A support vector machine model for pipe crack size classification

  • Author / Creator
    Miao, Chuxiong
  • Classifying pipe cracks by size from their pulse-echo ultrasonic signal is difficult but highly significant for the defect evaluation required in pipe testing and maintenance decision making. For this thesis, a binary Support Vector Machine (SVM) classifier, which divides pipe cracks into two categories: large and small, was developed using collected ultrasonic signals. To improve the performance of this SVM classifier in terms of reducing test errors, we first combined the Sequential Backward Selection and Sequential Forward Selection schemes for input feature reduction. Secondly, we used the data dependent kernel instead of the Gaussian kernel as the kernel function in the SVM classifier. Thirdly, as it is time-consuming to use the classic grid-search method for parameter selection of SVM, this work proposes a Kernel Fisher Discriminant Ratio (KFD Ratio) which makes it possible to more quickly select parameters for the SVM classifier.

  • Subjects / Keywords
  • Graduation date
  • Type of Item
  • Degree
    Master of Science
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
  • Institution
    University of Alberta
  • Degree level
  • Department
    • Department of Mechanical Engineering
  • Supervisor / co-supervisor and their department(s)
    • Ming J. Zuo, Mechanical Engineering
  • Examining committee members and their departments
    • Marinal Mandal, Electrical and Computer Engineering
    • Xiaodong Wang, Mechanical Engineering
    • Ming J. Zuo, Mechanical Engineering