This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
- 309 views
- 576 downloads
Breaking with tradition: Fischer—Tropsch gas loops and modelling vapor—liquid—liquid equilibrium
-
- Author / Creator
- Kelly, Braden D
-
Fischer—Tropsch gas loops have been in use for nearly a century, producing synthetic fuels and petrochemicals. Yet there still remain many opportunities to expand its uses, update the gas loop with new technology, as well as better understand at a fundamental level the way the products behave. The following chapters address each of these three points, trying to bring new insight into the uses and behavior of one of the most promising technologies currently available for producing synthetic fuels and petrochemicals.
Rather than focusing on the synthetic fuel production of Fischer—Tropsch synthesis, the gas loops significant by-product of steam was applied to the steam assisted gravity drainage recovery of bitumen. It was found that Fischer—Tropsch technology can be used in tandem with traditional once through steam generation methods to produce the necessary steam, while also lowering the CO2 emissions and producing liquid hydrocarbon products, diluent for bitumen transport, and solvent for steam co-injection.
In the second part of the thesis water electrolysis is integrated into cobalt and iron based Fischer—Tropsch gas loops and compared with traditional Fischer—Tropsch gas loops which use air separation units instead. The carbon efficiency of the Fischer—Tropsch gas loop was found to be significantly increased for both cases and renewable energy was found to work well with the iron-based Fischer—Tropsch gas loop design.
The syncrude recovery section of the Fischer—Tropsch gas loop has received little attention in literature regarding oxygenate partitioning between the aqueous and organic liquid phases and gas phase. Several thermodynamics models were tested for accuracy in oxygenate liquid—liquid and vapor—liquid—liquid equilibrium partitioning. The UNIQUAC model was found to be the best model for liquid—liquid calculations and when using the Hayden O’Connell was found to be the most reliable model for predicting vapor—liquid—liquid equilibrium compositions. -
- Graduation date
- Fall 2015
-
- Type of Item
- Thesis
-
- Degree
- Master of Science
-
- License
- This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.