Usage
  • 64 views
  • 77 downloads

Fiber types and fabric structures influence on weft knitted fabrics

  • Author(s) / Creator(s)
  • The physical properties of weft knitted fabrics can be modified according to the fabric structure and the raw material used to manufacture the final fabric. This research demonstrates the influence of fiber types and fabric structure on some specific physical properties such as bursting strength, wicking behavior, pilling effect, and abrasion resistance of weft knitted fabrics. For this purpose, in this research study, one natural fiber cotton, one regenerated fiber viscose, and one synthetic fiber polyester were used. At the same time, to avoid any conflicts of the other fabric production factors, the number of feeders, machine diameter, needle gauge, stitch length was kept constant during the production of the weft-knitted fabrics. Moreover, three different structures of single jersey fabric like plain single jersey, single lacoste, and double lacoste were used to produce nine single jerseys of weft knitted fabric, while in each knit structure, three fabrics were produced using 100% cotton, 100% viscose, and 100% polyester fiber. Statistical analysis has been performed along with factorial analysis of variance (ANOVA) followed by simple main effect and simple comparison analysis. The finding illustrates that both fiber types and fabric structure regulate the physical properties of weft knitted fabrics. The polyester fiber seems to possess excellent mechanical properties such as bursting strength, abrasion, and pilling resistance without any influence of fabric structures studied in this research. However, both the fiber types and fabric structure combinedly influence the wicking of weft knitted fabrics. Additionally, it has been assumed that the influence of fiber types and fabric structure on strength, pilling, abrasion-resistant, and wicking properties of fabrics also combined with the areal density and extensibility of weft knitted fabrics.

  • Date created
    2022-06-09
  • Subjects / Keywords
  • Type of Item
    Article (Published)
  • DOI
    https://doi.org/10.7939/r3-dnab-dz28
  • License
    Attribution-NonCommercial 4.0 International