Model naphthenic acids removal by microalgae and Base Mine Lake cap water microbial inoculum

  • Author(s) / Creator(s)
  • Naphthenic acids (NAs) originate from bitumen and are considered a major contributor to acute toxicity in oil sands process-affected water (OSPW) produced from bitumen extraction processes. To reclaim oil sands tailings and remediate OSPW, in-pit fluid fine tailings can be water-capped as end pit lakes (EPL). Addressing NAs present in OSPW, either through removal, dilution or degradation, is an objective for oil sands reclamation. EPLs can remediate NAs through degradation or dilution or both. To assess and understand degradation potential, Chlorella kessleri and Botryococcus braunii were tested for their tolerance to, and ability to biodegrade, three model NAs (cyclohexanecarboxylic acid, cyclohexaneacetic acid, and cyclohexanebutyric acid). Water sourced from the industry's first EPL, the Base Mine Lake (BML), was used alone as an inoculum or co-cultured with C. kessleri to biodegrade cyclohexanecarboxylic acid and cyclohexanebutyric acid. All cultures metabolized the model compounds via β-oxidation. Biodegradation by the co-culture of C. kessleri and BML inoculum was most effective and rapid: the cyclohexaneacetic acid generated from cyclohexanebutyric acid could be further degraded by the co-culture, while the cyclohexaneacetic acid generated could not be consumed by pure algal cultures or BML inoculum alone. Adding C. kessleri greatly increased the diversity of the microbial community in the BML inoculum; many known hydrocarbon and NA degraders were identified from the 16S rRNA gene sequencing from this co-culture. This more diverse microbial community could have potential for EPL remediation.

  • Date created
  • Subjects / Keywords
  • Type of Item
    Article (Published)
  • DOI
  • License
    Attribution-NonCommercial 4.0 International