- 40 views
- 45 downloads
Budgeted Gradient Descent: Selective Gradient Optimization for Addressing Misclassifications in DNNs
-
- Author / Creator
- Banerjee, Arghasree
-
Artificial neural networks have become a popular learning approach for theirability to generalize well to unseen data. However, misclassifications can still occur due to various data-related issues, such as adversarial inputs, out-of-distribution samples, and model-related challenges, such as underfitting and overfitting. While retraining and fine-tuning on misclassified samples are common corrective approaches, they can reduce generalizability and lead to sample memorization.
In this thesis, we propose Budgeted Gradient Descent (BGD), an approach for correcting misclassifications by introducing sparse changes to network parameters. Our approach attempts to answer the question: What is the minimal set of network changes necessary to correctly predict a previously misclassified sample? BGD minimizes both the number of parameters updated and the magnitude of changes, aiming to correct misclassifications while preserving generalizability. Additionally, BGD does not require access to the training data to preserve said generalizability. We observe that sparse updates can effectively correct misclassifications while preserving learned representations, as not all gradients contribute equally to classifying difficult or out-of-distribution samples. Through empirical comparisons with existing approaches, we investigate the optimal level of sparsity for maintaining network performance and generalizability. Our results suggest that while second-order gradient updates can minimize the number of parameter changes, excessive sparsity can negatively impact the network. The contributions of this thesis include a novel approach to correcting misclassifications, insights into the relationship between parameter updates and generalizability, and a detailed examination of how different sparsity levels affect the long-term performance of neural networks in an online supervised learning setting. -
- Subjects / Keywords
-
- Graduation date
- Fall 2024
-
- Type of Item
- Thesis
-
- Degree
- Master of Science
-
- License
- This thesis is made available by the University of Alberta Library with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.