Mechanochemical Synthesis of Methylammonium Lead Mixed–Halide Perovskites: Unraveling the Solid-Solution Behavior Using Solid-State NMR

  • Author(s) / Creator(s)
  • Mixed-halide lead perovskite (MHP) materials are rapidly advancing as next-generation high-efficiency perovskite solar cells due to enhanced stability and bandgap tunability. In this work, we demonstrate the ability to readily and stoichiometrically tune the halide composition in methylammonium-based MHPs using a mechanochemical synthesis approach. Using this solvent-free protocol we are able to prepare domain-free MHP solid solutions with randomly distributed halide ions about the Pb center. Up to seven distinct [PbClxBr6–x]4– environments are identified, based on the 207Pb NMR chemical shifts, which are also sensitive to the changes in the unit cell dimensions resulting from the substitution of Br by Cl, obeying Vegard’s law. We demonstrate a straightforward and rapid synthetic approach to forming highly tunable stoichiometric MHP solid solutions while avoiding the traditional solution synthesis method by redirecting the thermodynamically driven compositions. Moreover, we illustrate the importance of complementary characterization methods, obtaining atomic-scale structural information from multinuclear, multifield, and multidimensional solid-state magnetic resonance spectroscopy, as well as from quantum chemical calculations and long-range structural details using powder X-ray diffraction. The solvent-free mechanochemical synthesis approach is also compared to traditional solvent synthesis, revealing identical solid-solution behavior; however, the mechanochemical approach offers superior control over the stoichiometry of the final mixed-halide composition, which is essential for device engineering.

  • Date created
  • Subjects / Keywords
  • Type of Item
    Article (Draft / Submitted)
  • DOI
  • License
    Attribution-NonCommercial 4.0 International