Usage
  • 125 views
  • 206 downloads

Displacement Mechanics and Stability of Foamy Oil during Secondary Recovery of Heavy Oil Using Methane and Air

  • Author / Creator
    Basilio Meza, Enoc Jeremias Teodoro
  • Heavy oil and extra-heavy oil (natural bitumen and oil sands) resources represent 70% of the global petroleum reserves and are mostly found in shallow reservoirs with thin pay zones formed by unconsolidated sands. Thermal recovery methods are recognized for being the most efficient; yet, these methods face environmental challenges due to the high emissions of carbon dioxide generated by high energy demands, leading to high operational costs. Therefore, non-thermal recovery methods have attracted special attention from both industry and academia.
    Foamy oil is the terminology commonly accepted to describe an atypical behavior associated with heavy oil flow formed as a response to pressure depletion. The cyclic solvent injection (CSI) technology is a solvent-based non-thermal process that has gained interest and is considered as an effective technique for increasing the recovery factor either as a follow-up process to the cold heavy oil production with sand (CHOPS) or for thin heavy oil reservoirs. Notwithstanding that many experimental investigations on foamy oil flow were carried out, theoretical foundations of its performance are still not convincing enough, and the mechanisms for the dynamic processes and stability continue to not be fully understood.
    In order to develop a mechanistic understanding of foamy oil flow in a porous medium, laboratory experiments under two different well arrangement scenarios were considered, single-well and multi-well injection schemes, using methane and air as the injection gasses. Single-well CSI scheme injection experiments were performed in order to understand, in a more representative manner, the foamy oil generation by injecting gas externally to post-CHOPS reservoirs. The multi-well CSI scheme was considered to be applied in thin heavy oil reservoirs, and post-CHOPS reservoirs. For both arrangements, different injection strategies were performed, based on alternating gas injection and simultaneous gas injection. It was observed that on a single-well injection scheme, injecting a mixture of air and methane simultaneously can help to obtain larger recovery factors per cycle than when using methane alone. On a multi-well injection scheme, it has been observed that an alternating gas injection strategy has a better performance than the simultaneous injection. Using air has been observed to save methane usage up to 26% and 51% in single-well and multi-well injection schemes, respectively.
    Furthermore, in order to study the efficiency of using methane, air, and their mixture to generate stable foamy oils, observational experiments were performed by means of macroscopic (naked eye) and microscopic visualization which was interpreted through foamy oil stability parameters such as time of foamability and collapse, number of gas bubbles, gas bubbles distribution, and maximum bubble size. Using a mixture of air and methane has been observed not only to expand the volume of oil by 2.5 (volume expansion caused by methane has been found to be as high as 3.0) but also to delay the defoaming process.

  • Subjects / Keywords
  • Graduation date
    Fall 2019
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/r3-zm2g-8h16
  • License
    Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.