Polymeric carbon nitride-based photocatalysts for photoreforming of biomass derivatives

  • Author(s) / Creator(s)
  • Photoreforming of biomass to value-added chemicals and fuels is a chemical approach to extract photosynthetically-trapped energy in complex biomolecules which otherwise disintegrate naturally in the environment. Designing precise photocatalytic materials that can selectively break the sturdy, nature-designed biomass with multiplex chemical composition/bonding and inaccessible sites is central to deploying this technology. Polymeric carbon nitride (CN) comprised of a 2D network of condensed heptazine/triazine (C6N7/C3N3) core has shown great promise for photoreforming of biomass derivatives due to intriguing physicochemical and optical properties. This review comprehensively summarizes the state-of-the-art applications of CN-based photocatalysts for the conversion of lignocellulosic biomass derivatives. Various chemical and structural modifications in CN structure such as doping, surface functionalization, hybridization entailing to higher selectivity and conversion have been discussed aiming at providing valuable guidance for future CN-based materials design.

  • Date created
  • Subjects / Keywords
  • Type of Item
  • DOI
  • License
    Attribution-NonCommercial 4.0 International