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Chapter 1

Introduction

1.1 Background

Oil and gas are transported mainly through pipelines. As time goes by, damages and

defects may develop in these pipelines. If the defects cannot be detected in time,

the property loss and environmental damage could be tremendous. For example, on

August 7, 2006, BP p.l.c.1 began shutting down the U.S.A.’s largest oil field due to

heavy corrosion and a small leak detected in a critical pipeline in its Prudhoe Bay

operation in Alaska. Reporters said this made the prices at the gas pump begin to

rise by as much as 5 cents a gallon in some cities because the Prudhoe Bay field

produces 400,000 barrels a day, which was 8 percent of American crude at that time

[1]. Clearly, periodic inspection of pipelines is necessary to guarantee they are in

good working order [2].

Ultrasonic testing is very popular in the pipeline industry. NDT (Nondestructive

1Previously known as British Petroleum and the third largest global energy company in

2006. BP is a multinational oil company with headquarters in London. The official website is

http://www.bp.com

1
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Testing) test uses high frequency, highly directional sound waves to measure mate-

rial thickness, find hidden internal flaws, or analyze material properties in metals,

plastics, composites, ceramics, rubber, and glass. Using frequencies beyond the limit

of human hearing, ultrasonic instruments generate short bursts of sound energy that

are coupled into the test piece; the instrument then monitors and analyzes reflected

or transmitted wave patterns to generate test results [3].

Researchers have used ultrasonic data to classify defect types and defect sizes for

pipeline fault analysis. Fei et al. [4] tried to classify different kinds of flaws, such

as circular, rectangular, cylindrical and welded defects, using ultrasonic signals from

the seafloor petroleum-transporting pipeline. Sinha et al. [5] classified the pipeline’s

surface defects such as holes and cracks using the neuro-fuzzy technique. Ravanbod

[6] categorized pipeline flaws as being of four types: internal, external, inside the

pipe, and both internal and external. As well, he classified these flaws according to

size, as shallow, medium and deep. Zhao et al. [7] classified mechanical dents in

pipelines into two categories, cup dents and saucer dents and also estimated their

size. Murigendrappa et al. [8] predicted crack size in pipelines filled with fluid. The

error in crack-size prediction lies in the range of -16.44% to 10.30% for aluminium,

and -5.83% to 12.04% for mild steel.

Information on crack sizes in pipelines could help in making decisions on what

kind of maintenance strategy will be used. For example, if the size of a crack in a

pipeline exceeds some value, replacement may be done right away. If, however, it

does not, this could be considered safe. From this point of view, classifying crack

sizes correctly is an interesting research topic. This thesis focuses on classification of

crack sizes in pipelines.

To achieve better performance as per lower test error rates in classification, ar-

tificial intelligence technology such as Neural Network (NN) and Support Vector
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Machine (SVM) have been employed. Neural Networks have been used to solve a

variety of classification problems involving speech recognition [9], finger print recog-

nition [10], handwritten character recognition [11], ultrasonic signal classification

[5, 6] and more, but Neural Networks may converge to locally optimal solutions [12].

In contrast, convexity is an important and interesting property of the Support Vec-

tor Machine which was arouse out of the Statistical Learning Theory developed by

Vladimir Vapnik and co-workers at AT&T Bell Laboratories in 1995. The reason

for its importance is that SVM theory is based on the principle of structural risk

minimization (SRM) while Neural Network is based on empirical risk minimization.

Because of the SRM principle, the global optimal value of SVM can be obtained;

on the other hand, Neural Network may obtain only a local optimal value [15]. In

addition, unlike the Neural Network method, the SVM approach does not attempt to

control model complexity by keeping the number of features small. Support Vector

Machines marked the beginning of a new era in the learning-from-examples paradigm,

which has been developed recently [16]. That’s why we believe that the SVM is the

appropriate tool for classifying the pipelines’ cracks according to size.

The problem in classifying the size of a pipeline’s crack is that we must catego-

rize the ultrasonic data correctly as much as possible. To simplify the problem, we

consider only the binary class situation; this means we will have only two categories,

i.e., large and small. Multiple class problems may be solved by successive application

of the binary class approach. Based on the ultrasonic data collected, a classifier will

be built. Whenever new ultrasonic data comes in, it can be used to predict whether

the crack is large or small. In this thesis, we’re trying to find an appropriate classi-

fication model that uses the SVM as the classifier in the analysis of pipe ultrasonic

data regarding cracks.
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1.2 Research Objective

In this thesis, we will use a binary class-data-dependent SVM with a Gaussian kernel

for the ultrasonic pipe crack data, in order to correctly categorize the new data

as much as possible. Solving such a problem involves three steps: collecting raw

ultrasonic data, preprocessing these collected data, and building and tuning the

classifier. This thesis focus on the third step, building and tuning the classifier. The

research objectives are as follows:

1. Find an alternative indicator for selecting the parameters of the SVM classifier.

2. Construct a data dependent kernel, based on the basic Gaussian kernel.

1.3 Organization of Thesis

This thesis is organized as follows. Chapter 2 will introduce the fundamental algo-

rithm of the Support Vector Machine, because we will use a great deal of terminology

from this chapter in later discussion. This chapter introduces both hard margin and

soft margin SVM, and discusses important concepts like structural risk, VC dimen-

sion and “kernel trick”. It also introduces the parameters of the SVM classifiers.

Chapter 3 mainly discusses the data preprocessing, which includes feature extrac-

tion of the ultrasonic pipe crack data using digital signal processing technology, and

feature selection using both the sequential backward selection method (SBS) and

the sequential forward selection method (SFS). After the data preprocessing, we cre-

ate the so called “Optimal B-Scan feature data” as the input for later discussion.

Existing algorithms are used in this chapter. Chapter 4 use a proposed indicator

called “KFD Ratio” for selecting suitable SVM parameters. Because our input from

“Optimal B-Scan feature data sets” includes 9 specimens of crack size (from 0mm
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to 3mm), different separations of the data are used to test the generalization perfor-

mance of the classifier. Chapter 5 adopts a data dependent method to construct a

more complicated kernel based on the Gaussian kernel the parameters of which are

determined in Chapter 4. This kernel is used to improve our generalization ability,

and some experiments are done to prove its efficiency. Chapter 6, the final chapter,

presents our summary and conclusions. As well, possible areas for future research

work are suggested.



Chapter 2

Fundamentals of SVM

Classification

Support Vector Machine (SVM) is a supervised learning method used for classifica-

tion and regression. Rooted in the statistical learning theory developed by Vladimir

Vapnik and co-workers at AT&T Bell Laboratories, SVM quickly received attention

from the pattern recognition community due to its theoretical and computational

merits which include, its simple geometrical interpretation of the margin, the unique-

ness of the solution, the statistical robustness of the loss function, the modularity

of the kernel function, and the overfit control obtained through its choice of a single

regularization parameter [16]. These technical terms are useful for the understanding

of this thesis and will be further discussed in this chapter.

This chapter will summarize SVM fundamental concepts and methods for refer-

ence in later chapters. This chapter is organized as follows. Section 2.1 introduces

the binary classification problem. Section 2.2 introduces the concept of structural

risk minimization which enables SVM to be a high performance classifier. Finally,

Section 2.3 presents the algorithm of SVM for binary classification. This section also

6
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includes concepts such as the optimal hyperplane and support vectors. In addition,

it discuss the regularization parameter, C, of SVM and kernel functions.

2.1 Binary Classification Problems

Suppose we are given m observations. Each observation consists of a pair: an input

vector, xi ∈ Rn, i = 1, · · · ,m, and the associated label, yi. These given data can be

summarized as

(x1, y1), · · · , (xm, ym) ∈ X × {±1} (2.1)

where X is some nonempty set of n dimensions. There are only two classes, and

these are labeled by +1 and −1, respectively. We run the learning algorithm of SVM

to train a classifier using these observations. The observations used for training the

classifier are called training data. The task of the learning algorithm of SVM is

to learn the mapping, xi 7→ yi, and find a function, f , that will correctly classify

a new observation, (x, y), so that f(x) = y [17]. Usually, the performance of the

algorithm will be measured on test data that is independent of the training data.

A 2-dimensional example (xi ∈ R2) of binary classification is shown in Figure 2.1,

where diamonds and circles represent the two classes. With SVM, we get the decision

boundary of the classes. When a new input vector is sent in, we can easily allocate

it to one of the two classes.

Compared to other learning algorithms such as Neural Network, SVM achieves a

better balance between training error and complexity when solving binary classifica-

tion problems. This is because it applies the principle of structure risk minimization

[15]. We will use a binary classification problem as an example to explain the concepts

of training error and model complexity, and to discuss structural risk minimization.
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Figure 2.1: A 2D example of binary classification.

2.2 Structural Risk Minimization (SRM)

Using training data, we can minimize the average training error, which is also called

the empirical risk. The definition of the empirical risk for binary classification is,

Remp(f) =
1

2m

m∑
i=1

|f(xi)− yi| (2.2)

The VC (Vapnik-Chervonenkis) theory shows that it is necessary to restrict the set

of functions from which f is chosen so that it has a capacity (to be defined next)

suitable to the amount of available training data [17]. This theory provides bounds on

the test error, which is the expectation error, R(f), of test data. The minimization

of these bounds, which depend on both the empirical risk and the capacity of the

function class, f , leads to the principle of structural risk minimization (SRM)

[18].

The VC dimension is a measure of the capacity mentioned above, which can be

explained as follows: each class of a mapping separates the input vectors in a certain

way and thus induces a certain labeling of them. Since the labels are between {±1},
there are at most 2m separations [17]. The VC dimension is defined as the largest m
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for which there exists a set of m points that the class of function can separate. For

example, Figure 2.2 shows that for three two-dimensional points, all 8 possibilities

of separation can be realized using a straight line. This would not work if we were

given 4 points. Thus the VC dimension of the class of separating straight lines in

R2 is 3. The straight line in Figure 2.2 is called a “hyperplane” when the concept

is applied to 3-dimensional space and beyond. For example, in 3-dimensional space,

the hyperplane is an ordinary plane which divides the space into two half-spaces.

(+1)

(−1)

(+1) (−1)(+1)

(−1)

(−1)

(+1)

(−1) (+1) (−1)

(+1)

(+1)

(−1)

(−1)

(+1)

Figure 2.2: VC dimension = 3 in R2.

From statistical learning theory , there is a bound which always holds for the

structural risk, i.e., the test error [15]. The principle of SRM is to minimize the

bounds.

R(f) ≤ Remp(f) + φ(h,m, δ) (2.3)

where the confidence term (or the capacity term) φ is defined as

φ(h,m, δ) =

√
1

m
(h(ln

2m

h
+ 1) + ln

4

δ
). (2.4)

Here, δ is the significance level, h is the VC dimension, and m is the size of the

training data. The confidence term in Eq (2.4) increases monotonically with h. Given
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a set of finite training data, we can always find a learning machine which achieves a

training error of zero, (providing we have no input vectors contradicting each other,

i.e., whenever two input vectors are identical, they must come with the same label).

To correctly separate arbitrary training data, this machine will necessarily require

a large VC dimension, h. The bound in Eq (2.3) shows that a small training error

does not guarantee a small test error.

The support vector machine achieves the goal of the SRM principle, minimizing

the bound on the VC-dimension and the training error concurrently, by a completely

automatic optimization procedure [12]. Below, we will discuss the algorithm of SVM

and show how SVM implements the SRM principle.

2.3 Algorithms for SVM Classification

Suppose we have m n−dimensional training data, X , which meet the requirements

in Eq (2.1). A linear decision function can be defined as [13]:

wT x + b = 0 (2.5)

where w is an n-dimensional vector and b is a bias term. When two sets of points

in a 2-dimensional space can be completely separated by a single straight line, they

are said to be linearly separable. In general, two classes are linearly separable in

n-dimensional space if they can be separated by an n − 1 dimensional hyperplane.

If the training data are linearly separable, a linear decision function, wT x + b = 0,

exists which meets

wT xi + b





> 0 for yi = 1,

< 0 for yi = −1.
i = 1, · · · ,m (2.6)

Because the training data are linearly separable, no training data satisfy wT x +

b = 0. So, to control separability, instead of Eq (2.6), we consider the following
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inequalities:

wT xi + b





> +1 for yi = 1,

6 −1 for yi = −1.
i = 1, · · · ,m (2.7)

Here, +1 and −1 on the right-hand sides of the inequalities can be a constant c (> 0)

and −c, respectively. But by dividing both sides of the inequalities by c, Eq (2.7) is

obtained. Eq (2.7) can be expressed compactly with the following inequalities [13]:

yi(w
T xi + b)− 1 > 0, i = 1, · · · ,m (2.8)

Figure 2.3 gives a 2-dimensional linearly separable example. The distance be-

tween the hyperplane wT x + b = 0, a solid straight line, and the origin is −b
‖w‖ . The

distance between the hyperplanes wT x + b = 1 and wT x + b = −1, which is the

dashed straight lines, to the hyperplane wT x + b = 0 are both 1
‖w‖ . Thus the dis-

tance between two dashed hyperplanes is 2
‖w‖ . We call this distance the margin.

Also, the data that satisfy the equalities in Eq (2.8) are called support vectors.

In Figure 2.3, the data corresponding to the filled circles and the filled rectangle are

support vectors. Note that all the hyperplanes are parallel.

Figure 2.4 shows two decision functions, the blue solid line and the pink solid line.

They both satisfy Eq (2.8). In fact, there are an infinite number of decision func-

tions that satisfy Eq (2.8). In geometry, the decision functions are called separating

hyperplanes, and the hyperplane with the maximum margin is called the optimal

separating hyperplane [13]. The classifier whose decision function corresponds

to the optimal separating hyperplane has the best generalization ability [13]. A

classifier is said to have good generalization ability if it performs on test data almost

as well as it does on the training data [14].

To get the optimal separating hyperplane, we need only find the maximum margin

by minimizing ‖w‖2, subject to Eq (2.8). Thus, the optimal separating hyperplane



2.3. ALGORITHMS FOR SVM CLASSIFICATION 12

w

Margin

||w||
−b

<w, x> + b = 1
<w, x> + b = 0

<w, x> + b = −1

Figure 2.3: Linearly separable hyperplane

problem can be summarized as follows

min 1
2
‖w‖2

Subject to :

yi(w
T xi + b)− 1 > 0 ∀i.

(2.9)

Unlike the case with linearly separable data, we can’t find an n− 1 dimensional

hyperplane that can separate two classes in an n-dimensional space. This kind of

data is called non-linearly separable. Figure 2.5 shows the non-linearly separable

data in 2-dimensional space where any single straight line can’t separate the two

classes marked as circles and squares. By introducing a group of non-negative slack

variables, ξi (> 0), we can apply the optimal separating hyperplane problem to the

case with non-linear separable data [21]. Eq (2.8) then becomes [13]:





yi(w
T xi + b) > 1− ξi

ξi > 0
∀i. (2.10)



2.3. ALGORITHMS FOR SVM CLASSIFICATION 13

Optimal Hyperplane

Maximum Margin

Figure 2.4: Optimal separating hyperplanes

X

Y

Figure 2.5: Non-linear separable data in R2

For the training data, xi, if 0 < ξi < 1 (the circle with a line connected to the

hyperplane in Figure 2.6), the data do not have the maximum margin but are still

correctly classified. In other words, this circle is classified as the circle class. But if

ξi > 1 (the square with a line connected to the hyperplane in Figure 2.6) the data is

misclassified by the optimal separating hyperplane. This square should be put in the

circle class. In shorts, for an error to occur, the corresponding ξi must exceed unity.

Hence a natural way to assign an extra cost for errors is to change the objective

function, minimizing it from ‖w‖2
2

to ‖w‖2
2

+ C
m∑

i=1

ξi, where C is a parameter to be

chosen by the user, with a larger C corresponding to a higher penalty being assigned
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Maximum Margin

Figure 2.6: Non-linear separable case in a 2-dimensional space

to errors [22]. By regulating parameter C, which sometimes is called the trade-off

parameter, we implement the principle of structural risk minimization, that is, we

minimize the bound on the VC-dimension and the training error concurrently. The

optimal separating hyperplane for a non-linearly separable problem can be summa-

rized as

min 1
2
‖w‖2 + C

m∑
i=1

ξi

Subject to :



yi(w
T xi + b)− 1 + ξi > 0

ξi > 0
∀i.

(2.11)

We can reformulate Eq (2.11) using the Lagrangian formulation [22]. Following

the rule of forming Lagrangian, the > 0 constraints should be multiplied by positive

Lagrangian multipliers and subtracted from the objective function. By introduc-

ing the non-negative Lagrangian multipliers αi and βi (i = 1, · · · ,m), we get the
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Lagrangian equation:

L(w, b, ξ, α,β) = ‖w‖2
2

+ C
m∑

i=1

ξi

−
m∑

i=1

αi[yi(w
T xi + b)− 1 + ξi]−

m∑
i=1

βiξi.
(2.12)

The Lagrangian L has to be minimized with respect to the primal variables, w

and b, and maximized with respect to the dual variables, αi and βi [17]. In other

words, a saddle point has to be found. By applying the Karush-Kuhn-Tucker (KKT)

condition [13], we get the following group of equations:

∂L
∂w

= w −
m∑

i=1

αiyixi = 0

∂L
∂b

= −
m∑

i=1

αiyi = 0

∂L
∂ξi

= C − αi − βi = 0

yi(w
T xi + b)− 1 + ξi > 0

ξi > 0

αi > 0

βi > 0

αi[yi(w
T xi + b)− 1 + ξi] = 0

βiξi = 0

where i = 1, · · · ,m. (2.13)

We can draw some conclusions from Eq (2.13) [13].

• If αi < C, then ξi = 0. We can simply take any point for which 0 < αi < C

and use αi[yi(w
T xi + b)− 1 + ξi] = 0 (with ξi = 0) to compute b. If αi = 0,

then xi is correctly classified. If 0 < αi < C, then yi(w
T xi + b)− 1 + ξi = 0

and ξi = 0 [13].

• If αi = C, then yi(w
T xi + b)− 1 + ξi = 0 and ξi > 0 [13].

• If 0 6 ξi < 1, then xi is correctly classified, and if ξi > 1, then xi is misclassi-

fied.
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The KKT condition helps to reconstruct the primal problem in Eq (2.12) making

it a dual optimization problem which eliminates the primal variables w and

b [22]. The dual problem of determining the hyperplane decision function can be

written as,

max L(α) =
m∑

i=1

αi − 1
2

m∑
i,j=1

αiαjyiyj〈xi,xj〉

Subject to

0 6 αi 6 C ∀i
m∑

i=1

αiyi = 0

(2.14)

where 〈xi,xj〉 represents the dot products of xi and xj. As we can see, in Eq (2.14)

all the training data appear in the form of dot products.

In a Support Vector Machine the optimal hyperplane is determined so as to

minimize the test error rate. Whether the training data are linearly separable or

not, the separating hyperplane is determined optimally by Eq (2.14). The obtained

classifier may not have a low error rate even if the hyperplane is determined optimally

[13]. To lower the error rate, one can map the input vector of the training data to

a new higher dimensional space, called the feature space, by doing a non-linear

transformation using suitably chosen basis functions. This is known as the “kernel

trick”. In a mathematical way, we use a function, φ, which maps the input vectors

to feature space H , causing the training program to depend on the data, φ(x), in

feature space H. The mathematic form for the mapping is

φ : X 7→ H (2.15)

where X ∈ Rn and the dimension of feature space H depend on the non-linear

transformation function, φ. An example of the dimension of H space is given late

in this section. Usually, the dimension of feature space H is much higher than the

dimension of the input vectors, X . Since we use φ(x) instead of x as the input, the
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dual problem of determining the hyperplane decision function can be written as

max L(α) =
m∑

i=1

αi − 1

2

m∑
i,j=1

αiαjyiyj〈φ(xi), φ(xj)〉. (2.16)

If there is a “kernel function”, k, such that k(xi,xj) = 〈φ(xi), φ(xj)〉, we need to

use the function, k, only in the training algorithm, never needing to know explicitly

what φ is [22].

For example, Table 2.1 shows the map function, φ(x), so as to explicitly verify

the following homogeneous polynomial1 kernel,

k(xi,xj) = (〈xi,xj〉)2 = 〈φ(xi), φ(xj)〉.

In paper [22], Burges proves that the corresponding feature space, H, is a Euclidean

space of dimension
(

n+d−1
d

)
, where n is the dimension of the input vector, X , (in Table

2.1, n = 2 and 3) and d is the degree of the homogeneous polynomial (here d = 2).

If n = 256, d = 2, making the dimension of H 183,181,376. Thus the feature space,

H, is high dimensional space with an enormous number of dimensions. Sometimes

there are an infinite number of these dimensions. One example is the gaussian kernel,

k(xi,xj) = exp(
−‖xi−xj‖2

2σ2 ) [23][24][20].

For the above example, the polynomial kernel enables us to work in the space

spanned by dot products of any φ(xi) and φ(xj) values, provided that we are able

to do our work solely in terms of dot products, without any explicit use of a mapped

function, φ(x). Using the kernel function, the input vectors, X , are mapped into

higher dimensional feature space, H, and the mapping function, φ(x), need not be

calculated explicitly. Thus we can take higher-order statistics into account without

a combinatorial explosion of time and memory complexity [17].

1In mathematics, a homogeneous polynomial is a polynomial whose terms are monomials all

having the same total degree; or are elements of the same dimension. For example, x5+2x3y2+9x1y4

is a homogeneous polynomial of degree 5.
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Table 2.1: X 7→ H for Homogeneous Polynomial Kernel with a Degree d = 2

Input Space xi,xj ∈ R2 xi,xj ∈ R3

xi (xi,1, xi,2) (xi,1, xi,2,xi,3)

xj (xj,1, xj,2) (xj,1,xj,2,xj,3)

Mapped Space φ(xi), φ(xj) ∈ R3 φ(xi), φ(xj) ∈ R6

φ(xi) (x2
i,1,
√

2xi,1xi,2,x
2
i,2) (x2

i,1,x
2
i,2,x

2
i,3,
√

2xi,1xi,2,
√

2xi,1xi,3,
√

2xi,2xi,3)

φ(xj) (x2
j,1,
√

2xj,1xj,2,x
2
j,2) (x2

j,1,x
2
j,2,x

2
j,3,
√

2xj,1xj,2,
√

2xj,1xj,3,
√

2xj,2xj,3)

Kernel (〈xi,xj〉)2 (〈xi,xj〉)2

k(xi,xj) = 〈φ(xi), φ(xj)〉 = 〈φ(xi), φ(xj)〉

Not all kernels can be expressed in the form of k(xi,xj) = 〈φ(xi), φ(xj)〉, but

the kernels which meet Mercer’s condition always hold this property [22]. In the

following, if there is no confusion, we simply call it the kernel. Table 2.2 shows some

popular kernels and their properties.

Table 2.2: List of kernels and their properties

Kernel Formula Properties

Polynomial k(x,x′) = 〈x,x′〉d Homogeneous

k(x, x′) = (〈x,x′〉+ c)d Not homogeneous

Gaussian k(x,x′) = exp(−‖x−x′‖2
2σ2 ) Radial basis function1

(RBF)

Sigmoid k(x,x′) = tanh(κ〈x, x′〉+ ϑ) κ > 0 and ϑ < 0

1. A radial basis function (RBF) is a real function whose value depends only on its

distance from the origin, so that φ(x) = φ(‖x‖); or, alternatively, on the distance from

some other point, c, called a center, so that φ(x, c) = φ(‖x− c‖).

Although there are many kernels that can be used for the SVM algorithm, in this



2.4. EXTENSIONS 19

thesis, we discuss only the application of the Gaussian kernel. More details will be

provided in Chapter 4.

2.4 Extensions

In this chapter, we have briefly discussed the algorithm of SVM based on binary

classification problems.

For those who are interested in the algorithm of SVM and want to obtain more

information on matters such as the KKT condition, Mercer’s condition, SVM regres-

sion and SVM multi-classification, please consult the references [13, 15, 17, 22].



Chapter 3

Ultrasonic Data Preprocessing for

Pipe Crack Classification

In SVM classification, data preprocessing transforms the raw data into a format that

can be more easily and effectively used. There are different tools and methods used

for preprocessing. Kaastra et al. [25] smooth both input and output data by using

either simple or exponential moving averages for forecasting financial and economic

time series. Kaper et al. [26] apply the bandpass filter to the raw data and normalize

them to an interval of [−1, +1] for classifying electroencephalogram (EEG)-signals

to detect the absence or presence of the P300 component in EEG event related

potentials, crucial for the P300 speller paradigm in Brain-Computer Interfacing.

Crone et al. [27] do data reduction for evaluation of classifier sensitivity in marketing

by means of feature selection which aims at identifying the most relevant, explanatory

input variables within a data set.

One objective of this thesis is to find a good alternative indicator for the SVM

classifier’s parameter selection. To reach this goal, preprocessed input vectors are

needed. This Chapter prepare these input vectors for later use. Section 3.1 introduces

20
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the raw data collection. Based on the collected raw data, two preliminary data

preprocessing techniques, average and gating [28], are applied. Section 3.2 applies

signal processing techniques to extracting features, forming two feature data sets.

Finally, Section 3.3 uses two reported methods, sequential forward selection and

sequential backward selection [13], to preprocess the formed feature data sets and

reduce their dimensions.

3.1 Raw Data Collection

3.1.1 Introduction of the Ultrasonic Test

In an ultrasonic test, high frequency sound waves (ultrasound) are introduced into

a test object, and the corresponding responses are collected for further analysis.

Useful information about the test object (such as material properties, geometric

dimensions, and flaw size and location) can be identified by analyzing the received

ultrasonic signals [29][30].

Generally, ultrasonic tests can be classified as being either the transmission tech-

nique or the reflection technique [31]. Figure 3.1 [31] shows a transmission ultrasonic

test. A transmitter sends ultrasound through a medium and a receiver detects the

amount that has reached it on the other side. Imperfections or other conditions in

the medium between the transmitter and receiver reveal their presence by reducing

the amount of ultrasound which passes through [32]. In a reflection (or pulse-echo)

ultrasonic test, the transducer performs both the sending and the receiving of the

pulsed wave as the ultrasound is reflected back to the device. Figure 3.2 shows the

principle of the pulse-echo ultrasonic test. The transducer sends a pulse to the test

object and an echo (reflected ultrasound) returns from an interface, such as the back

wall of the test object, or from an imperfection within the object, such as a crack.
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The echo can be displayed as a signal with an amplitude representing the intensity

of the reflection, and the distance representing the arrival time of the reflection. At

the same time, the echo can be collected in a number of different formats. The two

most common formats are known as A-Scan and B-Scan presentations.

Figure 3.1: Principle of the transmission ultrasonic test [31]

Figure 3.2: Principle of the pulse-echo ultrasonic test

A-Scan (see Figure 3.6(b)), in which echo amplitude and time are plotted on a

simple grid with the horizontal axis representing time and the vertical axis represent-

ing amplitude, is the most basic presentation of ultrasonic waveform data [34]. The

B-Scan presentation (see Figure 3.6(a)) gives a profile (cross-sectional) view of the
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test specimen [35]. In it, time is displayed along the horizontal axis and the linear

position of the transducer is displayed along the vertical axis. The echo amplitude is

usually displayed using a third axis (the ultrasonic data is plotted in 3−dimensional

space) or in different colors which represent the intensity of the signal (the ultrasonic

data is plotted in 2−dimensional space).

This thesis uses the pulse-echo ultrasonic test to obtain the ultrasonic data (the

reflected ultrasound or echo), and those data are saved using both A-Scan and B-

Scan presentations. The setup of the experiment system for collecting the ultrasonic

data is introduced below.

3.1.2 The Setup of the Experimental System

Figure 3.3 [36] shows the schematic of the complete experimental system, which

consists of the following major subsystems: the ultrasonic sensor, the specimen, the

Bi-slide linear position system, the OmniScan UT unit, and the fixtures [36].

The ultrasonic transducer used is the Kraukramer Benchmark Series, miniature

angle beam transducer (2.25MHz, 0.5” element diameter and 45◦ wedge).

The specimens are nine 4140-steel blocks with electrical discharge machining

(EDM) slots of different depths prepared by a machine shop. These nine speci-

mens have the following slot depths (given in mm): 0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5

and 3.0. Figure 3.4 dipicts the specimen, in which an EDM crack is located in the

middle of the 4140-steel block.

The Bi-slide linear positioning system allows automated and accurate positioning

of the ultrasonic transducer on the specimen’s surface. It is controlled by Windows-

based GUI called COSMOS. It is programmed to linearly move the transducer a

distance of 30mm with a step size of 0.25mm. At every step, a pulse is sent to the

OmniScan unit to mark the current position of the transducer. The starting position
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Figure 3.3: Schematic of the complete experimental system [36]

of the transducer is set at approximately 30mm measured from the probe beam index

to the location of the EDM slot.

At each step of the Bi-slide movement, an ultrasonic pulse is generated and trans-

mitted to the specimen. The reflected ultrasonic echo is recorded by the OmniScan

unit over 2048 data points. For a travel distance of 30mm with a step size of 0.25mm,

there are 121 positions for ultrasonic data collection. Table 3.1 shows the parameters

which were selected on the OmniScan unit.

The gain levels used for each specimen were from 5.0dB to 60.0dB with an in-

cremental size of 2.5dB. There were a total of 23 different gain levels. When a gain
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Figure 3.4: An example of an EDM crack specimen

level was fixed, three separate scans were performed on the same specimen.

3.1.3 The A-Scan and B-Scan Data Sets

Using the experimental system shown in Figure 3.3, we collected 9×23×3 ultrasonic

data files, where “9” represents the nine specimens with different slot depths; “23”,

the different gain levels for each specimen with values ranging from 5dB to 60dB

and an incremental size of 2.5dB; and “3”, the number of data sets collected under

identical testing conditions (namely identical specimens and identical gain levels).

Each file contains 121× 2048 data points, where “121” denotes the number of sensor

positions from which A-scan waveforms were collected and “2048”, the number of

data points at each sensor location.

Figure 3.5 illustrates signals obtained at the gain levels of 10dB, 40dB and 60dB,

for the specimen with a 10mm crack. Each has three axes represented by time,

position and echo. At a gain level of 60dB (the picture on the right in Figure 3.5),

some signals are cut off. Actually, for these nine kinds of specimen, if the gain level

is equal or less than 50dB, the cutting-off of the signal can be avoided. If a signal is
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Table 3.1: Parameters selected on the OmniScan unit

Parameter Name Parameter Value Parameter Description

Wedge Delay 5.83µs
Time for wave traveling
through the transducer and
the wedge

Material sound velocity 3329.4 m/s
Velocity of wave inside the
specimen

Range 23.38mm
Length of X-axis on the dis-
play of OmniScan

Data sample size 2048 points
Scanning distance 30mm with 0.25mm/step We have 121 steps

Input Voltage 200V
Maximum value of the input
signal

Pulse width 35ns the width of the input pulse
PRF Optimum Pulse repetition frequency
Filter None

Rectification Mode RF (Radio Frequency) No rectification is per-
formed

Scale 1
Scaling of the maximum
sampling frequency

cut off, the features extracted in later studies will be affected. For example, we want

to calculate the time between the 25% level and the peak; if the peak is cut off, the

value given time doesn’t reflect the real situation. Because different gain levels with

values from 5dB to 50dB and an incremental size 2.5dB are studied in this paper, 19

different gain levels have been used instead of 23 (5dB∼60dB).

Figure 3.6 shows the data points for the specimen with a 1.0mm crack at gain level

40dB. Figure 3.6(a) represents the data in B-Scan form and Figure 3.6(b) represents

the data in A-Scan form. In Figure 3.6(a), the X-axis shows the time points varying

from 1 ∼ 2048, and the Y-axis shows the transducer’s position varying from 1 ∼ 121.

In Figure 3.6(b), the X-axis shows the time points varying from 1 ∼ 2048, and the

Y-axis shows the echo’s amplitude.

To find good features for crack classification, we first employ two data prepro-
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Figure 3.5: Signals obtained at different gain levels for the specimen with a 1.0mm

crack

cessing techniques called averaging and gating [28]. The three data files are averaged

under identical testing conditions to form one data file. To eliminate the signals

caused by the wedge and specimen interface, a passing gate is set between the time

points from 900 to 1923. In Figure 3.6(a), from the time point 900, an echo will

bounce off the crack. In the range between the time points 900 to 1923, all crack

echos will be covered. Notes as well, that the value of the time points total, which

is 1024 (1923 − 900 + 1), or 210, is convenient for using fast fourier transform. To

avoid spurious effects at the beginning and end of the bi-slide movement, we have

further removed the first 14 and the last 7 scanning positions (leaving 100 positions

remaining) [37]. Thus, the data points in Figure 3.6(a), those surrounded by the

dashed box, are the ones that will be studied in this research work. Each datum has

1024 × 100 = 102400 data points. In Figure 3.6(b), the red part of the data, which

corresponds to the data in position 50 of Figure 3.6(a), are the data points we will

study. Each set of data has 1024 data points. For convenience, we will call the data

in Figure 3.6(a) the B-Scan data set and the data in Figure 3.6(b) the A-Scan

data set. Totally, there are 171 (9×19) B-Scan data sets and 17100 (9×19×100) A-

Scan data sets, where “9” denotes the nine specimens “19” denotes the different gain



3.1. RAW DATA COLLECTION 28

levels for each specimen with values ranging from 5dB to 50dB with an incremental

size of 2.5dB, and “100” denotes the bi-slide movement position.

Time Points

P
os

iti
on

500 1500900 1923

0

50

100

15

114

(a) B-Scan form

0 500 900 1500 1923
−100

0

100

200

Time Points

E
ch

o

 

 
Position = 50

(b) A-Scan form

Figure 3.6: Data points for a specimen with a 1.0mm crack at gain level 40dB

This Section has defined and trimmed the A-Scan and B-Scan data sets. The

following section further process the A-Scan data sets for feature extraction.
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3.2 Feature Extraction from A-Scan Data Set

The A-Scan and B-Scan data sets, obtained are not used directly as input in the

SVM classifier. Features, the individual measurable properties of the data being

collected, need to be extracted first from those data. Choosing discriminating and

independent features is a key step to success with the classification algorithm [32].

Features play an important role in determining pipe crack sizes by means of

ultrasonic tests. Appropriate features improve classification performance. Features

can be extracted from ultrasonic data by using the statistics of waveform or signal

processing technologies such as Fourier transform and wavelet analysis.

3.2.1 Available Features from the Time and Frequency Do-

mains

In the time domain, certain features have been used to describe an ultrasonic signal

or pulse. Among these are the statistics of waveform amplitude, pulse duration, and

local and global rise and fall indexes. By means of Fourier Transform, a signal in

the time domain can be transformed into the frequency domain; statistics of the

obtained power spectrum, such as structural parameters and local and global rise

and fall relative indexes, have been used to characterize an ultrasonic signal in the

frequency domain [38][6]. Features characterizing an ultrasonic signal in the time

and frequency domains are illustrated in Figures 3.7(a) and 3.7(b), respectively [31].

Reference [38] lists 69 time and frequency domain features for flaw classification of

pipes. These are shown in Table 3.2.
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(a) Features in the time domain

(b) Features in the frequency domain

Figure 3.7: Features in the time and frequency domains
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In paper [39], Osterried et al. [39] use skewness as a signature for studying echoes.

Skewness is defined as

Skewness =
E(X − µ)3

σ3

where X is the input vector, µ is the mean of X, σ is the standard deviation of

X, and E(·) represents the expected value, (X − µ)3. Skewness is a measure of the

asymmetry of the data around the sample mean. If the skewness is negative, the

data are spread out more to the left of the mean than to the right. If the skewness is

positive, the data are spread out more to the right [40]. In paper [41], Lei et al. show

that the kurtosis measured in the time and the frequency domain are good predictors

of the relative magnitude and frequency distribution of the acoustic trauma (hearing

loss). Kurtosis is defined as

Kurtosis =
E(X − µ)4

σ4

where X is the input vector, µ is the mean of X, σ is the standard deviation

of X, and E(·) represents the expected value, (X − µ)4. Kurtosis is a measure

of how outlier-prone a distribution is. The kurtosis of a normal distribution is 3.

Distributions that are more outlier-prone than normal have a kurtosis value of greater

than 3; distributions that are less outlier-prone have a value of less than 3 [40].

The features listed above are obtained from the time domain or the frequency

domain, separately. Features extracted from the time-frequency joint domain are also

useful in flaw identification, and certain time-frequency analysis methods have been

applied to extracting features from ultrasonic signals [42][43][44]. Discrete Wavelet

Transform (DWT) is an effective one among those various time-frequency analysis

methods [31].
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3.2.2 The Features to be Used

Based on Section 3.2.1, we list many features in the time, frequency and time-

frequency joint domains that can be extracted from ultrasonic data. In fact, there are

far more than that. For the sake of simplicity, we will consider only 14 features which

were extracted from A-Scan data set. Those features are listed in Table 3.3. In this

table, features #1, #2, #4, #5, #6, #7, #10, #11 and #12 are based on paper [38].

Features #3, #8 and #9 are concepts for identifying digital signals. Features #13

and #14 are based on papers [39] and [41], respectively. We believe these features

adequately cover different categories such as statistics, pulse, rise and fall. We have

not, however, focused on studying all the kinds of features that can characterize the

data of ultrasound echoes. The late work is based only on the limited features in

Table 3.3.

Table 3.3: Features Extracted from Ultrasonic Data

Feature# Description Definition

F1 Mean of RF waveform

F2 Variance of RF waveform

F3 Energy in time domain Energy =
∫ |s(t)|2dt

F4 Mean of Envelope mean of |s(t) + jŝ(t)|
F5 Variance of Envelope variance of |s(t) + jŝ(t)|
F6 Rising time from 25% level to peak

F7 Falling time from peak to 25% level

F8 Time center t0 = 1
Energy

∫
t|s(t)|2dt

F9 Pulse duration 1
Energy

∫
(t− t0)

2|s(t)|2dt

F10 Peak frequency
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F11 Center frequency Ω0 = 1
Energy

∫∞
−∞ Ω|S(Ω)|2dΩ

F12 Band width B = π
Energy

∫∞
−∞(Ω− Ω0)|S(Ω)|2dΩ

F13 Skewness of magnitude of spectrum Skewness of |S(Ω)|
F14 Kurtosis of magnitude of spectrum Kurtosis of |S(Ω)|

Note:

1. Features #1∼#9 are in the time domain. Features #10∼#14 are in the frequency domain.

2. s(t) denotes the observed signal, ŝ(t) the Hilbert transform of s(t), and S(Ω) the Fourier

transform of s(t). Energy is the value of F3.

For each A-Scan data set, we can get the 14 features as listed in Table 3.3. To

form an input vector for classification, we treat each feature as one dimension in the

input vector. The input vector needs 14 dimensions to represent these 14 features.

Also, each A-Scan data set corresponds to a Gain value (5dB ∼ 50dB) and a position

value (15 ∼ 114), as illustrated in Figure 3.6. We can use two other dimensions in

the input vector to denote the Gain and position values, given the input vector a

total of 16 dimensions. We will call this input vector the A-Scan feature data set.

The number of A-Scan feature data sets are 17100, equal to the number of A-Scan

data sets. Just as we have both an A-Scan data set and a B-Scan data set, we can

also form another input vector called a B-Scan feature data set. Since there are

100 A-Scan data sets in each B-Scan data set, from which 14 features are extracted,

we get 1400 features in a B-Scan data set. Also one B-Scan data set corresponds to

a Gain value, which needs one dimension of storage. A B-Scan feature data set has

1401 dimensions, and the number of B-Scan feature data sets is 171, which is the

number of B-Scan data sets.

Either A-Scan feature data sets or B-Scan feature data sets can be used as the
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input vectors for the classification. The following will discuss which input vector is

better when the test error for the classification is taken into account. Due to limited

time, only the better one will be studied further.

3.2.3 Discussion of A-Scan Feature Data Sets and B-Scan

Feature Data Sets

Since in the experiment, we have nine kinds of specimens with slot depths varying

from 0mm to 3mm, a binary classification problem require us to address 8 kinds of

cases (see Table 3.4). For example, Case #4 represents a classification that separates

the input vector (either A-Scan or B-Scan feature data sets) into two classes. When

the crack size is ≤ 0.5mm, we classify those data as +1 class. On the other hand,

when the crack size is > 0.5mm, we classify those data as −1 class.

Table 3.4: List of separation definitions

Case Separation Criteria

Case #1 {y = +1| crack size = 0mm} vs. {y = −1| crack size > 0mm}
Case #2 {y = +1| crack size ≤ 0.1mm} vs. {y = −1| crack size > 0.1mm}
Case #3 {y = +1| crack size ≤ 0.3mm} vs. {y = −1| crack size > 0.3mm}
Case #4 {y = +1| crack size ≤ 0.5mm} vs. {y = −1| crack size > 0.5mm}
Case #5 {y = +1| crack size ≤ 1.0mm} vs. {y = −1| crack size > 1.0mm}
Case #6 {y = +1| crack size ≤ 1.5mm} vs. {y = −1| crack size > 1.5mm}
Case #7 {y = +1| crack size ≤ 2.0mm} vs. {y = −1| crack size > 2.0mm}
Case #8 {y = +1| crack size ≤ 2.5mm} vs. {y = −1| crack size > 2.5mm}

This experiment uses the SVM and Kernel Methods Matlab Toolbox1 written

1http://asi.insa-rouen.fr/enseignants/ arakotom/toolbox/index.html
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by Canu et al. for SVM classification. For each input vector, we use the Gaussian

kernel as the kernel function. The parameters (C, σ) of SVM are selected by the

grid-search method [45]. The optimal (C, σ) for A-Scan feature data sets are C = 50

and σ = 2. And the optimal (C, σ) for B-Scan feature data sets are C = infinity and

σ = 1000. We will further discuss the grid search method later in the Chapter 4. For

each case, we employ the 5-folded cross validation [46] to determine the test error.

In 5-fold cross-validation, the original input vectors are partitioned into 5 subsets.

Of the 5 subsets, a single subset is retained as the validation data for testing, and

the remaining 4 subsets are used as training data. The cross-validation process is

then repeated 5 times (the folds), with each of the 5 subsets used exactly once as

the validation data. The 5 results from the folds can then be averaged (or otherwise

combined) to produce a single estimation. The advantage of this method is that

all input vectors are used for both training and validation, and each input vector is

used for validation exactly once [32]. Table 3.5 shows the classification test error for

these eight cases, using the A-Scan and B-Scan feature data sets as the input vectors

separately.

From Table 3.5, B-Scan feature data sets have a lower test error than do A-Scan

feature data sets. Except for Case #2, the test error with B-Scan feature data sets

is smaller than that with A-Scan feature data sets. For the remaining parts of this

research, we will focus solely on the B-Scan feature data sets.

In summary, 14 features in the time and frequency domains are extracted and

formed into A-Scan feature data sets and B-Scan feature data sets. A comparable

test is also done using the A-Scan and B-Scan feature data sets as the input vectors

for the classification. In the following section, further feature reduction is studied in

order to find the best dimension subsets of the B-Scan feature data sets.



3.3. FURTHER FEATURE REDUCTION FOR B-SCAN FEATURE DATA SETS 39

Table 3.5: Test error for A-Scan feature data sets and B-Scan feature data sets

Case# A-Scan feature data sets B-Scan feature data sets

Case #1 7.72% 3.92%

Case #2 4.74% 5.85%

Case #3 6.49% 0

Case #4 7.19% 2.92%

Case #5 6.67% 2.92%

Case #6 7.89% 4.68%

Case #7 8.42% 3.51%

Case #8 8.07% 4.09%

3.3 Further Feature Reduction for B-Scan Feature

Data Sets

3.3.1 Introduction of Feature Reduction

For each B-Scan feature data set, there are 1401 dimensions which consist of 14

kinds of extracted features (100 of each kind) and the Gain value. Based on these

data sets, we want to find a subset of the dimensions. An efficient subset, which

not only reduces the dimensions of the feature set but also improves the classifier’s

performance, needs to be extracted [47].

Intuitively, the optimal subset can be determined by doing an exhaustive search

in the feature set. But an exhaustive search is feasible for only a small number of

features (or dimensions). When the features become larger, the explosive compu-

tational cost makes the exhaustive search impractical. In paper [48], Backer et al.

proposed the Max-min method which is computationally efficient. It evaluates only
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the individual and pairwise merits of features. Siedlecki et al. introduced the use

of the genetic algorithm (GA) for this problem and obtained good results [49][50],

but it is necessary to to carefully select and test the parameters in GA [47]. In

paper [51], the author derives orthogonal forward selection (OFS) and orthogonal

backward elimination (OBE) algorithms for feature subset selection by incorporat-

ing Gram−Schmidt and Givens’ orthogonal transforms into forward selection and

backward elimination procedures, respectively. Zhang et al. [47] use tabu search

to select an optimal subset from the original large feature set for use as a pattern

classifier. In this work, we will use the sequential backward selection method (SBS)

and sequential forward selection method (SFS) (to be defined next) which are widely

used for subset selection [13].

3.3.2 Feature Reduction with SBS and SFS

In sequential backward selection (SBS), we start with all the features and delete

one at a time, the one whose removal cause the least deterioration in the selection

criterion is removed first. Sometimes it is possible to delete more than one feature

at a time on the basis of feature ranking. This is done until some selection criterion

is met, such as obtaining the lowest test error. In sequential forward selection

(SFS), features are sequentially added to an empty candidate set until the addition

of further features does not decrease the test error.

Compared with exhaustive search, which has 2n − 1 non-empty subsets of an

n−feature data set and is typically infeasible (depending on the size of n and the

cost of objective calls), sequential searches move in only one direction, always grow-

ing or always shrinking the candidate set. In paper [47], Zhang et al. compared

the computation cost for different kinds of feature reduction algorithms for a 30-

dimension data set and a 100-dimension data set. These algorithms include SFS,
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SBS, Generalized SFS, Generalized SBS, as well as l take away r methods (PTA),

sequential forward floating selection (SFFS), sequential backward floating selection

(SBFS) and GA [49][13][48][52]. The computation cost of the SFS or SBS algorithms

is much lower than that of other algorithms.

Neither SBS nor SFS examines all possible feature subsets, so it cannot be guar-

anteed either will produce the optimal result. In SBS, the features discarded cannot

be re-selected. In SFS, the features selected cannot be removed later. To overcome

this, we will combine these two methods to do the feature reduction.

Usually, sequential backward selection is slower but rather is more stable in se-

lecting optimal features than sequential forward selection [13]. For this reason we

will use SBS first and then do the SFS. From the SBS, we get an optimal subset of

features, on the basis of which the SFS can be done. In this procedure, the features

discarded in the SBS process can be chosen again.

3.3.3 A Feature Reduction Experiment for B-Scan Feature

Data Sets

Before doing the experiment for feature reduction, we need to prepare the experi-

ment’s data. Table 3.6 lists descriptions of the experiment’s data. As we mentioned

above, we will use B-Scan feature data sets as the input vector, these consist of a

total of 171 observations. If we want to separate these data into two classes, i.e., a

large crack size class and a small crack size class, we could have 8 kinds of separation

which corresponds to Case #1 ∼ Case #8 (see Table 3.4). The output can take

only the values {±1} which label the large and small crack sizes respectively. For

each separation, by partitioning the data into training data (114 observations, 2/3

of the total) and test data (57 observations, 1/3 of the total), we randomly generate
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20 groups of data sets (sets of training and test data), and label these #1, #2, · · · ,
#20.

Table 3.6: SBS and SFS experiment data set descriptions

Separation Criteria Case #1 ∼ Case #8, see Table 3.4

Number of Training data 114

Number of Test data 57

Dimensions of Input Vectors 1401 (B-Scan feature data set)

Associate Labels ±1

Number of Groups 20

Figure 3.8 illustrates the steps for doing the sequential forward selection and

sequential backward selection. After we prepare 20 groups of training data and test

data for each case, we use them as input for the binary SVM classifier with Gaussian

kernel and obtain the test errors. For the SVM classifier, parameters C = infinity

and σ = 1000 are chosen by the grid search method as being optimal for considering

the sum of average errors for all the Cases (Cases #1 ∼ #8). To simplify the test,

we will use these parameters for all the SBS and SFS tests. Now we can average the

test errors of the 20 groups of test data for each case; the sum of these 8 average

test errors, or Ep, are shown in Figure 3.8. Table 3.7 shows the average test error for

each case in the full dimensional B-Scan feature data sets. The sum of the average

errors is 27.89%.

That done, we begin to do the SBS process. That is to say, from a full dimensional

B-Scan feature data set, we reduce the dimensions for both the training data and

the test data. Eventually, we find a subset which has the lowest sum of average test

errors. For the convenience of discussion, we call the features listed in Table 3.3

numbered features. Then each B-Scan feature data set (1401 dimensions) consists
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Figure 3.8: Flow chart of SBS/SFS process
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Table 3.7: Average test error of B-Scan feature data sets

Average test error

Case #1 7.15%

Case #2 5.17%

Case #3 0.17%

Case #4 2.31%

Case #5 3.00%

Case #6 5.80%

Case #7 5.33%

Case #8 3.52%

Sum 27.89%

of 100 groups of numbered features represented by 14 × 100 dimensions and one

dimension of gain value. In other words, we have a total of 15 kinds of features.

For the classification, assume those dimensions with the same numbered feature

have the same effect. In SBS/SFS, we may delete/add 100 dimensions at one time

except for the dimension of Gain. Thus in Figure 3.8, when we say “delete/add one

feature”, this means either deleting/adding 100 dimensions of the numbered features

or deleting/adding the Gain value. Also the feature in Figure 3.8 refers to one kind

of feature.

Tables 3.8 ∼ 3.18 show the results of SBS process. To illustrate this (see Figure

3.8 and the results in the tables), we list the steps for the SBS.

Step 1 Delete one kind of feature for the training data and test data, compute the

test errors and average them, then record the average test errors in a table.

Step 2 Repeat Step 1 until all types of feature have been deleted exactly once.



3.3. FURTHER FEATURE REDUCTION FOR B-SCAN FEATURE DATA SETS 45

Step 3 Sum the average test errors for each column in the table and find the mini-

mum one, named Emin in Figure 3.8.

Step 4 If Emin < Ep (Ep is a intermediate variable used to record the previous

value of Emin)

Let Ep = Emin and insert the feature number corresponding to the min-

imum sum into a set, Sd, for use by the SFS process. Delete the feature

corresponding to Emin from the input data and repeat Step 1.

If Emin ≥ Ep

Stop the SBS process and begin the SFS process

In Table 3.8, when feature #11 is deleted, a minimum sum of average test errors

(Emin = 24.3%) is obtained. Since Emin < Ep = 27.89% (in Table 3.7), a second

iteration is needed. As Emin = 13.9% (Table 3.18) is greater than Ep = 12.7% (Table

3.17), the SBS process is stopped. After 11 iterations, five features (four numbered

features and 1 gain feature) are kept. The 5 features selected by the SBS method

(see in Table 3.18) are:

• Feature #4, mean of envelope,

• Feature #9, pulse duration,

• Feature #12, band width,

• Feature #13, skewness of magnitude of spectrum, and

• Gain

Using the result of the SBS, we now use SFS to see if any other features can be

added to the group of features obtained. Similarly, SFS takes several steps.
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Step 1 add one kind of feature to set Sd for the training data and test data, compute

the test errors and average them, then record the average test errors in a table.

Step 2 Repeat Step 1 until all types of feature have been added exactly once.

Step 3 Sum those average test errors for each column in the table and find the

minimum one, named Emin.

Step 4 If Emin < Ep

Let Ep = Emin and remove the feature number corresponding to the

minimum sum from set Sd. Add the feature corresponding to Emin for

the input data and repeat Step 1.

If Emin ≥ Ep

Stop the SFS process. The SBS/SFS process is finished.

Table 3.19 shows the 1st iteration of sequential forward selection after the SBS. As

the minimum sum value (Emin) of 13.2%, is greater than the Ep value of 12.7%, the

SFS process is stopped.

The SFS process shows that adding any one of the other features to those five

features can not lower the test error any more. Thus the subset of the features

combining those five kinds of features is the optimal one for classification. It should

be pointed out that if we want to use the SBS/SFS method to find the optimal subset

for any particular cases, say Case #1, the selection criteria should use the average

error for that case, Case #1, instead of the sum of the average test errors.
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Table 3.8: First iteration of SBS

Average Error Rates for Feature Deleted(%)
Case

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Gain

#1 6.5 6.6 6.6 6.9 6.8 6.3 7.7 9.7 6.8 7.2 6.8 7.0 6.8 6.6 6.9

#2 5.4 5.3 5.3 5.3 5.3 4.6 4.9 6.6 5.3 5.2 2.7 5.3 5.4 5.5 5.2

#3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2

#4 2.5 2.3 2.3 2.3 2.3 2.3 1.9 2.3 2.2 1.6 1.0 2.4 2.1 2.2 2.4

#5 3.3 3.1 3.1 3.1 3.1 3.0 3.4 4.5 3.2 2.8 2.3 3.2 3.2 3.4 3.2

#6 6.1 5.8 5.8 5.8 5.8 6.4 6.8 6.8 6.0 5.9 3.8 6.0 6.2 6.1 6.0

#7 4.7 5.2 5.2 5.2 5.2 4.4 5.7 5.8 5.3 5.3 4.9 5.2 5.5 5.4 5.2

#8 4.0 3.8 3.8 3.8 3.8 4.1 3.1 4.3 3.8 3.9 2.7 3.9 3.9 4.0 3.8

Sum 32.6 32.3 32.3 32.5 32.4 31.3 33.7 40.2 32.8 32.0 24.3 33.0 33.3 33.2 32.8

Action: Delete feature (#11)

Table 3.9: Second iteration of SBS

Average Error Rates for Feature Deleted(%)
Case

1 2 3 4 5 6 7 8 9 10 12 13 14 Gain

#1 5.8 6.7 6.7 6.9 6.7 6.3 7.7 7.6 7.0 6.5 6.8 6.8 7.0 6.7

#2 2.5 2.7 2.7 2.7 2.7 2.0 2.3 3.6 2.9 2.8 2.7 2.8 2.8 2.8

#3 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

#4 1.6 1.0 1.0 1.0 1.0 1.5 0.6 1.1 1.0 1.0 1.1 1.0 1.2 1.0

#5 2.6 2.3 2.3 2.3 2.3 2.2 1.4 3.5 2.3 2.2 2.3 2.3 2.3 2.3

#6 3.2 3.8 3.8 3.8 3.8 3.9 3.4 4.6 3.9 3.9 3.8 4.0 4.2 3.8

#7 4.2 4.7 4.7 4.9 4.8 4.4 5.0 6.4 5.3 4.6 5.1 5.6 5.5 4.9

#8 3.0 2.6 2.6 2.7 2.6 2.5 2.8 3.7 2.8 3.3 2.7 2.8 2.8 2.7

Sum 23.1 23.9 23.9 24.4 24.0 22.8 23.2 30.6 25.3 24.3 24.5 25.4 25.9 24.3

Action: Delete feature (#6)
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Table 3.10: Third iteration of SBS

Average Error Rates for Feature Deleted(%)
Case

1 2 3 4 5 7 8 9 10 12 13 14 Gain

#1 5.2 6.3 6.3 6.8 6.6 8.0 9.3 6.9 6.6 6.6 6.6 6.4 6.2

#2 2.4 2.0 2.0 2.0 2.0 1.2 2.9 2.4 2.3 2.1 2.0 2.2 2.2

#3 0.2 0.1 0.1 0.1 0.1 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1

#4 2.1 1.5 1.5 1.6 1.5 0.3 2.1 1.6 1.4 1.6 1.6 1.6 1.5

#5 2.3 2.2 2.2 2.2 2.2 0.2 3.4 2.3 2.1 2.2 2.2 2.2 2.2

#6 3.8 3.9 3.9 3.9 3.9 2.8 4.7 4.0 3.8 3.9 3.9 4.0 3.9

#7 3.5 4.4 4.4 4.2 4.4 3.7 4.6 4.5 3.5 4.5 4.6 4.6 4.4

#8 2.8 2.5 2.5 2.5 2.5 2.4 3.5 2.5 2.8 2.5 2.6 2.9 2.5

Sum 22.2 22.8 22.8 23.3 23.2 19.4 30.7 24.3 22.7 23.4 23.6 23.9 22.9

Action: Delete feature (#7)

Table 3.11: Fourth iteration of SBS

Average Error Rates for Feature Deleted(%)
Case

1 2 3 4 5 8 9 10 12 13 14 Gain

#1 6.9 8.0 8.0 8.6 8.4 12.3 8.7 8.6 8.1 8.1 8.7 8.0

#2 2.1 1.1 1.1 1.1 1.1 2.0 1.4 1.9 1.2 1.2 1.3 1.3

#3 0.8 0.8 0.8 0.8 0.8 0.1 0.8 0.8 0.8 0.8 0.8 0.8

#4 0.3 0.3 0.3 0.3 0.3 0.8 0.3 0.3 0.3 0.3 0.4 0.3

#5 0.3 0.2 0.2 0.2 0.2 2.1 0.2 0.0 0.2 0.2 0.2 0.2

#6 3.6 2.7 2.7 2.8 2.7 3.4 3.7 2.7 3.1 3.7 3.2 3.1

#7 3.0 3.7 3.7 3.9 3.7 4.2 4.0 4.0 3.9 4.4 4.2 3.8

#8 1.7 2.4 2.4 2.4 2.4 4.4 2.6 2.2 2.8 2.6 2.8 2.4

Sum 18.8 19.3 19.3 20.0 19.6 29.3 21.5 20.5 20.2 21.3 21.7 19.9

Action: Delete feature (#1)
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Table 3.12: Fifth iteration of SBS

Average Error Rates for Feature Deleted(%)
Case

2 3 4 5 8 9 10 12 13 14 Gain

#1 6.9 6.9 7.2 7.2 7.9 7.4 7.3 6.7 7.0 7.2 6.8

#2 2.1 2.1 2.1 2.1 2.8 2.2 2.1 2.2 2.2 2.3 2.1

#3 0.8 0.8 0.8 0.8 0.1 0.8 0.8 0.8 0.8 0.8 0.8

#4 0.3 0.3 0.3 0.3 0.9 0.5 0.3 0.5 0.3 0.3 0.3

#5 0.3 0.3 0.3 0.3 1.1 0.6 0.1 0.5 0.5 0.3 0.3

#6 3.6 3.6 3.6 3.6 2.5 4.1 2.4 4.1 4.5 3.9 3.7

#7 3.0 3.0 3.1 3.0 2.8 3.2 3.0 3.2 3.4 3.4 3.2

#8 1.7 1.7 1.8 1.7 3.3 1.6 1.2 1.7 2.0 2.0 1.7

Sum 18.8 18.8 19.2 19.0 21.4 20.3 17.1 19.7 20.7 20.3 18.9

Action: Delete feature (#10)

Table 3.13: Sixth iteration of SBS

Average Error Rates for Feature Deleted(%)
Case

2 3 4 5 8 9 12 13 14 Gain

#1 7.3 7.3 7.8 7.2 7.2 7.6 7.2 7.5 7.6 7.4

#2 2.1 2.1 2.1 2.1 2.2 2.2 2.1 2.2 2.1 2.1

#3 0.8 0.8 0.8 0.8 0.1 0.8 0.8 0.8 0.8 0.8

#4 0.3 0.3 0.3 0.3 0.9 0.3 0.3 0.2 0.3 0.3

#5 0.1 0.1 0.1 0.1 0.4 0.3 0.2 0.2 0.1 0.2

#6 2.5 2.5 2.5 2.5 1.1 2.8 2.6 2.3 2.5 2.4

#7 2.8 2.8 3.0 2.8 1.9 2.8 2.8 3.2 2.9 3.1

#8 1.2 1.2 1.2 1.2 2.4 1.3 1.0 1.3 1.3 1.3

Sum 17.0 17.0 17.7 16.9 16.2 18.1 17.0 17.5 17.5 17.5

Action: Delete feature (#8)
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Table 3.14: Seventh iteration of SBS

Average Error Rates for Feature Deleted(%)
Case

2 3 4 5 9 12 13 14 Gain

#1 7.2 7.2 6.8 7.0 7.3 6.2 6.4 6.8 7.6

#2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.3 2.2

#3 0.1 0.1 0.1 0.1 0.1 0.7 0.1 0.1 0.1

#4 0.6 0.6 0.7 0.6 0.8 0.9 0.7 0.7 0.8

#5 0.3 0.3 0.5 0.3 0.7 0.5 0.5 0.3 0.5

#6 1.1 1.1 1.1 1.1 0.8 1.1 1.9 0.9 1.1

#7 1.9 1.9 1.8 1.7 2.0 2.2 2.8 2.0 2.1

#8 2.2 2.2 3.3 2.2 2.8 2.4 2.5 2.9 2.3

Sum 15.6 15.6 16.6 15.3 16.7 16.2 17.1 16.0 16.7

Action: Delete feature (#5)

Table 3.15: Eighth iteration of SBS

Average Error Rates for Feature Deleted(%)
Case

2 3 4 9 12 13 14 Gain

#1 7.1 7.1 7.3 7.4 6.3 6.3 6.5 7.2

#2 2.2 2.2 2.2 2.2 2.2 2.2 2.3 2.2

#3 0.1 0.1 0.1 0.1 0.7 0.1 0.1 0.1

#4 0.5 0.5 0.6 0.7 0.8 0.6 0.6 0.6

#5 0.3 0.3 0.4 0.6 0.4 0.4 0.3 0.4

#6 1.1 1.1 1.1 0.6 1.1 2.0 0.9 1.1

#7 1.6 1.6 1.6 1.6 2.1 2.8 2.0 2.1

#8 1.9 1.9 3.0 2.7 2.3 2.3 2.8 2.2

Sum 14.8 14.8 16.4 16.0 15.9 16.8 15.4 16.0

Action: Delete feature (#2)
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Table 3.16: Ninth iteration of SBS

Average Error Rates for Feature Deleted(%)
Case

3 4 9 12 13 14 Gain

#1 6.6 7.5 7.8 5.9 6.2 6.4 7.4

#2 2.2 2.2 2.2 2.2 2.2 2.2 2.2

#3 0.1 0.1 0.1 0.7 0.1 0.1 0.1

#4 0.5 0.6 0.6 0.8 0.6 0.6 0.5

#5 0.2 0.1 0.4 0.3 0.2 0.3 0.3

#6 1.1 1.1 0.7 1.2 2.0 0.9 1.1

#7 0.9 1.6 1.3 2.1 2.8 1.7 1.9

#8 1.6 2.4 2.5 2.0 2.2 2.6 1.9

Sum 13.2 15.5 15.6 15.1 16.2 14.8 15.5

Action: Delete feature (#3)

Table 3.17: Tenth iteration of SBS

Average Error Rates for Feature Deleted(%)
Case

4 9 12 13 14 Gain

#1 5.5 7.2 5.6 5.4 5.7 6.5

#2 2.2 2.3 2.2 2.2 2.2 2.2

#3 0.6 0.1 0.7 0.1 0.1 0.1

#4 0.6 0.8 0.7 0.5 0.4 0.5

#5 0.4 0.4 0.2 0.0 0.1 0.2

#6 1.7 0.5 1.1 1.8 1.0 1.1

#7 1.4 0.8 1.8 2.2 0.9 1.4

#8 1.5 3.0 1.7 2.1 2.3 1.6

Sum 13.8 15.2 14.0 14.2 12.7 13.6

Action: Delete feature (#14)
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Table 3.18: Eleventh iteration of SBS

Average Error Rates for Feature Deleted(%)
Case

4 9 12 13 Gain

#1 5.6 8.4 6.2 4.8 5.9

#2 2.2 2.2 2.2 2.1 2.4

#3 0.7 0.1 0.7 0.1 0.1

#4 0.4 0.4 0.8 0.3 0.6

#5 0.3 0.3 0.2 0.1 0.2

#6 1.4 0.6 1.1 1.7 1.1

#7 2.1 0.7 1.6 2.4 1.2

#8 1.9 2.8 2.5 2.5 2.5

Sum 14.5 15.6 15.3 13.9 13.9

Action: Stop the SBS.

Table 3.19: First iteration of SFS

Average Error Rates for Feature Added(%)
Case

1 2 3 5 6 7 8 10 11 14

#1 12.8 6.3 6.4 6.6 9.2 6.9 7.7 7.8 11.6 6.6

#2 1.9 2.2 2.2 2.2 4.7 3.3 2.1 2.4 5.3 2.2

#3 0.1 0.1 0.1 0.1 0.1 0.9 0.8 0.1 1.0 0.1

#4 1.0 0.6 0.6 0.6 1.3 2.6 0.2 0.5 5.2 0.5

#5 1.3 0.3 0.3 0.3 3.4 3.7 0.0 1.6 5.8 0.2

#6 3.2 0.9 0.9 0.9 6.6 5.0 2.6 2.2 8.4 1.1

#7 6.0 1.7 1.7 1.7 7.9 5.4 2.5 3.1 7.1 0.9

#8 5.9 2.6 2.6 2.3 7.6 4.4 1.1 3.2 5.9 1.6

Sum 32.1 14.7 14.8 14.7 40.7 32.2 16.9 20.9 50.3 13.2

Action: Stop the SFS.
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3.3.4 Analysis of the Results

After the SBS/SFS process, a subset with 5 kinds of features has the lowest sum of

average test errors. As these five kinds of features are F4 (mean of envelope, 100

dimensions), F9 (pulse duration, 100 dimensions), F12 (band width, 100 dimensions),

F13(skewness of magnitude of spectrum, 100 dimensions) and Gain (1 dimension),

the total number of dimensions for this subset is 401. Hereafter, we call this subset

the optimal B-Scan feature set. Table 3.20 compares the average test error for

the complete B-Scan feature data set and the optimal B-Scan feature data set for all

8 cases. Doing so shows that the SBS/SFS method does a good job of lowering the

test error. In the later chapters of this thesis, unless noted otherwise, we will use the

optimal B-Scan feature data as the input data.

Table 3.20: Average test errors for the B-Scan feature data sets and optimal B-Scan

feature data sets

Full B-Scan feature data sets Optimal B-Scan feature data sets

(15 features) (5 features)

Case #1 7.15% 5.7%

Case #2 5.17% 2.2%

Case #3 0.17% 0.1%

Case #4 2.31% 0.4%

Case #5 3.00% 0.1%

Case #6 5.80% 1.0%

Case #7 5.33% 0.9%

Case #8 3.52% 2.3%

Sum 32.45% 12.7%
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3.4 Summary

In this Chapter, we first introduced the experimental setup for raw data collection.

By applying averaging and gating techniques, A-Scan data sets and B-Scan data sets

were obtained from the raw data. We then extracted features from the A-Scan data

set and formed the A-Scan and B-Scan feature data sets. With fewer test errors, the

B-Scan feature data set was chosen for feature reduction employing a combination

of the SBS and SFS methods, we finally obtained an optimal B-Scan feature data

set for further reference.

In the process of doing SBS/SFS, we used the SVM classifier for the binary

classification. To simplify the test, we used the same parameters, C = infinity and

σ = 1000, in the SVM classifiers, which were chosen by the grid search method.

We found that appropriate parameters are critical for the SVM. Also, that it takes

a lot of time to find these parameters using the grid search method. This will be

demonstrated in the next chapter. Chapter 4 will focus on the selection of SVM

parameters.



Chapter 4

Determination of SVM Parameters

for Pipe Crack Classification

4.1 Introduction

In Chapter 3, SVM classifiers using the Gaussian kernel were employed to do feature

reduction for the input vectors. In this process, we confirmed that the key factor for

the performance of the SVM classifiers was the kernel parameter chosen, σ, and the

trade-off parameter, C. Inappropriate parameter settings led to poor classification

results [53]. In this chapter, we use an indicator called the KFD Ratio to determine

the appropriate parameters for our SVM classifiers.

As noted in Section 2.3, in the algorithm of the binary SVM classification, the

kernel function map the input vectors into the feature space, a higher-dimensional

space, to solve a non-linear problem fitting a linear, rather than non-linear model

into the feature space. The Gaussian kernel, k(x,x′) = exp(−‖x−x′‖2
2σ2 ), is one of

the most commonly used kernels for SVM classifiers. (Refer to Table 2.2 for other

kernel definitions.) The Gaussian kernel has several advantages over the kernels.

55
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First, it has only one parameter, the bandwidth, σ (σ > 0), while the polynomial

kernel, k(x, x′) = (〈x,x′〉+ c)d, has 2 parameters, c and d. The complexity of an

SVM classifier with a polynomial kernel is more than that of one with a Gaussian

kernel because the former has more parameters. Also the Gaussian kernel has fewer

numerical difficulties. One key point is 0 < exp(−‖x−x′‖2
2σ2 ) < 1. For the polynomial

kernel, the kernel values may go to infinity, (〈x,x′〉+c) > 1, or zero, (〈x,x′〉+c) < 1,

when the degree (d) is large. Second, the Gaussian kernel has features of the linear

kernel. Keerthi et al. [53] show that a linear kernel with a trade-off parameter

performs like the Gaussian kernel with certain parameters (C, σ). Third, the sigmoid

kernel, k(x,x′) = tanh(κ〈x, x′〉+ ϑ) (κ > 0 and ϑ < 0), which is quite popular for

support vector machines because it originated from neural networks, behaves like

the Gaussian kernel for certain parameters [54]. Lin et al. [54] recommend using the

Gaussian kernel instead of the sigmoid kernel because it is hard to select suitable

parameters for the sigmoid kernel. In this thesis, we have chosen the Gaussian kernel

as the kernel function for our SVM classifiers.

We also discussed the trade-off parameter, denoted by C, for the misclassification

error penalty in Section 2.3. C controls the trade-off between margin maximization

and error minimization [55]. In total, there are two parameters, C and σ, for a binary

SVM classifier with a Gaussian kernel.

Researchers have proposed several methods of finding these parameters. So far,

the most conventional method is the grid search [56][57]. Usually, trying to expo-

nentially grow sequences of C and σ is a practical way of identifying good parameters

[56]. Besides, since there are only two parameters, the computational time needed

to find good parameters using a grid search is not much greater than that using the

advanced methods mentioned below. For an SVM classifier with only one or two

parameters, the grid search method is a good choice. If the SVM model has more
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than two parameters, the grid search must go beyond its power. Kunapuli et al.

[58] propose a method that use bilevel programming to optimize the parameters in

applications involving SVM models with many parameters. Bazi et al. [59] use an

optimization framework based on genetic algorithms to find the parameters of SVM

classifiers by using real data from the northwest Indiana’s Indian Pines obtained by

the AVIRIS sensor in 1992. Liu et al. [60] propose a hybrid method that combines

evolution strategies with a grid search, to carry out an optimizing selection of these

parameters using the experimental IRIS data.

In this thesis, we use an alternative indicator called the KFD Ratio [61] (to

be defined in Section 4.2) incorporated with the grid search method to find the

appropriate parameters, C and σ, for the binary SVM classifiers using the Gaussian

kernel. Our aim is to reduce computational cost.

The rest of this chapter is organized as follows. In Section 4.2, the KFD Ratio is

defined. We also compare the computational time for both the KFD Ratio and grid

search using four benchmark data. In Section 4.3, the binary SVM classifiers which

use the Gaussian kernel are applied in the experiment to different combinations of

(C, σ) using the optimal B-Scan feature data sets obtained in Chapter 3. In Section

4.4, we analyze the results from the experiment and draw conclusions. Summaries

are provided in Section 4.5

4.2 The Kernel Fisher Discriminant Ratio (KFD

Ratio)

With different parameter σ values in the kernel function, observations are mapped

into the feature space differently. For certain σ values, the data in the feature space

are easier to separate. Liu et al. [61] use the KFD Ratio as an indicator to reflect
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the separability between the two classes in the feature space. The KFD Ratio is the

ratio of the between class variance and the within class variance in the feature

space; that is, it is computed on the data mapped using the kernel function (we will

show this below). Suppose we have two classes Z1 and Z2; the between class variance

is denoted by the Euclidean distance between the two means of the classes, whereas

the within class variance is denoted by the sum of the variances of the two classes.

From Chapter 2, it’s acknowledged that the SVM classifier are linear classifiers.

For non-linear separable data, SVMs use kernel function to map the input vectors

into the feature space and do linear classification in the feature space. For example,

Figure 4.1-(A) shows a classical example of a simple problem that can not be solved

well using linear functions. Figure 4.1-(B) shows that after applying the mapping φ,

the data in the feature space can be linearly separated.

Figure 4.1: Mapping the training data nonlinearly into a feature space via φ

As outlined in Section 2.3, the kernel trick amounts to performing the mapping

algorithm. For each kernel there exists a mapping, φ : X 7→ H, where H is the
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feature space. We have k(x,z) = 〈φ(x), φ(z)〉 = φ(x) · φ(z). We are looking for a

decision function of the form

f(x) = wT · φ(x) + b

where w ∈ H is a vector in the feature space, H. Since the best way to work in the

feature space, H, is by using the kernel function, we endeavor to find a formulation

of the KFD Ratio which uses the kernel function. In other words, the mapping

function, φ, is used in an implicit way in the form of dot-products.

For the convenience of mathematical discussion, relevant definitions are given in

Table 4.1.

Table 4.1: Nomenclature for the KFD Ratio

X — the space of input vectors, X ⊂ Rn

y — the set of possible labels, y = {+1,−1}
Z — training data of size l

Z = {(x1, y1), (x2, y2), · · · , (xl, yl)} ⊂ X × y

Z1 — Z1 = {(x, y) ∈ Z|y = +1}, l1 = |Z1|
where |Z1| denotes the number of data points in Z1

Z2 — Z2 = {(x, y) ∈ Z|y = −1}, l2 = |Z2|
where |Z2| denotes the number of data points in Z2

m1 — m1 = 1
l1

∑
x∈Z1

φ(x), class mean in feature space H for Z1

m2 — m2 = 1
l2

∑
x∈Z2

φ(x), class mean in feature space H for Z2

SB — between class variance matrix in feature space H
SB = (m2 −m1)(m2 −m1)

T

SW — within class variance matrix in feature space H
SW =

∑
i=1,2

∑
x∈Zi

(φ(x)−mi)
2
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The KFD ratio was defined in [61] as

KFD Ratio =
SB

SW

=
‖ m1 −m2 ‖2

S2
1 + S2

2

(4.1)

where Si is denoted by

S2
i =

∑
x∈Zi

(φ(x)−mi)
2, i = 1, 2.

The between class variance was defined as [61]

‖ m1 −m2 ‖2=
1

l21

∑
xi∈Z1

∑
xj∈Z1

k(xi,xj)− 1

2l1l2

∑
xi∈Z1

∑
xj∈Z2

k(xi, xj)

+
1

l22

∑
xi∈Z2

∑
xj∈Z2

k(xi, xj)

and the variance of each class is

S2
i =

∑
x∈Zi

(φ(x)−mi)
2

=
∑
x∈Zi

k(x,x)− 1

li

∑
xj∈Zi

∑
xk∈Zi

k(xj,xk), i = 1, 2.

The KFD Ratio, Eq (4.1),can be represented as

KFD Ratio =

2∑
i=1

{ 1
l2i

∑
xj∈Zi

∑
xk∈Zi

k(xj,xk)} − 1
2l1l2

∑
xi∈Z1

∑
xj∈Z2

k(xi,xj)

2∑
i=1

∑
x∈Zi

k(x, x)−
2∑

i=1

{ 1
li

∑
xj∈Zi

∑
xk∈Zi

k(xj,xk)}
. (4.2)

In Eq (4.1), the numerator is the between class variance and the denominator is

the within class variance. The larger the KFD Ratio is, the more separable the two

classes are. With the introducing of the kernel function, we were able to calculate the

KFD Ratio of the data in the feature space as shown in Eq (4.2). In SVM classifiers,

kernel functions are used to map the data in the input space, X , into a potential

higher-dimensional feature space, H. When both the SVM classifiers and the KFD

Ratio use the same type of kernel function and take the same kernel parameters,
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we suspect that the generalization performance in the SVM may be reflected by the

KFD Ratio.

Usually, the procedure of training the SVM classifiers includes finding the kernel

matrix and using quadratic programming [15] to do the optimization. The kernel

matrix is defined as

K =




k(x1,x1) k(x1,x2) · · · k(x1,xl)

k(x2,x1) k(x2,x2) · · · k(x2,xl)

...
. . .

...

k(xl,x1) k(xl,x2) · · · k(xl,xl)




(4.3)

where we have Kij = k(xi, xj) and l is the size of the training data, Z. When we

compute the KFD Ratio, we need only the kernel matrix and some very simple addi-

tions and subtractions, as illustrated in Eq (4.2). Thus if the KFD Ratio could be an

indicator for choosing the SVM parameters, a lot of computational time will be saved

because quadratic programming consumes much more time than the computation of

the kernel matrix. We use 4 benchmark data from the UCI1 to calculate the compu-

tational time for the SVM and the KFD Ratio. Table 4.2 shows the CPU time2 for

the SVM, which employ the leave-one-out cross validation [62] and the KFD Ratio.

In Section 3.2, we talked about the cross validation. The leave-one-out is a special

case which we use one sample as the test data and others as training data each time.

From Table 4.2, the time for the KFD Ratio is much smaller than that for the SVM.

This shows that if the KFD Ratio is an good indicator for selecting the parameters

for the SVM, we will save a lot of time finding the optimal SVM classifier. In Section

1The UCI (University of California, Irvine) Machine Learning Repository is a collection of

databases, domain theories, and data generators that are used by the machine learning community

for the empirical analysis of machine learning algorithms.
2The configuration of the computer is: CPU: 2×AMD 2.4GHz, Memory: 2GB , Operating

System: Windows 2003
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Table 4.2: CPU Time for SVM & the KFD Ratio

Data Training Input Space Time for SVM Time for KFD Ratio t2/t1

Name Data Sets # Dimension # t1 (sec) t2 (sec) (%)

Winea 130 13 5.9282 0.0729 1.2

Statlogb 417 18 116.6331 0.0648 0.056

Spectfc 80 44 8.6027 0.0761 0.88

Arcened 100 10000 1164.0492 14.2608 1.2

aWine data uses chemical analysis to determine the origin of wines. Classes 1 and 2 are employed.
bStatlog data classify a given silhouette as one of four types of vehicle.
cData on cardiac Single Proton Emission Computed Tomography (SPECT) images. Each patient

is put into one of two categories: normal or abnormal.
dArcene’s task is to distinguish cancer versus normal patterns from mass-spectrometric data

4.3, we use the optimal B-Scan feature data sets from Section 3.3 as the input to

show that the KFD Ratio is a good indicator for choosing parameters.

4.3 Using the KFD Ratio to Find SVM Parame-

ters for Pipe Crack Classification

One of the goals of this thesis is to use an alternative indicator, the KFD Ratio, for

identifying the parameters in SVM classifiers using the Gaussian kernel. To find the

relationship of the KFD Ratio to the SVM parameters, we used the optimal B-Scan

feature data sets for pipe cracks (see Chapter 3) as the input data.

The optimal B-Scan feature data sets include 8 cases (Cases 1 ∼ 8, defined in

Table 3.4). Each case has 20 groups of random separations for training data and test

data, defined in Table 3.6 in Section 3.3. Trying to exponentially grow sequences

of C and σ is a practical way of identifying good parameters based on the grid
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search method suggested in [56]. Furthermore, a coarse grid can be used first. After

identifying a “better” region on the grid, a finer grid search can be conducted on

that region. For all the cases, we set the trade-off parameter, C, in the SVM at 0.1,

1, 200, 5000 and infinity, which is roughly exponential for the base of 10. In each

C value, we do the test for different σ values (σ = 0.1, 0.5, 1, 5, 10, 20, 50, 80,

100, 500, 1000, 10000), which is the Gaussian kernel bandwidth used as the SVM

kernel function. Since we have already done a lot of tests using the optimal B-Scan

data sets, we know the good parameter for σ lies in the interval (1, 1000). (Refer

to Chapter 3.) Thus more values in this interval are chosen for σ for the finer grid

search.

For each combination of (C, σ), the average test error for each group of 20 sepa-

rations is listed in Tables 4.3 to 4.7, each of which corresponds to a different value

for C. For example, Table 4.3 shows the average test error for all 8 cases when C

takes the value of 0.1. In this table, we let σ = 0.1, 0.5, 1, 5, 10, 20, 50, 80, 100,

500, 1000 and 10000. The average KFD ratios (Eq (4.2)) are computed for different

cases (Cases 1 ∼ 8) and different Gaussian kernel bandwidths. Table 4.8 shows the

result.

In this section, we calculated the average test error for different SVM parameter

combinations (C, σ) for all eight cases. The results are recorded in Tables 4.3 ∼ 4.7.

In the following section, we analyze these experimental results.
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Table 4.3: Average test errors for different cases and kernel bandwidths at C = 0.1

σ (Gaussian kernel bandwidth)

Case 0.1 0.5 1 5 10 20 50 80 100 500 1000 10000

#1 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121

#2 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224

#3 0.328 0.328 0.328 0.232 0.148 0.199 0.328 0.328 0.328 0.328 0.328 0.328

#4 0.448 0.448 0.448 0.165 0.098 0.259 0.448 0.448 0.448 0.448 0.448 0.448

#5 0.448 0.448 0.448 0.262 0.125 0.276 0.448 0.448 0.448 0.448 0.448 0.448

#6 0.333 0.333 0.333 0.333 0.332 0.333 0.333 0.333 0.333 0.333 0.333 0.333

#7 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224

#8 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121

Table 4.4: Average test errors for different cases and kernel bandwidths at C = 1

σ (Gaussian kernel bandwidth)

Case 0.1 0.5 1 5 10 20 50 80 100 500 1000 10000

#1 0.121 0.121 0.121 0.123 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121

#2 0.224 0.224 0.223 0.071 0.073 0.132 0.191 0.223 0.224 0.224 0.224 0.224

#3 0.328 0.328 0.309 0.008 0.011 0.021 0.148 0.187 0.208 0.328 0.328 0.328

#4 0.448 0.448 0.367 0.047 0.053 0.055 0.106 0.263 0.269 0.448 0.448 0.448

#5 0.448 0.448 0.359 0.068 0.082 0.128 0.134 0.166 0.364 0.448 0.448 0.448

#6 0.333 0.333 0.333 0.129 0.145 0.176 0.318 0.334 0.333 0.333 0.333 0.333

#7 0.224 0.224 0.224 0.233 0.234 0.228 0.224 0.224 0.224 0.224 0.224 0.224

#8 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121
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Table 4.5: Average test errors for different cases and kernel bandwidths at C = 200

σ (Gaussian kernel bandwidth)

Case 0.1 0.5 1 5 10 20 50 80 100 500 1000 10000

#1 0.121 0.121 0.122 0.110 0.100 0.096 0.138 0.126 0.120 0.121 0.121 0.121

#2 0.224 0.224 0.194 0.033 0.022 0.022 0.022 0.025 0.030 0.173 0.219 0.224

#3 0.328 0.328 0.294 0.008 0.006 0.001 0.001 0.008 0.008 0.027 0.179 0.328

#4 0.448 0.448 0.328 0.024 0.007 0.003 0.003 0.028 0.036 0.053 0.250 0.448

#5 0.448 0.448 0.316 0.035 0.020 0.003 0.010 0.025 0.043 0.134 0.146 0.448

#6 0.333 0.333 0.311 0.051 0.018 0.008 0.024 0.064 0.082 0.236 0.336 0.333

#7 0.224 0.224 0.224 0.091 0.039 0.012 0.047 0.093 0.117 0.225 0.224 0.224

#8 0.121 0.121 0.121 0.065 0.038 0.026 0.063 0.116 0.120 0.121 0.121 0.121

Table 4.6: Average test errors for different cases and kernel bandwidths at C = 5000

σ (Gaussian kernel bandwidth)

Case 0.1 0.5 1 5 10 20 50 80 100 500 1000 10000

#1 0.121 0.121 0.122 0.110 0.100 0.081 0.066 0.078 0.103 0.121 0.121 0.121

#2 0.224 0.224 0.194 0.033 0.022 0.022 0.024 0.023 0.024 0.030 0.052 0.224

#3 0.328 0.328 0.294 0.008 0.006 0.001 0.001 0.001 0.001 0.008 0.014 0.324

#4 0.448 0.448 0.328 0.024 0.007 0.003 0.003 0.003 0.003 0.040 0.051 0.328

#5 0.448 0.448 0.316 0.035 0.020 0.003 0.003 0.002 0.002 0.043 0.084 0.437

#6 0.333 0.333 0.311 0.051 0.018 0.008 0.009 0.009 0.009 0.083 0.142 0.333

#7 0.224 0.224 0.224 0.091 0.039 0.012 0.009 0.009 0.011 0.116 0.221 0.224

#8 0.121 0.121 0.121 0.065 0.038 0.027 0.022 0.022 0.022 0.120 0.121 0.121
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Table 4.7: Average test errors for different cases and kernel bandwidths at C =

infinity

σ (Gaussian kernel bandwidth)

Case 0.1 0.5 1 5 10 20 50 80 100 500 1000 10000

#1 0.121 0.121 0.122 0.110 0.100 0.081 0.065 0.057 0.063 0.057 0.057 0.060

#2 0.224 0.224 0.194 0.033 0.022 0.022 0.024 0.023 0.024 0.022 0.022 0.022

#3 0.328 0.328 0.294 0.008 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.001

#4 0.448 0.448 0.328 0.024 0.007 0.003 0.003 0.003 0.003 0.004 0.004 0.004

#5 0.448 0.448 0.316 0.035 0.020 0.003 0.003 0.002 0.001 0.001 0.001 0.002

#6 0.333 0.333 0.311 0.051 0.018 0.008 0.009 0.009 0.009 0.010 0.010 0.010

#7 0.224 0.224 0.224 0.091 0.039 0.012 0.009 0.008 0.008 0.009 0.009 0.009

#8 0.121 0.121 0.121 0.065 0.038 0.027 0.022 0.022 0.022 0.023 0.023 0.024

Table 4.8: Average KFD Ratios (×10−4) for different cases and kernel bandwidths

σ (Gaussian kernel bandwidth)

Case 0.1 0.5 1 5 10 20 50 80 100 500 1000 10000

#1 8.40 8.39 8.63 23.43 34.25 46.18 58.09 60.46 61.05 62.11 62.14 62.15

#2 4.63 4.64 5.16 24.61 38.64 50.60 62.22 64.68 65.31 66.43 66.47 66.48

#3 3.52 3.53 3.87 27.80 46.89 59.54 71.90 74.71 75.43 76.73 76.77 76.79

#4 3.23 3.24 3.52 24.07 40.46 51.21 61.33 63.69 64.30 65.40 65.44 65.45

#5 3.23 3.23 3.51 19.37 31.96 39.78 47.27 49.14 49.63 50.52 50.55 50.56

#6 3.52 3.53 3.79 14.89 22.89 28.93 35.85 37.52 37.96 38.74 38.77 38.78

#7 4.63 4.63 4.80 12.79 19.19 24.00 29.32 30.65 31.00 31.64 31.66 31.67

#8 8.40 8.40 8.38 12.82 17.54 21.57 26.42 27.58 27.88 28.43 28.45 28.45
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4.4 Analysis of the Results of the Experiment on

Pipe Crack Classification

According to the results recorded in Tables 4.3 ∼ 4.8, which we checked further, the

following observations were made.

1. From Table 4.8, we can plot Figure 4.2, where each sub-figure represents one

case. In each sub-figure, we plot the values of the average KFD Ratio (Y-axis)

vs. the logarithmical values of σ in the base of 10 (X-axis). For all 8 cases, in

which σ lies in the interval (0, 1), the KFD Ratios are small and grow slowly

with σ. When σ is in the interval (1, 100), the KFD Ratio values grow more

quickly. When σ lies in the interval (100, +∞), the KFD Ratio values are

almost stable.
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Figure 4.2: KFD Ratio values vs. σ values for different cases
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2. From Tables 4.3 ∼ 4.7, we can plot 5 sub-figures in Figure 4.3. For example,

Figure 4.3(a) corresponds to Table 4.3 at C = 0.1. Each sub-figure plots the

value of the average test error (Y-axis) vs the logarithmical values of σ in the

base of 10 (X-axis). From Figure 4.3, the minimum average test error in each

sub-figure occurs in the interval σ ∈ (1, 100); this matches the interval of the

KFD Ratio which dramatically changes in Figure 4.2, though the errors may

also be small when C > 100.

3. Let’s look at Case #6. Figure 4.4 is based on the data from Tables 4.3 ∼ 4.7.

Each figure plots both the value of the average test error and the value for the

KFD Ratio. The minimum test error values occur in the interval σ ∈ (1, 100).

Table 4.9 shows that, in each case, the minimum average test error under dif-

ferent C values occurs when we choose the best σ value. This table shows that

when C produces different values, the minimum average test error is different.

In other words, the C value affects the performance of the SVM classifiers.

Table 4.9: Minimum test errors under different C values

C value Minimum error rate

C = 0.1 33.2%

C = 1 12.9%

C = 200 0.8%

C = 5000 0.8%

C = infinity 0.8%
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Figure 4.3: Average test errors vs. σ value for different cases
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Figure 4.4: The KFD Ratio and test errors vs. σ values (C =

0.1, 1, 200, 5000 and infinity)
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Based on the observations pointed out, we can conclude that:

1. The KFD Ratio takes much less time to calculate than the SVM classifier itself

(as illustrated in Table 4.2). Whatever value is given the C parameter, the

smallest classification test error occurs in the interval of σ, which increases

dramatically. Before doing the grid search, we calculate the KFD Ratio. Then

we can focus on the relatively small intervals, where the KFD Ratio dramat-

ically increases, in relation to the σ value. Originally, we set σ at 0.1, 0.5, 1,

5, 10, 20, 50, 80, 100, 500, 1000, 10000. After calculating the KFD Ratio, we

consider only σ =1,5,10,20,50,80,100. This can shorten the time it takes to

find the parameter bandwidth, σ, of the Gaussian kernel.

2. For the optimal B-Scan feature data, different C values affect the performance,

the minimum average test error, of the SVM classifiers. This thesis uses the

grid search method to determine the C value.

4.5 Summary

In this chapter, we incorporated the KFD Ratio with the grid search method for

choosing the parameters σ and C of the binary SVM classifiers using the Gaussian

kernel. As an indicator, the KFD Ratio helps to shorten the calculating time for

finding those parameters. Using the specified kernel function, the Gaussian kernel,

we can find the best combination of (C, σ) for obtaining the minimum test error for

the SVM classifiers. Amari et al. [63] proposed a data dependent method (defined in

the next chapter) to improve the SVM classifiers by modifying the kernel function.

If we can modify this Gaussian kernel function, we may obtain better results for the

minimum test error. Based on the selected parameters of the KFD Ratio incorporated
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with the grid search, in Chapter 5, we employ the data dependent method to further

tune the performance of SVM classifiers.



Chapter 5

Improving SVM Performance by

the Data Dependent Method

5.1 Introduction

In Chapter 4, we used the KFD Ratio incorporated with a grid search method to

find the parameters of SVM classifiers using the Gaussian kernel for pipe crack data.

This showed that good parameters improve the generalization performance of the

SVM classifiers. Using the the KFD Ratio, we have found the best combination of

(C, σ) for obtaining the smallest test error.

The general objective of classification is to find a good classifier, one which results

in the smallest possible test error. In other words, the lower the test error, the better.

From Tables 4.3 ∼ 4.7, we obtain Table 5.1, which gives the smallest average test

error and the corresponding parameters (C, σ). In this table, some cases have more

than one parameter set (C, σ) resulting in the smallest average test error. Compared

with Cases 3∼7 (refer to Table 3.4 in Section 3.2 for our definition of cases), Cases

1, 2 and 8 produce larger test errors. In the hope of obtaining a lower test error for

73



5.1. INTRODUCTION 74

these three cases, a data dependent method [63] was introduced. The algorithm of

the data dependent method will be briefly introduced in Section 5.2.

Table 5.1: The smallest average test error for different cases

SVM Parameters

Cases Average Test Error
(C, σ)

Case #1 5.69% (infinity, 80)

Case #2 2.16% (200, 10),

(infinity, 10), etc.

Case #3 0.09% (200, 20),

(infinity, 100), etc.

Case #4 0.25% (200, 50),

(infinity, 50), etc.

Case #5 0.09% (infinity, 100)

Case #6 0.80% (5000, 20),

(infinity, 20), etc.

Case #7 0.77% (infinity, 80),

(infinity, 100)

Case #8 2.16% (5000, 50),

(infinity, 80), etc.

The data dependent method is based on the selected kernel. It reconstructs this

selected kernel using the so-called “conformal transformation of a kernel” technology

[63] to obtain the data dependent kernel for the SVM classifiers. In Chapter 4, we

found the best parameter set (C, σ) for the SVM classifiers. The data dependent

method uses this Gaussian kernel as the basic kernel. By transforming this basic

kernel, a data dependent kernel is provided for use as the kernel function in the
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classifiers. The details of the transformation are illustrated in Section 5.2.

In this chapter, with the help of the optimized data dependent kernel, we seek to

fine-tune the performance of the SVM classifiers in Chapter 4. We expect to obtain

a lower test error for the classifiers. The latter part of this chapter is organized as

follows. The algorithm for the data dependent method is introduced in Section 5.2.

We then optimize the data dependent kernel in Section 5.3 to reduce the test error

for pipe crack data. Finally, analysis and conclusions are provided in Section 5.4.

5.2 The Algorithm for the Data Dependent Method

5.2.1 The Data Dependent Kernel

Let’s consider a training data set: (x1, y1), (x2, y2), · · · , (xl, yl) ∈ Rd × {±1}. We

use the so-called “conformal transformation of a kernel”[63] as our data-dependent

kernel function.

k(xi,xj) = q(xi)q(xj)k0(xi,xj) (5.1)

where k0(xi,xj) is called the basic kernel, which is an ordinary kernel such as

a Gaussian or polynomial kernel. In this thesis, the basic kernel is the Gaussian

kernel k0(xi,xj) = exp(
−‖xi−xj‖2

2σ2 ) (σ is the basic kernel’s bandwidth) we obtained in

Chapter 4. Because the KFD Ratio incorporated with a grid search enables us to

find the SVM classifiers’ best set of parameters (C, σ), that for which the test error

is the smallest, we believe that this Gaussian kernel is a good choice. The function,

q(·), takes the form

q(x) = α0 +
n∑

i=1

αik1(x,ai) (5.2)

where αi is called the combination coefficients and k1(x,ai) = exp(−‖x−ai‖2
2Σ2 ). ai

(i = 1, 2, · · · , n) is the empirical core which is selected from the training data xj
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(xj ∈ Rd, j = 1, 2, · · · , l). Since n is the number of the training data selected as

the empirical core, it can be less than or equal to l. Σ is called the empirical core’s

bandwidth [64]. In [63], Amari et al. choose the support vectors as the empirical

core, in order to increase the class separation. In this thesis, we also use the support

vectors as the empirical core when we obtain the lowest test error using the KFD

Ratio incorporated grid search method.

In the following, we deduct the matrix form for Eq. (5.1).

Using K and K0 to denote the kernel matrices corresponding to the data depen-

dent kernel, k(xi,xj), and the basic kernel, k0(xi,xj), respectively,

K =




k(x1,x1) k(x1,x2) · · · k(x1,xl)

k(x2,x1) k(x2,x2) · · · k(x2,xl)

...
. . .

...

k(xl,x1) k(xl,x2) · · · k(xl,xl)




(5.3)

K0 =




k0(x1,x1) k0(x1,x2) · · · k0(x1,xl)

k0(x2,x1) k0(x2,x2) · · · k0(x2,xl)

...
. . .

...

k0(xl, x1) k0(xl,x2) · · · k0(xl,xl)




(5.4)

where K and K0 are both l × l matrices.

Vectors q and α represent (q(x1), q(x2), · · · , q(xl))
T and (α0, α1, · · · , αn)T , re-

spectively. Let

K1 =




1 k1(x1,a1) · · · k1(x1,an)

1 k1(x2,a1) · · · k1(x2,an)

...
...

. . .
...

1 k1(xl,a1) · · · k1(xl,an)




. (5.5)
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Hence, the matrix form for Eq. (5.2) is

q =




1 k1(x1,a1) · · · k1(x1,an)

1 k1(x2,a1) · · · k1(x2,an)

...
...

. . .
...

1 k1(xl,a1) · · · k1(xl,an)







α0

α1

...

αn




= K1α. (5.6)

If Q is the diagonal matrix, whose diagonal elements are the q vectors,

Q =




α0 +
n∑

i=1

αik1(x1, ai) 0 · · · 0

0 α0 +
n∑

i=1

αik1(x2,ai) · · · 0

... · · · ...

0 0 · · · α0 +
n∑

i=1

αik1(xl,ai)




and we have

K = QK0Q. (5.7)

Eq. (5.7) is the matrix presentation of Eq. (5.1).

using the data dependent method, the training process consists of two steps:

1. Train the SVM using the basic kernel, K0. This achieves the best training

results, i.e., the smallest test error when applying the KFD ratio.

2. Optimize the data-dependent kernel, K, and train the SVM classifiers using

this new kernel matrix, K.

We’ve already discussed in Chapter 4 how to train the SVM classifiers using the basic

kernel, K0. In the following section, we explain the definition of separability in the

empirical feature space, which is used in Section 5.2.3 as the criterion for optimizing

K to improve the performance of the classifiers.
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5.2.2 Measuring Class Separability in the Empirical Feature

Space

In [64], Xiong et al. use the following formula for measuring the class separability of

the training data in the empirical feature space.

J =
tr SB

tr SW

(5.8)

where SB is the “between-class scatter matrix”, SW the “within-class scatter matrix”,

and “tr” denotes the trace of a matrix. J is also a well known Fisher scalar for

measuring class linear separability, and is called criteria J4 in [65].

Without loss of generality, let us now assume that the first l1 data belong to

class Z1 , whose yi is labeled as +1 (i 6 l1), and the remaining l2 data belong to

Z2(l1 + l2 = l), whose yi is labeled as −1 (i 6 l2). We use φ(xi) to denote the

images of the training data, X, in feature space. Also φ1(xi) and φ2(xi) are used to

represent the images for the training data in Z1 and Z2, respectively. In [64], Xiong

et al. define the SB and SW as follows,

tr SB =
1

l

2∑
i=1

li(φi(x)− φ(x))(φi(x)− φ(x))T (5.9)

tr SW =
1

l

2∑
i=1

∑
x∈Zi

(φ(x)− φi(x))(φ(x)− φi(x))T (5.10)

where φ(x), φ1(x) and φ2(x) denote the center of the entire training data and the

centers of Z1 and Z2 in the feature space.

At the same time, the kernel matrix in Eq. (5.3) can be written as

K =


 K11 K12

K21 K22


 (5.11)

where K11, K12, K21 and K22 represent the submatrices of K of order l1× l1, l1× l2,

l2 × l1 and l2 × l2, respectively. In other words, Eq. (5.11) is just an ordered version
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of Eq. (5.3). An ordered version of K0 in Eq. (5.4) can be obtained in the same

manner with K as follows:

K0 =


 K0

11 K0
12

K0
21 K0

22


 . (5.12)

With the mathematical transformation (detailed proof was illustrated in [64]),

Eq. (5.9) and (5.10) can be written as

tr SB = 1
l
1T

l (




1
l1
K11 0

0 1
l2
K22


− 1

l


 K11 K12

K21 K22


)1l

= 1
l
qT
l (




1
l1
K0

11 0

0 1
l2
K0

22


− 1

l


 K0

11 K0
12

K0
21 K0

22


)ql

(5.13)

tr SW = 1
l
1T

l (




k11 0 · · · 0

0 k22 · · · 0

...
. . .

...

0 · · · kll



−




1
l1
K11 0

0 1
l2
K22


)1l

= 1
l
qT
l (




k0
11 0 · · · 0

0 k0
22 · · · 0

...
. . .

...

0 · · · k0
ll



−




1
l1
K0

11 0

0 1
l2
K0

22


)ql

(5.14)

where 1l is the l−dimensional vector whose entries are all equal to unity. Let B, W ,
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B0 and W0 be as follows,

B =




1
l1
K11 0

0 1
l2
K22


− 1

l


 K11 K12

K21 K22


 (5.15)

W =




k11 0 · · · 0

0 k22 · · · 0

...
. . .

...

0 · · · kll



−




1
l1
K11 0

0 1
l2
K22


 (5.16)

B0 =




1
l1
K0

11 0

0 1
l2
K0

22


− 1

l


 K0

11 K0
12

K0
21 K0

22


 (5.17)

W0 =




k0
11 0 · · · 0

0 k0
22 · · · 0

...
. . .

...

0 · · · k0
ll



−




1
l1
K0

11 0

0 1
l2
K0

22


 (5.18)

Then we can obtain the separability (Eq. (5.8)) of the training data in the empirical

feature space as follows [64]:

J =
1T

l B1l

1T
l W1l

=
qT
l B0ql

qT
l W0ql

. (5.19)

As we have already shown in Section 5.2.1 that q is a function of α in Eq. (5.6),

we know that J is a function of α also. To maximize the separability of the two

classes, we need to optimize the parameter, α. When we get the maximal value for

J , the corresponding data dependent kernel, K, computed by Eq. (5.7), will give the

best classifier performance. The next section shows how to optimize the separability,

J(α).
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5.2.3 Optimization of the Data Dependent Kernel

To maximize J(α), we follow the standard gradient approach. Let





J1(α) = qT
l B0ql

J2(α) = qT
l W0ql

where J1(α) is the numerator of Eq. (5.19) and J2(α) is its denominator.

Hence we have

∂J

∂α
=

2

J2

(M0 − JN0)α (5.20)

where M0 = KT
1 B0K1 and N0 = KT

1 W0K1. According to the general gradient

method, the updating equation for maximizing the class separability, J , as given by

[64] is:

α(n+1) = α(n) + η(
1

J2

M0 − J

J2

N0)α
(n) (5.21)

where J and J2 are functions of α(n), M0 and N0 are two constant matrices, and η is

the learning rate. To ensure the convergence of the algorithm, a gradually decreasing

learning rate is adopted [64].

η(t) = η0(1− t

N
) (5.22)

where η0 is the initial learning rate. N denotes a pre-specified number of iterations,

and t represents the current iteration number. In our experiment, with the increasing

of the iteration number, t, the learning rate, η(t), decreases. The iteration number,

N , itself is randomly chosen from the range [1, 10000] since we don’t know how large

N should be before we do the experiment.

In this section, we have introduced the terminology and algorithm for the data

dependent method. After determining the basic kernel, there are still several pa-

rameters for optimizing the data dependent kernel. These parameters include the

empirical core, ai; the learning rate, η; the empirical core’s bandwidth, Σ; and the
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iteration number, N . In the following section, we employ the data dependent method

to construct the data dependent kernel for the SVM classifiers for pipe crack data.

5.3 Optimizing the Data Dependent Kernel for

Pipe Crack Data

5.3.1 The Experimental Data Set

In Chapter 4, optimal B-Scan feature data sets were used to find the best parameter

set (C, σ) by the KFD Ratio method. In this chapter, the same optimal B-Scan

feature data sets are used as the input vectors. As mentioned in Section 5.1, the

test error for Case 1 (5.69%), Case 2 (2.16%) and Case 8 (2.16%) are relative larger

than for the other cases. We use only these three cases in the experiment involving

the data dependent method. As defined in Table 3.6 in Section 3.3, each of these

three cases have 20 groups of random separations for the training and test data used

continuously with the experimental data in Chapter 4.

5.3.2 The Experiment Using Optimal B-Scan Feature Data

Sets

In Chapter 4, we used the KFD Ratio incorporated with a grid search and found the

best parameter set (C, σ); that is listed in Table 5.1, for the SVM classifiers using a

Gaussian kernel function. Since more than one parameter set (C, σ) corresponds to

the smallest test error for the classifiers, we can choose any one of them as the basic

kernel. Here, we take (infinity, 80), (infinity, 10) and (infinity, 80) as the basic kernel

parameters for Cases 1, 2 and 8, respectively.
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In this experiment, the support vectors chosen as the empirical cores are those

with the smallest test error in the SVM classifier using the Gaussian kernel. The

initial learning rates are all set at 0.01 because thsi has been experimentally proven to

ensure the convergence of the data dependent kernel under the gradient optimization

algorithm. From Eq. (5.22), η(t) = η0(1− t
N

); with a fixed η0, η(t) is dependent on

the iteration number, N . As we have already chosen the support vectors (selected

using the KFD Ratio method in Chapter 4) we have only two variables, N and the

empirical core’s bandwidth, Σ. We use the following method to find the combination

of the empirical core’s kernel bandwidth and iteration number. Let the iteration

number be a random integer between 1 and 10000, and let the empirical core’s

kernel bandwidth be a random real number between 0.01 and 1000. If the test error

is smaller than the test error provided by the regular SVM classifiers (the optimal

result in Chapter 4), we stop running the program and record all the parameters.

The range selection of N and Σ will be discussed in Section 5.4. As we can see, even

with a step of 0.01 for Σ and 1 for N , there are 10000× 100000 = 109 combinations

required to test each group of data. Because it would be difficult to make this many

attempts, we set 20000 as the total number of combinations to be tested.

For Cases 1, 2 and 8, Tables 5.2 ∼ 5.4 list the test error and parameters of the

data dependent SVM classifiers. In those tables, test error 1 represents the test

error generated by the SVM classifiers using the Gaussian kernel, and test error 2

represents the test error generated by the data dependent SVM classifiers. At the

bottom of each table, an average test error is given; this was obtained by calculating

the average of each test error column, separately. The analysis and discussion of the

results are given in Section 5.4.

Figure 5.1 shows four examples of the gradient optimization of the data dependent

method for different cases. All the x-axes in Figure 5.1 denote the iteration number
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and the y-axes denote the separability J(α). As the iteration number increased,

the value of J(α) increased. At the same time, the test error went from 12.07%

to 10.34% in Figure 5.1(a), 12.07% to 10.34% in Figure 5.1(b), 3.45% to 1.72% in

Figure 5.1(c), and 1.72% to 0 in Figure 5.1(d).

In this section, we used a data dependent kernel to optimize the SVM classifiers

for the pipe crack data. The results of this experiment are listed in Tables 5.2 ∼ 5.4.

In the next section, we analyze these results and draw conclusions.
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Table 5.2: Case #1 — Test Errors & Parameters

Group # Test Error 1 Test Error 2 η σ Iteration #

#1 0.0345 0.0172 0.01 10 3000

#2 0.0690 0.0690 0.01 100 3000

#3 0.0862 0.0862 0.01 500 3000

#4 0.0690 0.0690 0.01 100 3000

#5 0.0517 0.0517 0.01 100 3000

#6 0.0690 0.0690 0.01 1000 3000

#7 0.0345 0.0345 0.01 100 20

#8 0.0862 0.0862 0.01 1000 30

#9 0.1207 0.1034 0.01 1 200

#10 0.0000 0.0000 0.01 1000 30

#11 0.0690 0.0690 0.01 1000 30

#12 0.0345 0.0345 0.01 1000 30

#13 0.0517 0.0517 0.01 1000 30

#14 0.0172 0.0172 0.01 1000 30

#15 0.0690 0.0690 0.01 1000 30

#16 0.0345 0.0172 0.01 14 200

#17 0.0345 0.0172 0.01 7 200

#18 0.1207 0.1034 0.01 50 1925

#19 0.0345 0.0345 0.01 1000 200

#20 0.0517 0.0517 0.01 1000 200

Average 5.69% 5.26%
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Table 5.3: Case #2 — Test Errors & Parameters

Group # Test Error 1 Test Error 2 η σ Iteration #

#1 0.0172 0.0000 0.01 45 3000

#2 0.0345 0.0172 0.01 3 2500

#3 0.0172 0.0000 0.01 14 2000

#4 0.0172 0.0000 0.01 650 300

#5 0.0345 0.0172 0.01 25 2300

#6 0.0345 0.0345 0.01 10 200

#7 0.0345 0.0172 0.01 7 2700

#8 0.0172 0.0172 0.01 10 200

#9 0.0517 0.0345 0.01 400 600

#10 0.0172 0.0172 0.01 10 10

#11 0.0345 0.0172 0.01 45 2900

#12 0.0000 0.0000 0.01 10 200

#13 0.0172 0.0000 0.01 40 1300

#14 0.0000 0.0000 0.01 10 10

#15 0.0172 0.0172 0.01 10 10

#16 0.0345 0.0345 0.01 10 10

#17 0.0172 0.0172 0.01 10 10

#18 0.0000 0.0000 0.01 10 10

#19 0.0172 0.0000 0.01 23 2900

#20 0.0172 0.0172 0.01 10 10

Average 2.15% 1.29%
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Table 5.4: Case #8 — Test Errors & Parameters

Group # Test Error 1 Test Error 2 η σ Iteration #

#1 0.0690 0.0690 0.01 80 10

#2 0.0172 0.0172 0.01 80 10

#3 0.0172 0.0172 0.01 80 10

#4 0.0172 0.0172 0.01 80 10

#5 0.0172 0.0172 0.01 80 10000

#6 0.0000 0.0000 0.01 80 10

#7 0.0345 0.0345 0.01 80 10

#8 0.0172 0.0172 0.01 80 10

#9 0.0517 0.0345 0.01 40 1300

#10 0.0172 0.0172 0.01 44 800

#11 0.0172 0.0172 0.01 44 800

#12 0.0172 0.0172 0.01 44 800

#13 0.0172 0.0000 0.01 58 1000

#14 0.0000 0.0000 0.01 80 10

#15 0.0172 0.0000 0.01 50 2700

#16 0.0172 0.0172 0.01 80 10

#17 0.0345 0.0345 0.01 80 10

#18 0.0345 0.0345 0.01 80 10

#19 0.0172 0.0172 0.01 80 10

#20 0.0000 0.0000 0.01 80 10

Average 2.15% 1.90%
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(a) (b)

(c) (d)

Figure 5.1: Examples of gradient optimization of separability for different cases
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5.4 Analysis and Discussion of the Experimental

Results

Section 5.3 listed the test errors for Case 1, 2 and 8 in Tables 5.2 ∼ 5.4. In this

Section, we will first show our observations. Then, based on these observations, we

draw the conclusions.

In Table 5.2 in Section 5.3, Test Error 2 is smaller than Test Error 1 for groups

1, 9, 16, 17 and 18, all of which are underlined. For the other groups in Table 5.2,

Test Error 2 is equal to Test Error 1. The average test error for these 20 groups was

lowered from 5.69% to 5.26%, or (that is by 7.56 percent [5.69%−5.26%
5.69%

]) by applying

the data dependent method. In Table 5.3, Test Error 2 is smaller than Test Error 1

for groups 1, 2, 3, 4, 5, 7, 9, 11, 13 and 19, which are all underlined. For the other

groups in Table 5.3, Test Error 2 is equal to Test Error 1. The average test error for

these 20 groups was lowered from 2.15% to 1.29%; that is, b 40 percent, by applying

the data dependent method. In Table 5.4, Test Error 2 is smaller than Test Error

1 for groups 9, 13 and 15, which are underlined. For the other groups in Table 5.3,

Test Error 2 is equal to Test Error 1. The average test error for these 20 groups

was lowered from 2.15% to 1.90%; that is, by 11.63 percent, by applying the data

dependent method.

Now we can draw some conclusions based on these data

1. In three cases (Cases 1, 2 and 8), by applying the data dependent method, the

average test error was reduced.

2. Since the data dependent method uses empirical cores and gradient optimiza-

tion, parameters in the data dependent method such as iteration number and

empirical core bandwidth vary from group to group. As mentioned earlier, the
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empirical cores, ai; the learning rate, η; the empirical cores’ kernel bandwidth,

σ; and the iteration numbers are all new parameters in this data dependent

method.

3. By applying the data dependent method, Test Error 2 should always be less

than or equal to Test Error 1. The reason is that we construct the new kernel

using Eq (5.1), k(x,z) = q(x)q(z)k0(x, z), by the data dependent method. In

Eq (5.1), q(x) and q(z) take the form q(x) = α0 +
n∑

i=1

αik1(x,ai) (Eq (5.2)),

where k1(x,ai) = exp(−‖x−ai‖2
2Σ2 ). When an empirical core’s bandwidth, Σ,

becomes large enough, k1(x,ai) → 1. As vector α is a normalized vector,

q(x) → 1 and q(z) → 1. Then k(x,z) is approximately equal to k0(x,z).

5.5 Summary

In this chapter, we used an existing tool, the data dependent kernel, to improve the

performance of the SVM classifiers using the Gaussian kernel, which was selected in

Chapter 4 as the basic kernel. The support vectors for the SVM classifiers using the

Gaussian kernel were used as the empirical core. In this process, we randomly selected

the empirical core’s bandwidth and the iteration number, whenever we obtained a

smaller test error. The results of the experiment show that the test error of the

data dependent SVM classifiers can be reduced by the gradient optimization. In

other words, we proved that building a data dependent kernel improves the SVM

classifier’s performance. At the same time, a practical procedure has been provided

for selecting the parameters for optimizing the data dependent kernel.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we used ultrasonic pipe crack data to build SVM classifiers which

separate this crack-size data into two classes: large and small. In order to correctly

categorize the new data as much as possible, we first used digital signal processing

techniques such as Fourier transform to extract the potential features from the raw

data (see Chapter 3). Using these potential features, a combined feature reduction

method, SBS/SFS (sequential backward selection and sequential forward selection),

was then used for finding the best subset of those features. As a result, an optimal

B-Scan feature data set was adopted as the input for the SVM classifiers for our later

research work.

To lower the SVM classifiers’ test error, in Chapter 4 we used the KFD Ratio

(Kernel Fisher Discriminant Ratio) as an alternative indicator for choosing the SVM’s

kernel parameters. We did this because one of the key factors in the performance

of an SVM classifier is the choice of the kernel’s parameters. In Chapter 5, based

on the parameters selected for the SVM classifiers, we constructed a data-dependent

91
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kernel. This new kernel helped to improve the generalization performance of the

SVM classifiers.

This thesis employed some popular data-mining methods such as SBS, SFS, the

KFD Ratio and data-dependent kernel. The main contributions of this thesis can be

summarized as follows.

1. KFD Ratio is an effective indicator for selecting the kernel parameters for SVM

classifiers. It only takes around 1% of SVM training time to calculate KFD

Ratio. This speed up SVM’s training procedure.

2. In the process of the feature reduction, Combining the SBS and SFS methods

to determine the optimal subset of the potential features is quick and reliable.

The average test error (all eight cases) for the B-Scan feature data sets was

reduced from 3.49% to 1.59% after we use the combined SBS and SFS method.

3. In constructing the data dependent kernel, we used the kernel with the best

parameters as selected by the KFD Ratio. By doing many experiments, we

determined how to select the empirical kernel parameter.

4. The experiments’ results (See Tables 3.5, 3.20, 5.2, 5.3 and 5.4) show that the

test error was reduced by use of the appropriate procedure and approaches.

Using B-Scan feature data sets instead of A-Scan feature data sets makes the

average test error (all eight cases) reduced from 7.15% to 3.49%; that is, by

51.19 percent. Using optimal B-Scan feature data sets instead of B-Scan feature

data sets makes the average test error (all 8 cases) reduced from 3.49% to 1.59%;

that is, by 54.44 percent. And using data dependent kernel makes the average

test error (only Case 1, 2 and 8) reduced from 3.33% to 2.82%; that is, by 15.32

percent.
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6.2 Future Work

In this work, we successfully built binary SVM classifiers for ultrasonic pipe crack

data. To reduce the test error and speed up the training of the classifier, SBS/SFS

was used for feature reduction; the KFD Ratio was employed as an indicator to speed

up the training, and the data dependent kernel was reconstructed for improving the

performance of the classifiers. To further the work done for this thesis research could

be done in three areas.

1. In this thesis, the KFD Ratio was applied only to the Gaussian kernel band-

width. We could extend this indicator by selecting kernel parameters such as

the polynomial kernel.

2. We’ve already done the binary classification for these ultrasonic crack data.

Alternatively, we could have treated this problem as a multi-class classification

problem, so that, by classifying test samples according to different ranges of

crack size we could develop different maintenance strategies. As SVM is a

very powerful tool for solving the regression problem, we could also use it to

precisely predict crack size.

3. When using the data dependent method, choosing the empirical cores (ai), the

learning rate (η), the empirical cores’ kernel bandwidth (Σ) and the iteration

numbers is difficult. It would be helpful to find an efficient way of choosing

those parameters.
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