Usage
  • 175 views
  • 188 downloads

Epigenetic Regulation of Centromere Formation and Kinetochore Function

  • Author / Creator
    Heit, Ryan
  • One form of protein regulation is accomplished by post-translational modification (PTM). In order to test the importance one type of PTM, methylation, in chromosome segregation, we inhibited protein methylation for brief periods in G2 using the general methylation inhibitor adenosine dialdehyde (AdOx). Inhibiting methylation solely in late G2 leads to mitotic defects. We observed that several methylated histone residues; H3K9me3, H4K20me3 and H4K20me1, are predominantly affected by AdOx in G2. We show both that the kinetochore proteins are not affected and that the mitotic checkpoint is intact. Further, we observed structural defects and chromosome misalignment in mitotic cells. These results indicate that methylation events during late G2 operate to maintain and ensure the structural integrity of pericentromeric heterochromatin prior to mitosis. These results suggest that pericentromeric heterochromatin is required for the proper sensing of kinetochore tension and inactivation of the mitotic checkpoint.

  • Subjects / Keywords
  • Graduation date
    Fall 2009
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3RW8P
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
  • Supervisor / co-supervisor and their department(s)
  • Examining committee members and their departments
    • Campbell, Robert (Chemistry)
    • Underhill, Alan (Oncology)
    • Chan, Gordon (Oncology)