic modulus of 10% for all steel 

beams between channels L2 & L3 and R2 & R3 

5.5.1 DC2 with 0% noise 

This damage case is identical to DC1, except that the elastic modulus of the steel is 

reduced for 10%, instead of 20% as in DC1. Therefore, it is expected that the highest 

damage features will be at the same channel locations, but with reduced values of damage 

features. This is confirmed in the Figure 5.21a, where the highest damage features are 

observed for channels L2 & L3 and R2 & R3, with values around 0.6. If compared to the 

values in DC1 where the highest damage features had maximum values of around 1.2, it 

can be concluded that ratio of damage features is same as ratio of decrease of steel 

modulus – 10% vs. 20%. This relation confirms that the method can indicate the extent of 

the damage consistently. Figures 5.21b & 5.21c follow the same pattern as for DC1. In 

Fig. 5.21d it is shown that the final DFs match DFARX from 5.21a.  
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Figure 5.21. DC2 with 0% noise diagrams – (a) DFARX with damage only; (b) DFARX with 

damage and temperature effects; (c) Neural network output (DFANN); (d) Final values of 

DFs after correction using DFANN ; (e) Damage location 
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5.5.2 DC2 with 1%, 3% & 5% noise 

In Figure 5.22, Figure 5.23 & Figure 5.24 it is indicated that the noise affects final values 

of DFs in the same way as in DC1, and that the final values of DFs are approximately 

equal to 50% of the values in DC1. This is in accordance with the amount of the 

reduction of steel modulus, which was reduced for 10% in DC2, compared to the 20% in 

DC1. This confirms that although noise affects the final shape of the damage features, 

relative severity of the damage is still consistently indicated. Finally, although the amount 

of the damage in this damage case is 50% smaller than in DC1, location, existence and 

the severity of the damage is still indicated for majority of the random temperature cases. 

It is also presented that for the adjacent span, all the damage features have smaller values 

than the threshold, which confirms that there is no damage present in the mentioned span.  

 

Figure 5.22. DC2 with 1% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 

 
Figure 5.23. DC2 with 3% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 
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Figure 5.24. DC2 with 5% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 

5.6 Damage case 3 (DC3): Fixed support at channel R8 location, instead of the 

pinned support 

5.6.1 DC3 with 0% noise 

Damage case 3 is the only damage case in this study with the damage causing increase of 

the stiffness in the structure. The other four damage cases are applying decrease of the 

material modulus. Also, this damage case can be considered to be more global in nature 

than the other damage features, considering that it alters the boundary conditions of the 

structure. Considering that this damage case is more general in nature, the values of the 

damage features are higher than for the other damage cases. In Figure 5.25a it is indicated 

that the highest damage features are at the channel R8, which is the exact location of the 

damage. Moreover, channels L7, L8 and R7, which are the closest to the channel R8, also 

have higher damage features compared to the rest of the channels. With this graph, the 

exact path of the stiffness change due to the damage in the structure is indicated. 

Elements that are the closest to the damage location therefore experience the biggest 

change in the stiffness - damage.  

In Figure 5.25b, it is shown that the detrimental effect of the temperature on damage 

detection process is not so pronounced as for the previous damage cases. This is due to 

the type of the damage, which is more global in nature, and the fact that the temperature 

has smaller effects on damage features with higher values. Nevertheless, it is indicated 

that temperature still has considerable effect on the shape of the damage features, 

compared to the Figure 5.25a. Finally, diagram of the final DFs in Figure 5.25d indicates 
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that this algorithm successfully determined damage features for all random temperature 

cases.  

 

 

 

Figure 5.25. DC3 with 0% noise diagrams – (a) DFARX with damage only; (b) DFARX with 

damage and temperature effects; (c) Neural network output (DFANN); (d) Final values of 

DFs after correction using DFANN ; (e) Damage location 
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5.6.2 DC3 with 1%, 3% & 5% noise 

Figure 5.26a, Figure 5.27a & Figure 5.28a indicate that noise effect is not so pronounced 

as for the previous damage cases. Reasons for this are exactly the same as for the 

temperature effect – damage features have higher values than in previous damage cases, 

and the damage itself is more global in nature. However, noise effect is still considerable, 

especially considering that damage features at channel locations L7 and L8 are not so 

pronounced as for cases with 0% noise. As mentioned above, specific noise has smaller 

effect on the higher damage features, than on the lower damage features. That is why 

damage features at channels L7 & L8 are more influenced by the noise effect than 

damage features at channel R8. Damage features for channel R8 are clearly indicated 

with more uniform values compared to Figures 5.26a, Figure 5.27a & Figure 5.28a. 

These diagrams confirm that this algorithm can successfully solve damage detection 

problems with global damages, and with damages that cause the increase of the stiffness 

in the structure.  

 
Figure 5.26. DC3 with 1% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 

 
Figure 5.27. DC3 with 3% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 
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Figure 5.28. DC3 with 5% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 

5.7 Damage case 4 (DC4): Reduction of steel elastic modulus of 20% for all steel 

beams between channels L6 & L7 and R6 & R7 – symmetric case to DC1 

5.7.1 DC4 with 0% noise 

Damage case 4 is identical to the DC1, except the location of the damage is symmetrical 

in regards to the middle supports of the bridge. This means that the damage is located 

between channels L6 & L7 and R6 & R7. Figure 5.29a presents appropriate DFARX values, 

which are successfully indicating the location and extent of the damage. Figure 5.29b & 

5.29c follow the same pattern as for DC1. Finally, in the Figure 5.29d, it is shown that 

DF values are corresponding to the DFARX values in Figure 5.29a, and to appropriate 

values in DC1. Also, it is shown that the diagram is not fully symmetric, as in DC1. This 

is explained by the fact that the damage location in this case is much closer to the 

location of the triggering forces, which are not symmetrical compared to the longitudinal 

axis of the footbridge. Therefore, the final graph in Figure 5.29d is not totally symmetric 

as in DC1. The effect of the triggering force location is further investigated in section 5.9. 

 

 

0
0.5

1
1.5

2
2.5

3
3.5

Channels

D
FA

RX

0
0.5

1
1.5

2
2.5

3
3.5

Channels

D
F

5.28a

 
  

5.28b

 
  

76 



 

 

 

Figure 5.29. DC4 with 0% noise diagrams – (a) DFARX with damage only; (b) DFARX with 

damage and temperature effects; (c) Neural network output (DFANN); (d) Final values of 

DFs after correction using DFANN ; (e) Damage location 
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have smaller values than the threshold, which confirms that there is no damage present in 

the mentioned span.  

 
Figure 5.30. DC4 with 1% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 

 
Figure 5.31. DC4 with 3% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 

 
Figure 5.32. DC4 with 5% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 
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5.8 Damage case 5 (DC5): Reduction of concrete elastic modulus of 25% for 

concrete deck between channels L2 & L3 and R2 & R3 

5.8.1 DC5 with 0% noise 

This damage case was adopted in order to investigate how temperature variability affects 

damage detection process due to the stiffness change of concrete material. Damage 

Features DFARX for the damage case only have smaller values compared to the other 

damage cases. This indicates that the extent of the damage in this damage case is smaller 

than in other damage cases. In order to verify this, frequency change analysis, due to the 

different applied damage cases, was conducted. Table 5.1 confirms that the smallest 

change in the frequency occurs in this damage case. Change in the value of the first 

natural frequency for DC5 is only 0.147%, compared to the DC2 where this change is 

0.9%. It can also be concluded that if the concrete modulus reduces to 0%, change in first 

4 modes is below 5%. This indicates that concrete slab is not contributing significantly in 

the structure’s stiffness as the steel elements. It is indicated how this difference 

progresses as damage is being increased.  

Considering that damage features in Figure 5.33a were not as high as in the other damage, 

temperature variability has bigger effect on the DFARX shown in Figure 5.33b, compared 

to the other damage cases. However, Figure 5.33d indicates that this damage detection 

procedure can successfully detect damage even with smaller values of damage features, 

and with change in the first natural frequency of only 0.147%.  
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Figure 5.33. DC5 with 0% noise diagrams – (a) DFARX with damage only; (b) DFARX with 

damage and temperature effects; (c) Neural network output (DFANN); (d) Final values of 

DFs after correction using DFANN ; (e) Damage location 
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5.8.2 DC5 with 1%, 3% & 5% noise 

Considering that the values of the damage features are much smaller than for the other 

damage cases, it is presented in Figure 5.34, Figure 5.35 & Figure 5.36 that the noise has 

significant effect on the damage features. Therefore, this algorithm was not able to 

successfully determine the correct location and severity of the damage for majority of the 

cases with 3% and 5% noise. This is explained by the fact that concrete slab does not 

contribute to the stiffness of the structure as much as the other steel elements. Therefore, 

reduction of the stiffness in the slab is not so pronounced in the damage detection 

procedure as in other damage cases.  

 
Figure 5.34. DC5 with 1% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 

 
Figure 5.35. DC5 with 3% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 
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Figure 5.36. DC5 with 5% noise diagrams – (a) DFARX with damage and temperature 

effects; (b) Final values of DFs after correction using DFANN 

5.9 Influence of the Impact Location 

In the analysis of DC4 it was mentioned that final DF values were not fully symmetric, as 

in DC1. It was also indicated that this was due to the fact that the damage in that damage 

case was much closer to the location of the triggering forces. These forces by themselves 

are not symmetric in regards to the longitudinal bridge axis, which causes final DFs to be 

asymmetric. In order to confirm this, different impact locations of the triggering forces 

were used for comparison (Figure 5.37).  

In Figure 5.38 it is shown that for all locations of the triggering forces, damage features 

diagrams follow similar pattern, with maximum values at channels L2 & L3 and R2 & R3 

locations. However, as the force location becomes closer to the damage location, 

difference between the damage features at opposite sides of the bridge increases. This is 

confirmed in Table 5.2, which shows differences between the damage features of 

channels L3 & R3: 100
)(

3

33 ×
−

L

RL

DF
DFDF

.  

This data confirms that the location of the triggering forces can alter the values of the 

damage features, especially if the location of the forces is close to the damage. However, 

effect of the location of these impact forces is not significant for the final values of 

damage features.  
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Figure 5.37. Different impact locations of the triggering forces 

 

Figure 5.38. DFARX for different impact locations of the triggering forces 

Table 5.2. Difference between DFARX between channels L3 & R3 for different impact 

locations of the triggering forces 

 

DC1 location
1
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7
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number:
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difference 
(%)

1 3.40
2 3.51
3 3.73
4 4.01
5 4.06
6 4.19
7 4.06

83 



CHAPTER 6: CONCLUSIONS AND 

RECOMMENDATIONS 

6.1 Conclusions 

In this thesis, a new framework to compensate detrimental temperature effects in damage 

detection process is presented. For the proposed framework, a time series analysis based 

damage detection method is employed along with backpropagation artificial neural 

networks for damage detection. 

A finite element model of a steel footbridge structure with concrete deck and with two 

equal spans is used for verification of the developed methodology. Five damage cases are 

applied to the model, along with variable temperature effects with a range of -25°C and 

55°C. These temperature effects cause change of elastic modulus for steel and concrete 

material, as well as additional axial forces in the structure. These two factors then alter 

the dynamic response of the structure.  

In the time series analysis part of the method, vibration data of the structure is used to 

define ARX models with sensor clustering methodology, where neighbour sensors in 

particular cluster are used to predict the vibration behaviour of the reference sensor. 

Considering that time series analysis part of this method employs vibration data for 

damage detection, temperature variability affects the output of this method. It is 

demonstrated in Chapter 5 that damage features from the time series analysis part of the 

methods (DFARX) clearly indicate the location and extent of the damage for all five 

damage cases without the temperature effects. However, when temperature effects are 

assigned to the system, it is shown that damage is not clearly indicated with these damage 

features. 

In order to compensate the temperature effects, backpropagation algorithm for neural 

networks is then applied as a next step. Neural networks are first trained with the DFARX 

from the healthy state with different temperature effects, where the input data consists of 

temperature values for three groups of elements at the bridge structure. The output of the 

ANN then produces damage features (DFANN) for the healthy state, at specific element 
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temperatures. These features represent damage features from the time series analysis 

based method, for temperature values acting in the damage case, but without the damage 

effects. Final damage features (DF) are then determined as absolute values of the 

difference between DFARX and DFANN. Temperature effects are therefore compensated 

with subtraction of DFANN from DFARX values.  

It is presented in Chapter 5 that this methodology can successfully compensate 

temperature effects for all damage cases introduced to the footbridge finite element 

model without the noise effects and for most of the cases with the introduction of the 

noise effect. To the best of knowledge of the author, it is the first methodology capable of 

identifying and locating damage under temperature effects by using output only vibration 

data. 

6.2 Recommendations 

As already mentioned in the literature review chapter, several issues that can affect 

damage detection procedure in bridge structures under variable temperature effects exist. 

One of these issues is the change of the boundary conditions under different temperature 

conditions. Another important issue is the bilinear behaviour of the frequency change 

under different temperature effects, mostly due to the increasing stiffness of the asphalt 

layer at freezing temperatures. Both of these issues should be considered in the future 

research with this methodology. Also, for cases where the damage is small, final damage 

features (DF) become less effective when noise effects are significant. Considering that 

noise effects are always present in real type structures, future research should focus on 

minimization of the noise effects on damage detection methodology explained in this 

thesis.  

In order to prove effectiveness and robustness of the introduced methodology, additional 

numerical models, as well as real type structures should be analyzed for damage detection 

with the same methodology. Although this methodology employed only vibration data for 

this study, it can also be modified for use of other type of data, such as strain data – 

solely or in conjunction with vibration data. Different numerical models should be 

included in order to include different types of structural systems under the temperature 

effects. Thermal gradient in longitudinal direction of the bridge can also vary, besides the 
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transverse gradient, which is included in this study. Real type structures include other 

environmental and operational effects, besides the temperature, where this issue becomes 

more complex. In order to prove full effectiveness of the proposed methodology, these 

effects should be included in the analysis. Some of the points discussed in this section are 

already being investigated by other members of author’s research team.  
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