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Abstract

Artificial neural networks have become a popular learning approach for their

ability to generalize well to unseen data. However, misclassifications can still

occur due to various data-related issues, such as adversarial inputs, out-of-

distribution samples, and model-related challenges, such as underfitting and

overfitting. While retraining and fine-tuning on misclassified samples are com-

mon corrective approaches, they can reduce generalizability and lead to sample

memorization.

In this thesis, we propose Budgeted Gradient Descent (BGD), an approach

for correcting misclassifications by introducing sparse changes to network pa-

rameters. Our approach attempts to answer the question: What is the minimal

set of network changes necessary to correctly predict a previously misclassified

sample? BGD minimizes both the number of parameters updated and the

magnitude of changes, aiming to correct misclassifications while preserving

generalizability. Additionally, BGD does not require access to the training

data to preserve said generalizability.

We observe that sparse updates can effectively correct misclassifications

while preserving learned representations, as not all gradients contribute equally

to classifying difficult or out-of-distribution samples. Through empirical com-

parisons with existing approaches, we investigate the optimal level of sparsity

for maintaining network performance and generalizability. Our results suggest

that while second-order gradient updates can minimize the number of parame-

ter changes, excessive sparsity can negatively impact the network. The contri-
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butions of this thesis include a novel approach to correcting misclassifications,

insights into the relationship between parameter updates and generalizability,

and a detailed examination of how different sparsity levels affect the long-term

performance of neural networks in an online supervised learning setting.
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Chapter 1

Introduction

Artificial neural networks are a popular learning approach that learns map-

pings between inputs and outputs through calculations in a high-dimensional

feature space. The learnt mappings, after convergence, are generalizable and

therefore can reach near-perfect performance for inputs from a data distribu-

tion similar to the training data distribution. However, due to high-dimensional

calculations and data dependencies during training, it is difficult to explain

how the network arrives at its predictions. Understanding these predictions is

especially important in the event of a misclassification.

With the popularity of deep neural networks in real-life applications, mis-

classifications can lead to serious repercussions [7], [42]. For example, failure

to correctly classify racial and ethnic populations in American Indian/Alaska

Natives can lead to incorrect estimates in federal statistics such as access to

healthcare and health status. In order to address such issues, prior researchers

have tried to identify the root cause. Data related issues such as the presence

of adversarial inputs [37], out of distribution samples [9], [43], backdoor trigger

patterns [29], or model related issues such as underfitting and overfitting [22]

are examples of such misclassifcation root causes. However, as an end-user, it

is not enough to understand the causes of misclassifications. It is necessary to

fix the mistake.

A common approach to solve misclassifications is to retrain the entire net-

work or a part of the network on the misclassified sample [21], [27]. However,

this may lead to two unwanted consequences: reduced adaptability to the
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misclassified sample, causing the network to keep misclassifying the sample,

or disrupting previous learned representations to memorize the misclassified

sample. These problems are often due to the ‘stability-plasticity’ dilemma in

neural networks [4], [18]. For example, in an image classification setting, re-

training on a misclassified image of the ‘cat’ class may cause the network to

overwrite existing ‘cat’ class features with new, potentially non-generalizable

features extracted from the misclassified sample. These might include irrel-

evant background details rather than distinctive ‘cat’ features. As a result,

the network, by overfitting to the single sample, risks losing its previously

learned representations. To restrict making changes to the extracted features,

fine-tuning parameters in a particular layer stands as an alternative option.

For example, prior researchers often fine-tune the network by performing gra-

dient descent steps on the penultimate fully connected layer [46]. However,

both re-training or fine-tuning update the network based on gradients calcu-

lated on a single sample, and are often associated with sample memorization,

thus disrupting learnt representations [9], [15], [17]. Therefore, apart from

solving misclassifications, preserving/increasing generalizability is a desirable

characteristic of an optimization approach.

To preserve learnt features, it maybe helpful to re-train the network on the

entire training data along with the misclassified sample. However, this may be

unattainable in the absence of the training data. Retraining is also expensive,

especially in an online supervised learning setting [17], where new data inputs

are learnt by the network periodically. A common alternative to re-training

is regularization where changes to the network are restricted by additional

penalty terms to the loss function [26]. For example, the additional loss term

can relate to the magnitudes of individual weights; this will result in attempt-

ing to learn the misclassified sample while minimizing parameter magnitudes

[31]. This might be helpful in preserving previously learnt representations.

While such techniques can resist significant changes to the network, it does

not guarantee the correct prediction of the misclassified sample.

In this thesis, we propose an alternative approach to correcting the mis-

classification of a sample. Instead of constraining magnitude in all parameters,

2



we constrain the number of parameters that can be changed. In our proposed

approach, Budgeted Gradient Descent (BGD), we aim to identify a subset of

the total parameter set. By making targeted updates to this subset, we at-

tempt to resolve misclassifications by reducing the loss for the misclassified

samples. Additionally, BGD does not require access to the training data, and

can be applied to any pre-trained network.

Motivated by the challenges highlighted by (full or partial) re-training ap-

proaches, the extracted parameter subset ought to have a few preferred char-

acteristics: (a) all parameters in the subset correspond to the correct classifi-

cation of the previously misclassified sample, i.e, there does not exist a smaller

subset of the chosen subset that can solve the misclassification, (b) generaliza-

tion abilities of the network is retained, i.e., there is no detrimental loss in the

network’s performance for both training and testing data. In later sections, we

analyze if there exists a relationship between property (a) and property (b):

if changes to smaller parameter subsets cause lower loss in generalizability.

In an ideal exhaustive setting, all combinations of parameters could be

updated and evaluated to find the best solution to correct the misclassification.

However, doing so is computationally infeasible given the size of the total

parameter set for even small networks. In identifying the correct combination

of parameters, we confront two main sub-problems: (a) how many parameters

should be considered, and (b) which parameters out of all the parameters are

better suited to solve the misclassification?

Our approach is guided by the gradients calculated on the misclassified

sample. We use the calculated gradient as an ‘utility’ factor to estimate the

importance of updating a certain parameter. Updating high gradient pa-

rameters can be produce lower sample loss, and thereby lead to correcting

the misclassifications. Although the gradients provide intuition for solving

the misclassification, the effect on generalizability cannot be estimated given

the absence of training data. To bypass this issue we provide an additional

workaround that assumes access to the training gradients, i.e., gradients to

the loss averaged across the entire training data. We investigate if avoiding

parameters that are highly sensitive to the training loss, can better preserve
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network generalizability.

1.1 Thesis Contributions

The thesis contributions can be summarized as follows:

C1 We present a novel approach, Budgeted-Gradient Descent (BGD), that

attempts to update the network to avoid misclassifications. The novelty

of our approach lies in the sparsity of the parameter updates required

to achieve this correction. We empirically show that sparse updates can

be beneficial to preserve the generalizability of networks, even in the

absence of training data.

C2 We explore whether the loss in generalizability can be minimized by

avoiding updates to high-gradient parameters, with gradients calculated

over the entire training dataset. While direct access to the training data

may be restricted, we investigate if the preservation of learned represen-

tations is possible by assuming access to the gradients derived from the

training data.

C3 We investigate effects on network generalizability by introducing sparse

changes to the network in two different ways: (a) Aggressively changing

a smaller subset of network parameters, (b) Updating a relatively larger

subset of network parameters by relatively smaller magnitude updates.

This provides an opportunity to infer which approach for introducing

sparsity is better for preserving/increasing network generalizability.

C4 We investigate the long-term impact of excessive sparsity on the net-

work’s generalizability. By introducing sparse changes to correct mul-

tiple misclassifications, we compare the effect on generalizability with

other approaches that have varying levels of sparsity. Sparse regular-

ization techniques typically encourage the network to make predictions

using fewer features. In our approach, we intentionally keep parameter

changes minimal, making only the necessary adjustments to correct mis-

classifications. Given the small number of these changes, we examine
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how excessive sparsity affects the network’s generalizability over time as

multiple misclassifications are incrementally corrected.

1.2 Thesis Outline

The thesis is outlined as follows:

Chapter 2: In this chapter, we provide the necessary background on neural networks

and sparse regularization techniques.

Chapter 3: In this chapter, we first mention the Idealized Subset Selector, enumer-

ate the corresponding complexities and introduce our proposed method,

Budgeted Gradient Descent (BGD). BGD attempts to correct previous

misclassifications without detrimental loss in generalizability.

Chapter 4: In this chapter, we evaluate our approach on the MNIST dataset for

a fully connected network and AlexNet in non-reloading and reloading

settings. We compare our approach to other relevant baselines. Ad-

ditionally, we introduce two new variants of BGD and explore their

corresponding advantages to correctly predict misclassified samples and

preserve generalizability.

Chapter 5: In this chapter, we conclude this thesis by summarizing our findings, and

discuss research questions that needs to be addressed in the future.
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Chapter 2

Background

In this chapter, we provide essential background information on artificial neu-

ral networks. To address the misclassification problem, we first explain the

methodology of neural networks, detailing how parameter values are learned

iteratively via first-order and second-order update rules. Finally, we discuss

additional optimization techniques from the literature that are used to over-

come issues such as sample memorization and catastrophic forgetting.

2.1 Neural Networks

Neural Networks (NNs) are networks of interconnected artificial neurons that

simulate the biological networks found in animal brains. In biological sys-

tems, neurons communicate information to other neurons via synapses after

processing it. Similarly, in artificial neural networks, information is propa-

gated between neurons through edges, with each edge having an associated

weight that scales the input. In NN literature, weights are also referred to as

parameters.

In a fully-connected network architecture, neurons are organized into lay-

ers, with each neuron in a layer connected to every neuron in the previous

layer without intra-layer connections. Within each layer, neurons perform in-

dependent linear or non-linear transformations on the input using predefined

activation functions. The output of each neuron, before being propagated for-

ward, is scaled by the parameter value associated with the edge connecting it

to the neurons in the next layer. Because these transformations incorporate
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information from all neurons in the previous layer, each neuron in a layer per-

forms its own distinct transformation. However, the transformation remains

unique only if the network’s parameters are initialized with different values

for each neuron. This entire process of converting input data into an output

vector through successive transformations across layers is known as a forward

pass.

In a supervised classification setting, the input si, from an input-output

pair, (si, yi) is fed to a network N of L total layers. In the forward pass, si

is subjected to linear transformations by parameters at the first layer, W(1),

and potentially non-linear transformations by the activation functions asso-

ciated with each neuron. The input is then propagated through each layer,

till it reaches the final layer. The final layer, also called the output layer,

has dimensions equal to the number of classes. The total number of classes

is therefore pre-determined, and based on the dataset D, comprising all the

input-output pairs, D = {(s0, y0), (s1, y1), ..., (sn, yn)}. If there are a total of

C classes, then the output vector is also of size C. The output, O
(L)
j , where

j = 1, ..., C, represents the networks’ confidence that the sample si belongs to

the class j. The predicted output class is thereby calculated as argmax
j

(O
(L)
j ).

After the forward pass, if an incorrect class is predicted, a loss value quan-

tifies how far off the network’s prediction is from the actual target. This loss

is indicative of how the parameters need to change to correct the misclassifi-

cation, and is, therefore, back-propagated to individual parameters. During

training, the network learns generalizable patterns, via backpropagation, that

represent the training data distribution and can also ideally apply to unseen

test data samples.

The fundamental idea of backpropagation is aimed at finding values for

parameters, such that it minimizes the loss for the observed data samples

(hereby refereed to as the training loss). To minimize said training loss, the

network’s parameter values need to be optimized. In gradient-descent (GD)

based optimization approaches, the directional derivation of the loss function,

also known as the gradient, indicates required changes to the parameters, such
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that the loss is minimized. In the Taylor series approximation [1], a function

f at x + ∆x is approximated without computing f(x + ∆x) directly by the

following:

f(x+∆x) ≃ f(x) + f ′(x)∆x+
1

2
f ′′(x)(∆x)2

In the context of neural networks, this can be re-formulated to approximate

the loss function as:

L(Dy, N(W(t+1), Dx)) ≃ L(Dy, N(W(t), Dx)) +∇WL ∆W+
1

2
∆WTH∆W

Here, L(W(t+1), N(D)) is the training loss for the changed parameters,∇wL∆W

are the partial derivatives of the training loss computed with respect to in-

dividual parameters, and H is the Hessian matrix of size (d, d), where d is

the total number of network parameters. The training loss, at iteration t+ 1,

L(W(t+1), N(D)) approximates the local minima. Therefore, taking the gra-

dient at W(t+1) will be zero.

∇WL(Dy, N(W(t+1), Dx)) ≃ ∇WL(Dy, N(W(t), Dx)) + H∆W

0 ≃ ∇WL(Dy, N(W(t), Dx)) + H∆W

∆W ≃ −H−1∇WL(Dy, N(W(t), Dx))

The Hessian matrix, H, estimates the local geometry of the loss curve, offering

crucial insights into the optimization landscape. For instance, if the curvature

of the loss is mostly flat, parameter values can be adjusted with larger steps

without causing significant changes in the loss value. Conversely, a steeper

curvature indicates that aggressive parameter updates should be avoided to

prevent large increases in the loss. Natural gradient descent (NGD) uses such

second-order information to calculate the updates to network parameters. In

Eq 2.1 H−1 is the inverse of a (d, d) matrix. Since the number of parameters

in deep neural networks are in the order of millions, computing the inverse of

the hessian is computationally infeasible. Previous works have found that the

Hessian is low in rank, and can therefore be estimated. One of such Hessian

approximations [19], [38], [44] is the Empirical Fisher approximation [5], [13],

given as:

H ≃ F̂ =
1

|D|

|D|
∑

i=1

∇WL(yi, N(W(t+1), si)) · ∇WL(yi, N(W(t+1), si))
T (2.1)
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Here, · is the outer product of gradients computed over individual training

samples.

We can also make parameter updates without the second-order informa-

tion. Stochastic gradient descent (SGD), a variant of Gradient Descent (GD),

is a form of said back-propagation that has seen enormous success in the

past years [28]. To avoid computing the inverse of the Hessian, SGD op-

timizes the loss function iteratively, and uses the first-order gradient infor-

mation to update individual parameters. Instead of updating parameters by

−H−1∇WL(W
(t), N(D)), a learning rate, α is substituted in place of the in-

verted Hessian. The update rule in SGD is as follows:

∆W = −α∇WL(yi, N(W(t), si)) (2.2)

While in GD, the parameters are updated after computing the average gradi-

ents for the entire training set D, SGD updates parameters for each training

sample, si ∈ D.

As the training process progresses, ideally, the transformations computed

by neurons in the ultimate and penultimate layers would diverge, leading to

specialized encodings that are distinct for different classes. This property is

particularly useful for creating representations that capture the unique fea-

tures of each class, enhancing the network’s ability to differentiate between

classes. However, in overparameterized network settings, correlated features

are common, and can cause overfitting [32]. Therefore, works on sparse repre-

sentations [6] focus on more generalized feature for network predictions. Such

sparsity can be achieved by regularization methods. We elaborate more about

these regularization methods in an upcoming section 2.2.

After training, the network’s generalizability to predict unseen samples is

empirically verified against test data. The test data distribution is ideally close

to the training one, which allows a trained network to predict the majority of

the test data accurately. However, a test dataset can also have outlier examples

far from the training data distribution, resulting in misclassifications during

inference.
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2.2 Regularization Techniques

Neural networks commonly get stuck in the stability-plasticity dilemma, es-

pecially in continual learning and online learning settings. Neural networks

learn and retain knowledge by attaining a balance between the two. Stabil-

ity is when the neural network retains knowledge and is unaffected by small

changes to the input. Too much stability will render the network incapable

of learning new patterns from new data. Plasticity, on the other hand, allows

the network to learn new patterns from new data. Too much of plasticity can

lead to constant forgetting of past learned patterns and bias towards recent

data patterns. For instance, when some input data is out of the training data

distribution, the network must learn connections between features in a new

way. This can cause the network to catastrophically forget past representa-

tions, and memorize that input data. Sample memorization is especially high

when the network learns from outliers [12].

To achieve a balance between stability and plasticity, researchers commonly

use constraints on learning objectives. An example of such constraint tech-

niques, also known as regularization techniques, is L2-regularization, which is

used to avoid extreme network plasticity [35]. As defined in Eq 2.3, optimizing

the new loss, Ll2, penalizes changes to the parameter magnitude along with

the loss term associated with misclassifications. This forces the network to

learn unique patterns from recent data, while ensuring small changes to the

network parameters.

Ll2 = L(Dy, N(W, Dx)) + λ

|W|
∑

i=1

w2
i (2.3)

2.2.1 Sparse Regularization Techniques

Neural networks have a large parameter space, which often leads to redun-

dant and correlated structures. While L2-regularization shrinks magnitudes

of parameters towards zero, it does not differentiate between important and

unimportant parameters in predictions. On the other hand, L1-regularization

(defined in Eq 2.4) introduces sparsity by making parameter magnitudes to
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Figure 2.1: Converting a fully connected network into a sparse one. Sparse
networks are achieved by approaches such as pruning, sparsifying gradients,
and dropout.

zero. Therefore, parameters responsible for a prediction is limited to a sparser

set. As such, L1-regularization is considered a form of sparse optimization

[23].

Ll1 = L(Dy, N(W, Dx)) + λ

|W|
∑

i=1

|wi| (2.4)

As the term ‘sparse’ means ‘scarce’ or ‘limited’, the objective of sparse

optimization approaches is to minimize the objective function, while mak-

ing limited changes to the network. Regularization techniques similar to L1-

regularization aim to constrain the number of parameters required for a certain

prediction, and therefore limit over-reliance on a relatively large set of param-

eters [34]. Consecutively, this leads to a reduced risk of overfitting. Figure 2.1

shows a sparsely connected network, that is obtained after removing a part of

the network.

Sparse regularization techniques aim to use a subset of the network, lead-

ing to increase in computational and space efficiency without significant loss in

performance. Network pruning is a perfect example [16]. Based on certain pre-

determined criteria, the network prunes branches of its architecture. Research

in pruning techniques include pruning based on activation values, gradients,

and parameter magnitudes: (a) Activation-trace criterion eliminate neurons

that do not contribute significant value to the prediction [11]. (b) Gradient

based criterion eliminate neurons that have relatively low gradients on the loss
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function. Works such as [14], [25], [36], [39], [41] use second order information

to approximate changes to the loss values and therefore make better decisions

about which parameters to prune. (c) Parameter based criterion eliminates

parameters with low magnitudes. During the forward pass, high magnitude

parameters are more likely to produce high activation values, therefore low

magnitude parameters that are unnecessary can reduce complexity. After a

subset of the network is pruned based on a pre-determined criterion, the re-

sultant subnetwork needs to be re-trained to learn a denser representation.

Another example of constructing a sparse network popular in recent years

is Dropout [32]. Dropout does not require a pre-specified criterion and only

inputs p as a hyperparameter, where 1−p describes the probability of dropping

a neuron (by making the outputs of neurons to be zero). This forces the

network to learn more efficient connections between neurons.

Other sparse approaches need not prune the entire network. For example,

sparsifying the gradients allows all parameters to participate in a forward pass,

but restricts backpropagation to only a subset of parameters, thus minimizing

risks of overfitting. Sun et al. [33] sparsify the gradient vector by selecting the

top-k gradients, i.e., only the top k gradient parameters are updated during

backpropagation, while the rest remain unchanged. Sparsification methods

reduce computations without harming the accuracy [2] and have been shown to

converge [3]. Few sparse optimization techniques have been found to produce

better generalizability than in the original networks [40].

Although methods like top-k, dropout, and pruning can sparsify the net-

work, and increase functionality in neurons, the network is still dependent

on updates to a relatively large fraction of neurons to learn new information.

For example, dropout with a Bernoulli(0.5) can make approximately 50% of

neurons inactive. In addition, with aggressive pruning, up to 50-70% of the

network can be pruned. 50-70% of millions of neurons is a large number. While

sparsity decrease complexity for computing predictions, there is no fixed de-

gree of sparsification that works for all networks. Therefore, in our approach,

we aim to identify an aggressive sparse network that is beneficial to merely

obtain a correction of misclassifications. We investigate this extreme form of
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sparsification and its associated advantages and disadvantages.

13



Chapter 3

Budgeted-Gradient Descent

Learning new samples and correcting misclassifications via gradient descent

is an important part of neural network training. During training using mini-

batch SGD, the changes to parameters are averaged across multiple batches.

SGD is typically performed on a particular sample, and can lead to restruc-

turing the parameters into a solution that is biased on the features of said

sample. This phenomenon is also called sample memorization, and re-training

a pre-trained network on a particular sample can lead to sample memoriza-

tion. This typically occurs when the sample is an outlier of the training data

distribution and is therefore misclassified by the network. To avoid these neg-

ative repercussions, and motivated by sparse optimization techniques, we aim

to regularize the network by limiting the number of altered parameters.

In this chapter we introduce our novel approach, Budgeted-Gradient De-

scent (BGD), where we avoid running gradient descent on all network pa-

rameters, and focus instead on altering a subset of the parameters with the

motivation of correcting misclassifications. Apart from correct classifications

of misclassifications, we aim to investigate if too much sparsity can cause

generalization problems in the network. Therefore, in BGD, we propose an

approach that can select the least number of required parameters that, after

appropriate updates, can lead to solving misclassifications.

First, we start with introducing the idealized subset selector. An idealized

subset selector would select different combinations of all parameters, thereby,

making a total number of 2n such subsets. An approximated ideal subset
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is described in subsection 3.1. After discussing why this algorithm is too

expensive as well to apply to real-life applications, we introduce our novel

approach, which reduces the search space to a much smaller subset, such that

the ideal selector can be applied to this subset.

3.1 Idealized Subset Selection

A misclassified sample si can be correctly predicted after several iterations

of stochastic gradient descent (See Eq. 2.2), or a single iteration of natural

gradient descent (See Eq 2.1). The network parameters that misclassify si,

W0, after the re-training steps are represented by WR. However, we aim

to extract a minimal solution subset, such that all parameters in the subset,

W′
final
⊆ WR, contribute to the correct classification of si. In an idealized

subset selection scenario, the selector searches for the subset in an exhaustive

manner.

To measure the contribution of each parameter wj ∈ WR, the idealized

subset selector evaluates if si can be correctly predicted without updating wj.

Here j refers to the positional index in the set of parameters W or WR. It runs

through the entire parameter set, WR, and restores each parameter (W′
final

)j

by (W0)j, where wj = (WR)j. After restoring the value of wj, if si is still

correctly predicted, then the parameter wj does not contribute to the correct

prediction of the sample, and is therefore removed from the subsetW′
final

. This

step is repeated for all network parameters to extract the smallest subset that

can correctly classify the misclassified sample si. The Algorithm 1 describes

the pseudocode for the Idealized subset selection.

The idealized selector updates the network for each parameter in a leave one

out approach. If the number of parameters inWR ism, and the computational

cost for doing a forward pass in the network is K, then the idealized selector

has a time complexity of O(Km). Since the number of parameters in DNNs

are usually in the order of millions, the idealized selector is not scalable to

real-life applications.

To reduce the computational cost, we propose Budgeted Gradient Descent
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Algorithm 1 Pseudocode of the Approximate Idealized Subset Selector

Input: WR: Retrained parameter set; W0: Original parameter set; (si, yi) :
Sample;
Output: W′

final
: Final subset;

1: W′
final

= WR

2: for j ← 1 to |WR| do
3: W′

sub = W′
final
− {(WR)j}+ {(W0)j}

4: if N(W′
sub, si) == yi then

5: W′
final

= W′
sub // if si is correctly predicted

6: end if
7: end for
8: return W′

final

(BGD), which seeks to minimize the number of forward passes. Unlike a

bottom-up approach that retrains all network parameters to correctly predict

the sample and then does step-wise backward elimination to filter out those

that do not contribute to correcting misclassifications, our method starts with

the original network parameters W0, and iteratively samples a subset of pa-

rameters. By updating this subset, we aim to correctly classify the misclassified

sample si. To achieve this, we need to address two key questions: (1) Which

parameters should be included in the subset? (2) How much change should be

introduced to the selected parameters to rectify the misclassification? These

questions are answered in the following subsections. We end in Section 3.4,

where we build upon the introduced concepts, to explain our algorithm.

3.2 Which parameters should be included into

the subset?

During training, the network adjusts its parameter values by a fraction of the

gradient calculated on the loss function. Before we introduce our approach,

we will explain the importance of taking these gradient descent steps. The

gradient is indicative of the direction which could lead to the maxima of the

loss function, therefore following the opposite direction would lead to a lower

sample loss. Intuitively, a lower loss for the misclassified sample would increase

the likelihood that the network will correctly predict it. Therefore, the key
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here is to follow the gradient. Ideally, by doing so, the network would learn

the necessary features to correctly classify the sample without retraining the

whole network on it.

Therefore, to estimate which parameters are most beneficial for rectifying

the misclassification, we look at the gradients of the loss function calculated

for the individual misclassified sample si, denoted as ∇WL. As the gradient

is computed solely on the misclassified sample, it indicates the sensitivity of

each parameter to the loss function for that sample.

Updating a relatively higher gradient is not always beneficial for the net-

work’s generalizability [30]. High gradient parameters are often associated

with noise, and therefore selecting the top-k gradients may not yield a correct

prediction. Additionally, this approach lacks the transparency needed to un-

derstand the relationship between individual parameters and the loss function.

For example, consider the following scenario: altering the 8th highest gradient

parameter may cause the largest decrease in the sample loss, leading to the

correct classification of the sample by adjusting the corresponding activation

values. However, in a top-k scenario, it may be necessary to change up to all

top 8 parameters to correctly predict the sample. Since our aim is to rectify

the misclassification with the fewest changes possible, we avoid updating all

top-k gradient parameters.

Another scenario where gradients can be misleading is when the loss land-

scape of the sample might vary from the expected loss landscape of the other

samples from the same class, especially in cases of difficult samples. This can

cause undesirable network behaviors such as sample memorization and the for-

getting of learned representations. Therefore, while following the magnitude of

the gradient may lead to a lower sample loss and correct sample prediction, it

can potentially also disrupt learned representations by entering narrow valleys

in the loss landscape [8].

Since the gradients (computed on a single misclassified sample) can po-

tentially cause ineffectual updates to parameters, we assign probabilities to

individual parameters. In our approach, we use the magnitude of gradients

as a priori to select parameters. By doing so, we introduce stochasticity to
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parameter sampling to promote variance in the gradient values of chosen pa-

rameters. For example, the initial probability of wj is described by P0(W):

P0(W) =









∣

∣

∣

∂L
∂wj

∣

∣

∣

∑d

i=1

∣

∣

∣

∂L
∂wi

∣

∣

∣









d

j=0

Here wj ∈W, for all j = 1, 2, ..., d, as W ∈ Rd. If the subset size is n, then we

can sample n parameters given the probability distribution, and then evaluate

if the corresponding changes to those n parameters succeed in lowering the

sample loss and correctly predict the sample. In the next section, we describe

how changes are introduced to the chosen parameters.

3.3 How much change should be introduced

to the selected parameters to rectify the

misclassification?

To evaluate a solution to the misclassification, it is crucial to modify the chosen

parameters. Typically, during training, the loss is back-propagated to all pa-

rameters in the network. The gradient descent step defined in Eq 2.2 assumes

a constant and small learning rate for all parameters. However, this approach

can result in less beneficial and inadequate updates to the parameters, leading

to inaccurate estimates of the parameters’ potential to decrease the sample

loss.

Next we determine estimates of parameters’ importance. Such importance

estimates are necessary for measuring individual parameters’ value to the sub-

set. In other words, it is necessary to understand if one parameter is better

than the other, as it determines which of the two parameters brings the subset

closer to the solution. For example, on updating the network N while chang-

ing only parameter wa, the sample loss is given by L(yk, N({wa}, si)). On

the other hand, on updating the network by changing only the parameter wb,

the sample loss is given by L(yk, N({wb}, si)). On comparing these separate

sample losses, if L(yk, N({wa}, si)) < L(yk, N({wb}, si)), then the importance

estimate of wa will be higher than that of parameter wb. Therefore, it is nec-
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essary to have better estimates of the importance of each parameter. The

estimate can be imperfect especially if the updates to parameters are made by

only considering the gradient and not the curvature information. Therefore

better estimates of the changes in loss can be obtained from second-order in-

formation. Therefore, the parameters undergo second-order updates (See Eq.

2.1).

Second-order updates are aggressive; updating parameters based on the

loss calculated on a single sample alone si has the potential to disrupt previous

learned representations. However, we use these updates to limit the number of

parameter changes. In future, we determine the usefulness of both first-order

and second-order updates. Therefore, our approach can be used on both first

and second order update rules. We investigate in later sections which of the

two is beneficial.

3.4 Parameter Subset Selection

Our proposed approach can be found in Algorithm 2. Over T iterations,

an initially defined subset dynamically increases in size to include parameters

necessary for correcting the network’s decision for si. We start with an initial

subset size n and sample the parameters using a prior gradient distribution

P0(W), defined in Eq. 3.2. The n sampled parameters are stored in the

initial subset W′
0. These sampled parameters might not provide a solution to

rectify the misclassification, and therefore our algorithm (PSS) continues to

iteratively search for the appropriate parameters.

A pre-determined and static subset size n does not ensure a correct pre-

diction of a misclassified sample. To avoid pre-determining the ideal subset

size hyper-parameter n (n can be different for correctly predicting different

misclassified samples), we introduce a dynamic subset size selection approach

that attempts to find the minimum number of parameters to correctly classify

si. At the start of every iteration, PSS samples from a pre-determined action

space: ‘Expand’ or ‘Replace’. ‘Expand’, as the name suggests, increases the

subset size and samples x more parameters from the probability distribution
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Algorithm 2 Pseudocode of the Parameter Subset Selection (PSS)

Input: si: Sample; n: Initial subset size; P0(W): Prior probability distribution;
T : Total iterations
Output: W′

final
: Final subset;

1: Select initial set W′
0 = {wj|wj ∼ P0, j ∈ {1, 2, ..., n}}

2: for t← 1 to T do
3: C← Random choice between ‘Replace’ and ‘Expand’
4: if C = Expand then
5: for i← 1 to x do
6: W′

t = W′
t−1 + {w}, where w ∼ Pt(W)

7: end for
8: end if
9: if C = Replace then
10: for i← 1 to

∣

∣W′
t−1

∣

∣ do
11: w ∼ Pt(W)
12: if V(W′

t−1 ∪ {w}) > V(W
′
t−1 ∖ (W′

t−1)j) then
13: W′

t = W′
t−1 ∪ {w}

14: end if
15: end for
16: end if
17: end for
18: W′

final
= ApproximateIdealizedSubsetSelector(W′

T )
19: return W′

final

of the parameters at that iteration, Pt(W). Here x is a hyperparameter that

describes the number of extra parameters to be sampled into the subset. This

is because at the end of all iterations, PSS re-verifies the contribution of each

parameter to the prediction.

When the ‘Replace’ action is chosen, the number of parameters in the

subset remains the same. However, given there are n parameters in W′
t, n

better parameters are chosen, i.e. after the action is taken, the new parameters

(after second-order updates) result in increasing the fitness of the subset.

Ideally the parameters replaced in every iteration should be more important

to solve the misclassification of si. The importance of a parameter in the

subset can be determined by the difference in sample loss when the parameter

is updated versus when it is not, given by L(yi, N({wa}, si))−L(yi, N({}, si).

However, evaluating this for each parameter individually, and then sampling

the top-k important parameters requires millions of calculations based on the
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parameter set. Instead we measure the fitness of the subset alone by a score

function, V : W′
t −→ R.

If the subset W′
t has n parameters, then only those n parameters undergo

magnitude changes. After the parameters are updated appropriately, the mod-

ified network performs a forward pass on the sample si and recalculates the

sample loss L(yi, N(W′
t, si)). A lower sample loss indicates a healthier subset.

The score function is given below in Eq. 3.4.

V(W′
t) = L(yk, N(W′

t, si))
−1

During the ‘Replace’ action, each parameter in the subset is compared

with a new sampled parameter from the corresponding probability distribution

Pt(W). If V(W′
t ∪ {wnew}) > V(W

′
t ∖ {wold}), then wold is replaced by wnew.

Here wnew is a different parameter positioned at a different index from wold.

The probability distributing Pt(W) is updated via:

Pt(W) =

⌈

max

(

0, Pt−1(W)−

∣

∣

∣

∣

∂L(yi, N(W′
t−1, si))

∂wj

∣

∣

∣

∣

)⌉d

j=0

At the final iteration, PSS will output a parameter subset of a size smaller

than the entire parameter space. Therefore, the ‘Idealized Subset Selector’

can be applied to the selected parameter subset to re-verify the contribution

of each parameter. The reason for doing this is to get rid of all the parameters

that do not contribute to correcting the sample accuracy. To avoid testing if

the sample gets predicted with every combination of the parameters, the first

part of PSS takes care of selecting parameters that reduce the sample loss, and

the ‘Idealized Subset Selector’ searches for an even smaller subset that only

satisfies the correct sample prediction constraint. Therefore, the ‘Idealized

Subset Selector’ is executed only if the sample is correctly predicted in the

first part.

3.4.1 Sensitivity to Hyper-parameters

The hyper-parameters to our approach are as follows: (1) n: the initial subset

size, (2) T : total iterations, and (3) x: number of parameters to sample upon
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choosing action ‘Expand’. The choice of above mentioned hyper-parameters

can have an effect on the final solution subset. For example, if the all of

them are low in value, such as {n, T, x} = {5, 5, 5}, then a solution might not

be obtained for the misclassification. This is especially true when sparsity is

introduced in form of magnitude changes to the selected parameters. Addi-

tional sparsity in the number of parameters (by limiting x and n) can cause

our approach to fail to correct the misclassifications.
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Chapter 4

Experiments

In the last chapter, we introduced our approach: Budgeted Gradient Descent

(BGD). In this chapter, we evaluate the usefulness and efficiency of our ap-

proach. First we introduce the two settings for conductive our experiments

in Section 4.1. Then in Section 4.2, we discuss the architectures and dataset

we apply BGD on, and define the metrics that evaluate BGD. In the follow-

ing sections, we record the results for five different experiments, and note our

inferences from the individual experiments. The experiments are enumerated

below:

• Experiment 1: We compare the second-order variant of our approach,

‘BGD’, with baseline approaches used alternatively in the literature.

• Experiment 2: We introduce a first-order variant of our approach, ‘BGD-

I’, and explore its benefits on the network’s generalizability.

• Experiment 3: We introduce a variant of BGD called ‘BGD-C’ to in-

vestigate if avoiding high gradient parameters, where the gradients are

computed on the entire training set, leads to avoiding a loss in general-

izability.

• Experiment 4: We investigate the loss of generalizability in networks in

a non-reloading setting and compare our approach and its variants with

other baseline approaches.
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• Experiment 5: We investigate the sensitivities and robustness of our

approach.

4.1 Loss in Generalizability

Generalizability is a network’s ability to generalize to unseen data. Any

changes to the network should not cause detriment in its generalizability. How-

ever, a network pre-trained on one distribution may lose its past training per-

formance if re-trained on a different distribution. To learn from misclassified

examples during testing, the network retrains on samples that are potentially

outliers to the training distribution. Therefore, to properly assess the net-

work’s generalizability, it is important to evaluate its performance not only on

the testing data but also on the original training data. The latter helps us

understand how much of the network’s past learning is retained.

While the loss in generalizability might be trivial when learning from one

single example, this loss could accumulate as the network is forced to learn

from multiple misclassified samples. To measure the impact on generalizability

in both scenarios, we introduce two experimental settings:

1. Reloading setting: In the reloading setting, the initial network, N0, is

reset before each misclassified sample is learned, meaning that changes

made for the sample si are not retained when learning the sample si+1.

This allows us to test whether our method is effective regardless of the

difficulty of the sample.

2. Non-reloading setting: In the non-reloading setting, we assume the mod-

ified network Ni after learning sample si becomes the starting point for

learning sample si+1. This setup is used to investigate the long-term

effects of cumulative changes on the network’s generalizability.

In the first five experiments, we focus solely on the reloading setting to

avoid redundancy. Once we have introduced all variants of our approach, we

then explore how the network’s ability to retain generalizability is affected

when multiple changes are made.
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4.2 Networks and Metrics

We test our approach for two pre-trained networks: (A) AlexNet [20], and (B)

a Multilayer Perceptron (MLP). The MLP consists of three fully connected

layers, each followed by a Rectified Linear Unit (ReLU) activation function.

Both networks are first trained on a relatively small number of epochs, to

increase the number of misclassifications. By introducing misclassifications we

hope to emulate a real-life scenario where a deployed model misclassifies certain

target samples. The AlexNet is trained for 40 epochs and has 370 misclassified

samples. The MLP is trained for 10 epochs on the MNIST dataset and has

947 misclassifications in total.

We evaluate our approach against baselines using the following metrics:

1. Percentage Of Corrections (POC): POC, as defined in Eq 1, represents

the percentage of the total incorrectly predicted samples that were cor-

rectly predicted after applying an approach. As our primary focus is

to correct misclassifications, each approach is evaluated on POC, where

a higher POC value indicates a better approach. However, POC alone

is not a sufficient measure of an approach, as it may not account for

issues like sample memorization, where the network learns specific sam-

ples without generalizing to other training or testing examples. It is

important to note that a POC of 100% does not imply that the network

correctly predicts 100% of testing samples; it only means that the ap-

proach successfully modified the network N0 independently to correctly

predict all initially misclassified samples. The POC for the reloading

setting is shown below, and corresponds to the entire set of misclassified

samples.

POC =
Correct

Incorrect + Correct
∗ 100%

2. Percentage Of Parameters Altered (POPA): POPA represents the frac-

tion of parameters altered by an approach to achieve correct classifica-

tion. As we aim to reduce the number of parameters altered, we prefer an

approach with a smaller POPA value. This metric also provides insights
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into how generalizability is affected by parameter changes. For example,

it helps answer questions like whether altering a smaller percentage of

parameters reduces the likelihood of memorizing difficult samples more

effectively than altering a larger percentage. Our POPA metric is de-

fined by the Eq 2, where W
′(i)
final

is the final parameter subset, containing

parameters to change for the correct prediction of sample si, and the

total number of network parameters is |W|.

POPA =

∣

∣

∣
W

′(i)
final

∣

∣

∣

|W|
∗ 100%

3. Change in training Loss (∆TL): ∆TL quantifies the loss in learned rep-

resentations by measuring the change in training loss after an approach

has been applied. Although our approach is training data-free, we use

this metric to evaluate different baseline approaches. If the training loss

for the initial network, N0, is denoted by L0(Dy, N0(W0, Dx)), and the

training loss, after the network N0 gets modified for sample si, is:

∆TLi = Li(Dy, N
′(W

′(i)
final

, Dx))− L0(Dy, N0(W0, Dx))

4. Change in testing accuracy (∆TA): ∆TA is calculated similarly to ∆TL.

A higher decrease in testing accuracy (TA) suggests a sharper decline in

the network’s generalizability. ∆TA is given by the following equation,

where TA0 is the training accuracy of the original network.

∆TAi = TAi − TA0

The set of misclassified examples consists of those initially incorrectly predicted

by the network N0. The metrics POPA, ∆TL, and ∆TA are averaged over all

misclassified samples in the results, while POC does not require averaging as

it indicates the percentage of samples correctly predicted by an approach out

of the entire set.
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4.3 Baselines

Below is the list of baselines we consider for understanding the efficiency of

our algorithm:

1. Re-train: In this baseline, all the parameters of the network are retrained

via backpropagation. This is identical to the full-network fine-tuning

case, and we include it as it is the most common approach for transfer

learning [17]. We expect an increase in sample memorization due to the

greater sample difficulty, resulting in an increase in ∆TL and ∆TA.

2. Fine-tune: In this baseline, only parameters in the penultimate layer

of the network are altered. Since retraining all parameters may disrupt

learned features, fine-tuning only updates the penultimate layer of the

networks. Therefore, we expect less sample memorization than in the

case of re-training.

3. L1-Regularizer: In this baseline, a penalty term, comprising of the pa-

rameter magnitudes is added to the loss function. The L1-Regularizer is

a traditional sparse regularizer typically used for feature selection.

4. Top-k: This approach was introduced by [33], as a form of sparsified gra-

dients. It can also be expressed as a form of pruning |W|−k parameters

(|W| being the total parameters), i.e., performing a gradient update on

only k network parameters. Although most pruning algorithms use iter-

ations to optimize the unpruned parameters, in this baseline, we refrain

from doing so as we already have a pretrained network. Sun et al. in

[33] propose ‘meProp’ that alters only 1–4% of the total parameter space

during training. However, we only focus on correcting the misclassifica-

tions; therefore, we make minor adjustments to the approach to suit our

problem.

Given the pre-trained network N0, we calculate the parameters’ gradi-

ents on the sample (si) loss, and do a first-order gradient update step

for k parameters. This step is kept the same as ‘meProp’. However,
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the authors of ‘meProp’ update only 1–4% of the total parameter space.

We, on the other hand, update p% of the network parameters, where

p ∈ (0, 100]. In other words, we keep increasing the number of parame-

ters altered until the sample si is correctly predicted. This modification

to the algorithm serves two purposes: (a) it tracks the metric POPA,

and (b) it ensures the sample is correctly predicted. Ensuring the sam-

ple is correctly predicted (i) amplifies the usefulness of ‘meProp’ in our

problem setting, (ii) provides other pathways to correct predictions, and

(iii) justifies the stochasticity in our approach.

4.4 Experiment 1: Updating high gradient pa-

rameters with aggressive updates

In this experiment, we investigate how our approach performs relative to rel-

evant baselines.

In this section, we compare different baselines with our approach, BGD.

Table 4.1, 4.2 and Figure 4.1 show the results for the reloading setting,

i.e., the initial network is identical for all misclassified samples. In the listed

tables, we compare BGD with aforementioned baselines and record values

for metrics defined in Section 4.2. Observations are recorded after averaging

results from experiments done using three distinct seeds. While rows in the

tables record their corresponding standard deviations, the missing deviations

from the metric ‘POPA’ for the baselines, re-training and fine-tuning, are

because the number of parameters changed are pre-determined and therefore

fixed. For re-training, as we alter all network parameters, ‘POPA’ is fixed at

100%. On the other hand, we only fine-tune the penultimate layer of each

network, therefore ‘POPA’ is fixed at 17.93 for the AlexNet network and at

99.85 for the MLP network.

The reloading setting primarily examines if each approach is able to cor-

rectly classify a sample, regardless of its difficulty. Both BGD and the L1-

Regularizer successfully classify 100% of misclassified samples in every seed.

This is followed by the Top-k approach. Compared to the Top-k approach,
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BGD alters a smaller fraction of the network parameters (denoted by the met-

rics ‘POPA’). Although both are guided by the gradient magnitudes, BGD

finds a smaller solution set for the misclassifications. Moreover, our approach

is able to find the smallest number of parameters to change, relative to the

chosen baselines, for solving the misclassifications.

For both the networks, we observe a negative (average) change in training

loss. While the other baselines increase the training loss value to correct

the misclassification, our approach reduces the loss compared to the original

network. However, the decrease in training loss does not correlate with an

increase in testing accuracy. On the contrary, our approach decreases the

testing accuracy by an order of 10−2 for both the networks.

The decrease in testing accuracies suggests overfitting to the training exam-

ples. However, our approach assumes the unavailability of training examples,

and fine-tunes the network based on the misclassified sample alone. As this

sample is not part of the training set, the decrease in training loss can be

attributed to the network learning features from the misclassified sample, that

are similar to those in the majority of the training examples. Therefore, BGD

relies on these familiar features to correct the classification. The observed de-

crease in training loss indicates that unique features of the misclassified sample

are not being learned; instead, the network relies on features already learned

during training. Consequently, sample memorization is avoided.

Along with the drop in training loss, we also observe a decrease in the

training accuracy (as shown in Figure 4.1). Although this drop is in order of

10−2, it may result from the network’s overemphasis on specific features rather

than distributing focus across diverse features (learned during training). This

overemphasis allows the network to correctly predict the misclassified sample.

As the number of parameters altered in BGD is relatively lower, this over-

emphasis on features, relevant to the misclassified sample, only pertains to a

few features. In contrast, approaches that modify a larger fraction of param-

eters, such as re-training and fine-tuning, increase the training loss, leading

to an expected decrease in training accuracy as well as the testing accuracy.

However, the average change in training/testing accuracies for fine-tuning are
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lower than those observed for BGD. A larger ∆TA in BGD can be attributed

to the presence of outliers, as observed in Figure 4.1. We note that our claims

only extend to the models we test with, however we would anticipate general-

ization to similar models.

(a) AlexNet

(b) MLP

Figure 4.1: Comparing testing and training accuracies of BGD with base-
lines, namely, ‘Re-training’, ‘Fine-tuning’, ‘Top-k’, ‘L1-Regularizer’. The high-
lighted entries in each row signify the best observation. The box plots provide
a distribution of the training/testing accuracies after each misclassified sample
is correctly predicted. The original accuracies have been dotted.

4.5 Experiment 2: Dependency on the Mag-

nitude of Change

Misclassified samples have more associated loss values, and therefore, re-training

the network on those particular samples impact the network negatively (as seen

in Section 4.3). In our approach we perform second-order updates to selected

parameters to avoid increasing the number of changes to the network. How-

ever, these updates are based on the gradients calculated on a single sample.
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BGD Re-training Fine-tuning Top-k L1-Regularizer

POC 100 ± 0 93.33 ± 2.1 70 ± 12.1 98.65 ± 0.17 100 ± 0

POPA 1.9e-05 ± 1.5e-05 100 17.93 5.8e-03 ± 0.01 100 ± 0

∆ TL -3.3e-03 ± 2.5e-04 9.1e-03 ± 7.7e-03 2.4e-03 ± 1.3e-03 3.7e-03 ± 8.5e-3 5e-3 ± 4.3e-03

∆ TA 0.09 ± 0.07 0.21 ± 0.13 0.07 ± 0.02 0.06 ± 0.07 0.12 ± 0.05

Table 4.1: Comparing BGD to the baselines: ‘Re-training’, ‘Fine-tuning’,
‘Top-k’, ‘L1-Regularizer’ for the network AlexNet. The highlighted entries
in each row signify the best observation. The box plots provide a distribution
of the training/testing accuracies after each misclassified sample is correctly
predicted. The original accuracies have been dotted.

BGD Re-training Fine-tuning Top-k L1-Regularizer

POC 100 ± 0 100 ± 0.01 99.67 ± 0.02 99.47 ± 0.10 100 ± 0

POPA 0.02 ± 0.02 100 99.85 3.52 ± 4.88 100 ± 0

∆ TL -6.6e-03 ± 2.5e-04 1e-03 ± 1.9e-03 1.3e-03 ± 4e-04 2.1e-03 \pm 6.2e-03 1.7e-3 ± 4.3e-03

∆ TA 0.03 ± 0.07 0.04 ± 0.04 0.009 ± 0.01 0.02 ± 0.05 0.06 ± 0.06

Table 4.2: Comparing BGD to the baselines: ‘Re-training’, ‘Fine-tuning’,
‘Top-k’, ‘L1-Regularizer’ for the network MLP. The highlighted entries in each
row signify the best observation.

Therefore, these updates should be limited. This limit can be applied to both

the number of parameters updated, and the magnitude of changes introduced

to each parameter. The magnitudes parameter changes can be restricted, as

in the case of first-order updates. On restricting the magnitude of change, as

we observed in the Top-k approach, that more parameters need to be changed.

On the other hand, BGD (the second-order variant is called BGD-II) makes

aggressive second-order updates to a smaller number of parameters. To in-

vestigate which option reduces generalization loss in networks, we investigate

the following question: Should we update a large number of parameters by a

small magnitude, or should we update a smaller number of parameters more

aggressively?

Although the Top-k approach makes first-order changes to parameters until

the misclassification is solved, the number of changes are relatively higher.

We introduce a variant of our algorithm that makes more precise changes

to selected parameters, while also aiming to minimizing the number of such

changes.
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BGD-II BGD-I Top-k

POC 100 ± 0 61.35 ± 0.12 95.1 ± 7.1e-03

POPA 1.1e-05 ± 1.3e-05 1.1e-04± 1.7e-04 0.01 ± 0.01

∆ TL -3.3e-03 ± 1.8e-05 -3.4e-3 ± 1.6e-05 7.1e-03 ± 0.01

∆ TA 0.03 ± 0.01 0.03 ± 4.1e-03 0.091 ± 0.10

Table 4.3: Comparing the two variants BGD-I and BGD-II for the network
AlexNet.

BGD-II BGD-I Top-k

POC 100 ± 0 95.88 ± 0.05 99.77 ± 1.4e0-5

POPA 0.02 ± 0.02 0.04± 0.07 3.23 ± 4.57

∆ TL -6.7e-3 ± 2.5e-05 -6.7e-3 ± 1.6e-05 2e-03 ± 6.2e-03

∆ TA 0.03 ± 0.06 0.02 ± 0.03 0.02 ± 0.05

Table 4.4: Comparing the two variants BGD-I and BGD-II for the network
MLP.

4.5.1 BGD-I: First order variant of BGD

The structure of our optimization algorithm (see 2) remains the same. The

only change is made to how the chosen parameters are updated. Recall that

the score function calculates the inverse of the sample loss, L(yi, (N(si,W
′
t)).

To calculate the loss for si, second-order updates are made to the network

parameters in the subset W′
t = [wi, w2, ..., wn]. However, to prevent aggressive

updates, we alter our selected parameters by a fraction of the calculated gradi-

ent. Specifically, the parameters change by a gradient descent step as defined

in Eq. ??. This change in the algorithm is expected to result in an increase in

the number of changed parameters in order to correctly classify misclassified

samples.

The results to different metrics defined in Section 4.2 can be found in Tables

4.3 and 4.4. We find that this variant of our approach only corrects 61.35% of

all misclassifications in AlexNet, and 95.88% of them in MLP. The disparity

between the number of correct predictions in BGD-I and Top-k suggest that

more changed parameters were required to solve the misclassifications, as both

of them are guided by the gradients calculated on the samples. Recall that
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in each iteration of our algorithm, we can dynamically increase the parame-

ter subset. We fix the hyper-parameter that decides the number of changed

parameters to be added to the parameter subset to be 10 for this and all fu-

ture experiments. Therefore, either the number of iterations of our approach

needs to be higher, or the number of changed parameters by which the sub-

set expands needs to be increased to find the solutions to all the misclassified

samples. We test the rest of the metrics for all approaches, namely, BGD and

Top-k for only those 61.35% and 95.88% of the misclassified samples in Table

4.3. Therefore, the statistics mentioned for Top-k and BGD (apart from POC)

is for the samples correctly predicted by Top-k out of those 61.35%. By doing

so, we better understand the contribution of each approach.

We find that for all the samples that were correctly predicted by all three

approaches, BGD-I has the least decrease in testing accuracy. This is also

accompanied by the highest drop in training accuracy, which suggests that the

parameters retain a fraction of the learned representation, thereby losing fewer

testing samples to misclassifications. The Top-k approach operates similarly,

with the only difference being that it changes more parameters. Therefore, it

can be concluded that even though the magnitude of change is smaller, as the

number of changed parameters increases, the network starts degrading.

On the other hand, second-order updates in BGD-II has comparable per-

formance with BGD-I and Top-k. (We call the second-order variant of BGD as

BGD-II and not BGD to enhance clarity.) Additionally, the change in testing

accuracy is similar in all three approaches, with the only difference between

Top-k and BGD-I, BGD-II being the difference in training loss. While training

loss increases in Top-k, it decreases in the other two approaches, which sug-

gests that the only outcome of making fewer changes is a drop in training loss.

Additionally, this drop in training loss can be attributed to a strong reliance

on the training features in BGD-II and BGD-I, as opposed to overwriting the

features with the sample’s unique features, as in Top-k.

To better support this claim, we visualize the sample losses, after the sam-

ple was correctly predicted. A lower sample loss is associated with an increase

in sample overfitting. To understand the trend of how updating more pa-

33



rameters leads to lower sample loss, we also plot the sample losses for the

Re-training baseline in Figure 4.2. For both the architectures, BGD-II has

the least sample loss, suggesting that the network is not overfitting on that

particular sample. On the opposite end is Re-training, exhibiting behaviour

we want to avoid. For example, for the AlexNet network, Figure X shows that

the Top-k has sample losses close to 0, which is supported by Table 4.3 show-

ing the highest increase in testing accuracy. BGD-I strikes a balance between

the two, Top-k, and BGD-II, and therefore has the least increase in testing

accuracy.

(a) AlexNet (b) MLP

Figure 4.2: Sample losses after the sample is correctly predicted.

4.6 Experiment 3: Avoiding sensitive param-

eters to the overall training set

In this section, we first identify disadvantages to our approach, and then pro-

vide a work-around. We run through some experiments to identify the benefits

of said work-around.

In Section 4.1, we discuss that an approach is beneficial when the network’s

generalizability is preserved, along with its ability to learn a new sample. In

our approach, we minimize the number of updated parameters to preserve said

generalizability, under the assumption that training data is unavailable at the

time of application. However, to reduce the number of parameters altered, we

see that the amount of updates to those parameters need to be more aggressive.
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As the updates are based on the gradients calculated on the single misclassified

sample, it can potentially harm the network’s generalizability.

To bypass this outcome, in this section, we introduce a second variant of our

approach. In this variant, we still assume a lack of the training data. However,

to have an estimate of the overall loss landscape, we assume the availability

of the expected parameter gradients for the training data. Empirically, this

gradient vector calculated on the training data, Ḡ is defined as follows:

ḡi =
1

|D|

|D|
∑

j

∂L(Dy, (N(Dx,W))

∂wi

, ∀ḡi ∈ Ḡ

We hypothesize that the impact to the network’s generalizability can be re-

duced if we can avoid highly sensitive parameters to the training loss. To test

this hypothesis, we use, Ḡ given in Eq 4.6, to estimate the loss landscape. As

Chen et al. in [10], conclude that pruning the most sensitive parameters im-

proves generalization, we aim to update the parameters with not only higher

sensitivity to the sample loss, but also the ones with lower sensitivity to the

training loss.

First, we estimate the curvature of the training loss from the gradient vector

Ḡ in Subsection 4.6.1, because we aim to avoid updating parameters with

higher training loss curvatures. Once we have these estimates, we determine

a threshold for the curvature. If a parameter has a curvature steeper than the

determined threshold, we avoid updating the parameter. We do this because

updating parameters with a higher training loss curvature has the potential

to disrupt learned representations.

4.6.1 Estimating the curvature for the training loss

We use Taylor’s expansion to estimate the curvature of the training loss land-

scape. Updating parameter wj results in changes to the loss function, denoted

by ∆Lwj
, defined in Eq. 4.6.1. Here W′ represents the updated weight vector

where the j-th element is wj +∆wj.
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∆Lwj
= L(Dy, (N(Dx,W

′))− L(Dy, (N(Dx,W))

≃ ∆wj

(

∂L(Dy, (N(Dx,W))

∂wj

)

= ∆wj ◦ Ḡ

The two factors estimating ∆Lwj
are (a) changes in parameter magnitude,

and (b) the parameter’s gradient calculated on the training loss, given by Ḡ.

Since, we assume that Ḡ is already available to us, the only factor we need to

determine is ∆wj. Recall, in our approach, to limit the number of changed

parameters, we provide second order updates to the parameters, given by:

∆wj ≃ −H
−1∇wj

L(W, N(si)). Therefore, the curvature can be estimated by

the following:

∆LW = −H−1∇WL(W, N(si)) ◦ Ḡ

The change in the loss value should not be detrimental so that the past

learned features from the training data are preserved. Therefore, it is necessary

to establish a threshold, τ , to identify changes that are detrimental to the

network. We define a parameter, wj, as a harmful parameter if ∆Lwj
> τ . In

other words, if second-order updates to wj, result in an increased loss value

greater than τ , we do not change the parameter at all. In the following Section

4.6.2, we elaborate how we determined the threshold τ .

4.6.2 Determining the threshold τ

For second-order updates to parameters, we use the Empirical Fisher matrix

(See Section 2.1) in place of the Hessian to compute ∆Lwj
.

∆LW = −
∇WL

(∇WL) (∇WL)T
◦ Ḡ

Before determining the threshold, we visualize ∆LW in Figure 4.3. For both

networks, the curvature information is very low, therefore, we select the cur-

vature estimate threshold based on a high percentile of gradient magnitude.

For our experiments, we set the value of τ to be 95 by visual analysis, i.e., if

the curvature estimate is above the 95th percentile, then we resample to select

a different parameter.
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(a) AlexNet (b) MLP

Figure 4.3: ∆LW for both networks.

4.6.3 Results

First, we analyze whether a solution to misclassifications can be achieved by

avoiding parameters with a high curvature estimate. Next, we investigate if

this approach can increase/preserve better generalizability in the networks.

We name this variant of our approach ‘BGD-C’ (C for curvature) to separate

it from the previous variants.

The results from the previously defined metrics can be found in Table 4.5

and 4.6, and Figure 4.4. BGD and BGD-C appear to be minutely differ-

ent since BGD-C selects different parameters only if the previously sampled

parameters had a training loss curvature estimate greater than the 95-th per-

centile. Among the important differences is the observation of BGD-C for the

MLP network not being able to correctly classify all of the misclassified sam-

ples. This suggests that for 2.01% of the misclassified samples, BGD-C was

not able to find an alternative pathway to their correct predictions. In other

words, the parameters selected by BGD had a higher curvature, that could

potentially harm the training performance. Since the number of parameters

with high training loss curvature are relatively small, there is little chance for

BGD-C to replace them with lower training loss curvature parameters.

Figure 4.4 provides deeper insights into the distribution of training and

testing accuracies. For the AlexNet network, BGD-C finds low curvature pa-

rameters; however, this process increases the number of changed parameters,

thus reducing the training/ testing accuracies. The change in these accuracies

37



BGD BGD-C

POC 100 ± 0 100 ± 0

POPA 1.9e-05 ± 1.5e-05 2.1e-05 ± 1.5e-05

∆ TL -3.3e-03 ± 2.5e-04 -2.5e-3 ± 0.01

∆ TA 0.09 ± 0.07 0.09 ± 0.14

Table 4.5: Comparing BGD to the new variant, BGD-C for the AlexNet net-
work. The highlighted entries in each row signify the best observation.

BGD BGD-C
POC 100 ± 0 97.99 ± 1.3
POPA 0.02 ± 0.02 0.09 ± 0.13
∆ TL -6.6e-03 ± 2.5e-04 -6.7e-03 ± 2.5e-03
∆ TA 0.03 ± 0.07 0.02 ± 0.02

Table 4.6: Comparing BGD to the new variant, BGD-C for the MLP network.
The highlighted entries in each row signify the best observation.

is also influenced by the specific sample and the locations of high gradient

parameters (gradients computed on the sample). If a parameter has a high

training loss curvature estimate, other parameters are sampled instead. Our

analysis indicates that avoiding certain high gradient parameters may require

modifying more parameters to correctly classify the sample.

(a) AlexNet (b) MLP

Figure 4.4: Comparing training and testing accuracies for BGD, and BGD-C
for AlexNet and MLP networks.
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4.7 Experiment 4: The Non-reloading Setting

In this experiment, we analyze the effect each approach has on the general-

izability of both networks, given the non-reloading setting. Recall, that in

this setting, misclassified samples are learned one after the other, sequentially.

Therefore, although the initial network is the same, N0, the modified network

Ni after learning si, is the input network for learning sample si+1. This is

different from the reloading setting, where N0 is the input network for all

samples, including si+1.

In order to reduce redundancy, we compare all versions of our approach

with baseline approaches introduced in Section 4.3, namely, ‘Re-training’,

‘Partial fine-tuning’, ‘Top-k’, and ‘L1-Regularization’. The versions of our

approach to be compared with the said baselines are ‘BGD-II’, ‘BGD-I’, and

‘BGD-C’.

The metrics used to compare the approaches are the same as before, as

defined in Section 4.2. In the non-reloading setting, POC still represents the

fraction of learned samples. However, the network, Ni after learning sample si

may or may not remember sample sj−i. Therefore, even though Ni−1 is able

to correctly predict si−1, the modified network Ni may or may not correctly

predict si−1. Instead of recording the metrics for the final network Nm (m is

the total number of misclassified samples), we record the metrics as an average

over the statistics produced by each network Ni. The metrics, POC and POPA

are redefined as:

POC =

(

1

m

m
∑

i=1

CorrectNi

)

∗ 100%

POPA =

(

1

|W|

m
∑

i=1

W
′(i)
final

)

∗ 100%

Here, CorrectNi
is 1 if the network Ni correctly predicts si, otherwise it is

0. W
′(i)
final

is the final subset containing parameters that correctly predict si. If

networkNi is unable to correctly predict si, then the subset is empty. The total

number of network parameters is |W|. The metric values for this experiment

are recorded in Tables 4.7 and 4.8. Figures 4.5, 4.6, 4.7 show the results for
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the AlexNet network. Figures 4.8, 4.9, and 4.10 show the results for the MLP

network. The values have been recorded after running the experiment for three

distinct seeds and then averaging the statistics.

Instead of recording the changes in training loss and testing accuracy in

the table, we directly visualize these metrics in the aforementioned figures.

The figures show the results over training accuracy, test accuracy, and train-

ing loss, respectively. As the samples are incrementally learned, the network

loses its past representations. We plot the network behaviour for the first

100 misclassified samples as a subfigure to get a closer look at what happens

before the network forgets catastrophically. In said experiments, the order of

the samples was kept consistent, meaning that the sample at the i-th iteration

is the same across all seeds for a network. Since our primary objective is to

evaluate how comparatively well each approach preserves generalizability, we

did not experiment with altering the order of the samples.

BGD-II BGD-C BGD-I Re-training Fine-tuning Top-k L1-Regularizer

POC 88.91 ± 0.12 54.59 ± 10.33 67.29 ± 1.7 27.43 ± 1.66 44.59 ± 1.33 84.32 ± 3.77 46.39 ± 0.21

POPA 1e-04 ± 1.3e-04 6.19e-05 ± 1.4e-04 8.5 e-05 ± 1.6e-04 100 17.93 5.9e-03 ± 0.01 100 ± 1.7

Table 4.7: Comparing BGD and its variants to the baseline approaches for the
AlexNet network.

BGD-II BGD-C BGD-I Re-training Fine-tuning Top-k L1-Regularizer

POC 25.87 ± 0 66.10 ± 0 77.64 ± 2.03 99.69± 0.01 25.87 ± 0 77.71 ± 0 67.68 ± 0

POPA 0.02 ± 0.11 0.11 ± 0.19 0.04 ± 0.09 100 99.85 12.07 ± 23.7 100 ± 0

Table 4.8: Comparing BGD and its variants to the baseline approaches for the
MLP network.

Reading the figures: the x-axis represents the iterations; in each itera-

tion, one misclassified sample, si, is learned. Hence, the modified network,

Ni, becomes the input network for the subsequent iteration or sample (in this

context, these terms are interchangeable). The AlexNet network has 370 mis-

classified samples, and the MLP network has 947 misclassifications in total.

As the iterations progress, Ni learns each sample, and incrementally diverges

from the original network. The red dots along the lines correspond to incor-

rect classification of a sample. If a misclassification has occurred, the network
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does not change, and therefore, horizontal lines can be seen in parts of the

graphs. This process tests the long-term impact of each approach on the net-

work’s generalizability. At iteration i, all approaches modify the network by

attempting to learn the same sample si. Therefore, the dips in the line graphs

(for testing/training accuracies) that happen at the same iteration, suggesting

that learning a particular sample si may be difficult, causing the network to

forget some training representations. By analyzing the statistics, we draw con-

clusions about each approach’s effects on network generalizability. We divide

the observations and inferences into their own subgroups, and discuss them

for each of the baselines and variants. We discuss these in an order to allow

for comparative analysis rather than from best performing to least performing

approach, or other similar orderings.

BGD-II. Recall that BGD-II makes second-order updates to fewer network

parameters. This is supported by the observation that BGD-II has the least

POPA metric value among all other approaches. The network iteratively learns

from misclassified samples by encouraging aggressive sparsity in BGD-II. This

results in only a small number of parameters encoding the features learned

from the misclassified sample. For the AlexNet network, which has a larger

architecture, BGD-II initially performs well, maintaining most of the training

and testing performance for the first 100 misclassified samples. However, as

the number of changes accumulates, a drastic increase in training loss can be

observed, particularly compared to other baselines. Despite the increase in

training loss, the training and testing accuracies do not decline as significantly

as in other baselines, indicating that the network is making substantial errors

on only a part of the training data. This outcome is intuitively understandable:

BGD-II constrains updates to a few parameters, but those parameters are

updated aggressively, leading to overfitting on the features of the misclassified

samples. Since these samples are likely outliers relative to the training data,

the newly learned features do not generalize well. As a result, part of the

network overfits on these samples, driving up the training loss, while the rest

of the network retains generalizable features, allowing it to correctly predict a
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portion of the training and testing sets. These observations indicate that while

updating a minimal set of parameters may initially help correct misclassified

samples, it can ultimately harm the network’s generalizability. As the network

is exposed to more samples that are potential outliers, the reliance on a few

parameters to correctly predict the sample increases, leading to a reduction

in overall generalizability. Similarly, in the MLP network, which has fewer

parameters than AlexNet, this degradation occurs earlier in the iterations.

BGD-C. BGD-C was introduced to tackle the above disadvantage of BGD-

II. As the disadvantage arises due to the aggressive updates to parameters,

such updates would be avoided in BGD-C if the training sensitivities of those

parameters were higher as well. For both networks, we observe in Figures 4.7

and 4.10, the detrimental increase in training loss by the BGD-II approach

could be successfully avoided by BGD-C. We additionally observe some op-

posite effects in the two networks. On comparing BGD-II and BGD-C, we

observe that when applying BGD-C on the MLP network that the number of

changed parameters (value for metric POPA), training and testing accuracies,

and the number of corrections (value for metric POC) are higher than those

for BGD-II. We had observed previously that MLP has fewer parameters than

AlexNet, and therefore, changing even a small number of parameters aggres-

sively degraded the performance of most training and testing examples. But

this degradation can be avoided if more parameters that have low training

loss sensitivities are updated instead. It also suggests that the training loss

landscape of the MLP network is mostly flat. This claim is supported by the

higher number of parameters updated without loss in training performance.

The opposite effect is observed for the AlexNet network. POPA, POC, train-

ing and testing accuracies drop when BGD-C is applied compared to when

BGD-II is applied. Although the training loss decreases, the training and

testing accuracies also decrease, suggesting that by avoiding sensitive parame-

ters, we do not guarantee an increase in training and testing accuracies. This

was also observed in Experiment 1, where we could not find any relationship

between decreasing training loss and increasing testing accuracy. Additionally,
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we observe that by avoiding sensitive parameters, BGD-C finds fewer solutions

for misclassifications than BGD-II. As fewer samples were correctly predicted,

fewer changes were made to the network.

BGD-I. We find that for both architectures, variant ‘BGD-I’ outperforms all

other variants and baselines. Recall that ‘BGD-I’ provides first order updates

to selective parameters to correct misclassifications. The magnitude changes

to parameters in ‘BGD-I’ were comparatively smaller than that in ‘BGD-II’

and therefore, we had observed that more parameters needed to be updated

to learn the misclassified samples (see Sec 4.5). We had similar findings in

these experiments. This suggests that the loss in generalizability can be at-

tributed to the amount of change rather than sparsity. Both BGD-II and

BGD-I update only a subset of the parameters that correspond to correcting

misclassifications, and thereby they both aim to modify the network sparsely.

BGD-II may lose generalizability more quickly than BGD-I. This also suggests

that to preserve generalizability, one should not aim to limit the number of

changed parameters strongly by increasing the magnitude of updates. Rather,

one should aim to sparsify updates by obtaining a balance between the number

of parameters to update, and the magnitude of updates to them. However,

this conclusion is applicable only if the updates are based on the gradients

calculated on the misclassified sample alone.

L1-Regularizer. We observe that the L1-Regularizer correctly predicts ap-

proximately 46.39% of misclassified samples in the AlexNet network and 67.68%

of them in MLP network. However, we also observe that it produces low

training and testing accuracies in both architectures, while having compara-

ble training loss with other baselines. Although the training loss increases

from the initial model, it remains stable after some number of iterations. The

increased loss and decreased training and testing accuracies suggest that the

L1-regularier overfits on the misclassified samples. The stability in the train-

ing loss across samples might suggest that the network makes small errors for

most of the training data. Recall that the formulation of the L1-Regularizer
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forces the network to make small updates to its parameters. Therefore, al-

though most of the parameters are changed (See metric POPA in Table 4.7),

they do not deviate substantially from their initial values. However, doing so

continuously fails to lead to correct predictions for most of the training and

testing data.

Retrain. We see a similar behaviour as L1-Regularizer in Retrain. In both

architectures, Retrain has a relatively low but stable increase in the training

loss across iterations. Additionally, in both architectures, it fails to correctly

classify any misclassified sample after a certain iteration (marked by red dots

on the graphs). After the drastic drop in performance in the first few iterations,

there is a range of iterations during which the training and testing accuracies

seem to gradually increase by small magnitudes. However, this halts when no

misclassified samples are correctly predicted, and the network stops changing.

Recall that the Retrain algorithm only performs one gradient descent step

on all parameters, where the gradient is computed on a single misclassified

sample. Therefore, one gradient descent step is insufficient for the network to

continuously learn more misclassified samples. The rise in the training and

testing accuracy after the drastic drop in performance might be the network

relearning old features that are similar to the training distribution and the

misclassified samples. However, the accuracies plateau as the network is no

longer able to learn from the new samples. This suggests that the network

might be overfitted on a few samples.

Fine-tune. Recall that fine-tuning provides first-order updates to only the

penultimate layer in both architectures. Unlike Top-k and BGD (and its vari-

ants), the fine-tuned parameters are not dependent on the gradients. Note

that the penultimate layer has the second-highest gradient magnitudes in both

AlexNet and the MLP network (see Figure 4.13)(a) and (b). Fine-tuning the

penultimate layer corresponds to changing 17.93% of the AlexNet network,

and 99.85% of the MLP network. For the AlexNet network, the number of

changed parameters is relatively low, but the gradients of the penultimate
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layer are high. On the other hand, for the MLP network, the number of pa-

rameters is almost 100%, but the gradient magnitudes are low. Note that the

preservation of the training and testing performances may be caused by the

relatively higher gradient magnitudes in the penultimate layer. However, we

do not verify the contribution of the magnitudes of the gradients to the net-

work’s generalizability preservation, and merely note the observation. Such

verification could be achieved by updating all parameters in individual layers.

Instead, we do random parameter selection into subsets, and find that for a

fixed manually decided number of iterations (=20), none of the misclassified

samples could be correctly predicted. Therefore, while the gradient magnitude

might play a role in fine-tuning, we cannot make a consistent conclusion given

the lack of ablation studies. Additionally, we observe that this approach, like

Retrain, fails to correctly predict most samples after learning from a few initial

samples.

Top-k. We observe that in both architectures, the Top-k approach starts

strongly, but degrades the network heavily in the first 50 iterations. This is

indicated by the training and testing accuracies, while the training loss is sim-

ilar to that of Retrain and L1-Regularizer. This is in contrast to the entries

by Top-k for POC in Table 4.7 and 4.8, where the total correct predictions

of all misclassified samples is 84.32% for the AlexNet network and 77.71% for

the MLP network. This discrepancy may be a result of sample memorization.

Although both networks alter a small fraction of network parameters (rela-

tive to L1-Regularization, Retrain, and Fine-tune), sample bias is observed

to be greater, i.e., although the number of correctly predicted samples can

increase, the training and testing accuracy degrades down to approximately

0.20 in both architectures. Like in L1-Regularization, Retrain, and Fine-tune,

Top-k makes first-order updates to a relatively smaller fraction of parameters.

Apart from fine-tuning, Top-k updates a small subset of the parameters up-

dated in Retraining and L1-Regularization by equal magnitudes. As the only

difference for Top-k lies in changing a partial network, we can infer that this

approach causes localized overfitting, i.e., a part of the network is biased to
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the sample, and the other parts are generalizable. Therefore, to completely

lose generalizability, the network needs to continue to learn from other mis-

classified samples. In the process of learning, generalizability fades, although

it fades slower than in other approaches that modifies most of the network

parameters. Additionally, since we also observe correct predictions of said

misclassified samples, a conclusion about localized overfitting, causing correct

classifications can be drawn. These observations also justify the use of sparse

gradients instead of updating all k highest gradient parameters.

4.8 Experiment 5: Investigating Sensitivities

of BGD

In this experiment, we test the robustness to changes in assumptions to our

approach. Firstly, in our approach, the parameters are sampled based on the

gradient computed on the misclassified sample. This approach is adopted on

the assumption that upon updating high gradient parameters, the sample loss

decreases and leads to correcting the misclassification. In subsection 4.8.1, we

investigate this assumption and additionally test the effect of updating high

gradient parameters on overall network generalizability. Secondly, our ap-

proach uses gradients as a prior distribution to select parameters for changes,

i.e., the higher the sensitivity of a parameter, the more likely it is to be in-

cluded in the subset. In subsection 4.8.2, we investigate the performance of

our approach when subjected to changes in the prior distribution of gradients.

4.8.1 Assumption 1

In our approach, BGD, we guide our parameter selection method using the

gradients calculated for the misclassified sample. Chen et al. in [10] show that

removing parameters with exceptionally large sensitivities can improve per-

formance for a pruned network1. Although, the authors do this for the entire

1This conclusion given by Chen et al. in [10] is applicable for pruned networks. In a
pruned network, only a fraction of the parameters are pruned, and the remaining parameters
are fine-tuned iteratively. In comparison, we select a subset of parameters for updating the
network instead of selecting a subset of parameters for pruning.
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training dataset, we focus on only a single sample, that may be outside the

training data distribution. As BGD, uses gradient information as a priori to

our approach, it is necessary to answer the question of whether avoiding high

sensitivity parameters, where the sensitivities depend on the sample alone, is

indeed beneficial. The reason for answering this question is also related to

the network’s generalizability. Intuitively, as we are providing second-order

updates (in BGD-II) to parameters based on the gradient calculated on the

misclassified sample alone, we ought to negatively impact the network’s gen-

eralizability. If avoiding highly sensitive parameters can indeed preserve past

learning, using gradients might be harmful to our approach.

Set-up

As updates are calculated based on the gradients computed on the sample loss,

we look more closely at these gradients. We investigate whether updating pa-

rameters with high gradients are indeed detrimental to the network, especially

when the gradients are calculated on a misclassified sample alone. To do this,

we provide independent second-order updates to each of the top-100 gradient

parameters, updating them one at a time. We aim to analyze if updates to

the kth highest sensitive parameter is better for the network, than updates to

the k − xth highest sensitive parameter. After each update to the kth high-

est sensitive parameter, the modified network is evaluated by checking the

prediction of the previously misclassified sample. If the update corrects the

classification, we then measure the training loss, and both training and testing

accuracy. The intuition behind this approach is to identify which parameters,

when updated, cause the least deviation from the main network’s performance

while still correcting the misclassification.

Gradients, ∇WL =
[

∂L(W,N(si))
∂w1

,
∂L(W,N(si))

∂w2

, ...,
∂L(W,N(si))

∂wn

]

, are calculated

for the sample loss with respect to all parameters. The gradient vector is then

sorted in descending order, where the top-kth gradient parameter denotes the

k highest gradient magnitude.
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Results

To observe an overall trend in the evaluation metrics, we plot the average

training loss, and both average training and testing accuracy (metrics are

calculated on all the samples and averaged) in Figure 4.11 (for the AlexNet

network) and Figure 4.12 (for the MLP network). The figures plot the resul-

tant performance for the networks upon changing the top-1 gradient parameter

(in descending order of the gradient) to the top-100 gradient parameter. Per-

formance is only recorded for the samples that were correctly predicted after

updating the top-kth gradient parameter. For example, in Figure 4.11(b), the

training accuracy is the highest for the top-1 gradient parameter: meaning

that among all the samples that were correctly predicted (by altering the top-

kth gradient parameter), upon updating the highest gradient parameter, we

observe the highest training accuracy. Therefore, although the samples might

get correctly predicted by updating other top-kth gradient parameters, altering

the highest gradient parameter retains the training accuracy to the maximum

for the AlexNet network. However, this observation is not generalizable across

different architectures. To better analyze the top-k gradients, we plot the best

three performances in Tables 4.9 and 4.10.

In the Tables 4.9 and 4.10, the highest-level columns indicate information

for the gradient rank that led to the best (1st), second best (2nd), and third

best (3rd) values for the row attributes, training loss, training accuracy, and

testing accuracy. Therefore, the best training loss is the minimum training

loss observed, and the best training and testing accuracies are the highest

training and testing accuracies observed. ‘Rank’ indicates the gradient rank.

For example, a rank of 1 indicates it is the most sensitive parameter (based

on the gradients calculated for a sample). POC represents the number of

samples that are correctly predicted if the gradient parameter at Rank k is

updated. For example, on updating the highest gradient parameter in the

MLP network, the training accuracy is maximum for 31.89% of samples. These

samples were previously misclassified but got correctly predicted on updating

the highest gradient paramter (Recall that we apply second-order updates to
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the parameter).

In the aforementioned tables, we do not observe any rank advantage of

the gradients, i.e., we do not find a generalizable range of ranks within which

the network is bound to have benefits in terms of preserving or increasing

generalizability. In the Table 4.9, the 86th highest gradient parameter has the

lowest training loss for 6.75% of the misclassified samples. However, on moving

down the column for the best observations (the column 1st in Table 4.9), we see

that updating the 86th highest gradient parameter did not yield either of the

highest training accuracy or the highest testing accuracy. The discrepancy

between the three distinct statistics suggest a lack of deterministic relation

between them, i.e., the lowest training loss does not necessitate the highest

training or testing accuracy. Therefore, from the tables, we observe there is a

lack of a clear relationship for the three performance metrics. Two inferences

can be drawn from these observations: (a) An excessively small sample loss

does not guarantee a correct prediction of the sample, and (b) making top-k

gradient updates is not the shortest way to achieve a correct prediction.

One might be tempted to think that tweaking the highest gradient param-

eter would give the lowest (and hence, the best) training loss. However, that is

not the case for the two following reasons: (a) Training loss is hardly related to

the gradient calculated on the misclassified sample. Adjusting the parameter

with the highest sensitivity to the sample loss might or might not decrease the

training loss. (b) Although the sample loss is the lowest after adjusting the

highest gradient parameter, the values in the tables are considered only if the

sample is correctly predicted. Therefore, a low sample and training loss does

not necessarily mean a correct sample prediction.

Among the top-100 parameters, given the condition that only a single

parameter needs to be updated to get a correct prediction, we do not find

a clear relationship between updating the highest gradient elements and the

generalizability of the network. This conclusion is however, only dependent

on updating (using second-order updates) a single parameter. It is unknown

what happens when more than one parameter is updated. We do not perform

those experiments as combining x parameters deterministically, where x ∈
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1st 2nd 3rd

Rank POC Rank POC Rank POC

Training Loss 86 6.75 92 6.75 58 6.21

Training Accuracy 9 19.72 3 19.45 11 19.45

Testing Accuracy 90 18.91 39 13.51 74 13.51

Table 4.9: Comparing the parameters with minimum training loss, maximum
training accuracy, and maximum testing accuracy for the AlexNet network

[1, |W|], to analyze a relationship between those parameters and the network’s

generalizability is computationally infeasible. Therefore, we cannot conclude

if this shorter way of only updating one parameter is better for the network

when compared to updating a larger subset of parameters.

1st 2nd 3rd

Rank POC Rank POC Rank POC

Training Loss 59 37.59 20 37.06 1 5.59

Training Accuracy 1 31.89 59 13.19 20 10.13

Testing Accuracy 1 17.95 19 5.38 40 4.54

Table 4.10: Comparing the parameters with minimum training loss, maximum
training accuracy, and maximum testing accuracy for the MLP network

4.8.2 Assumption 2

Our approach is guided by gradients to sample parameters to update. Here, we

investigate the effects of changes to the gradient distribution. An additional

motivation is to provide our algorithm with equal opportunity for selecting

parameters of each layer of the network. As shown in Figure 4.13, the layer-

wise average gradient magnitude varies in each layer in different architectures.

In the Figure, the absolute values of the gradients (calculated for a single

misclassified sample) is summed over all the parameters in a particular layer.

We repeated this process for all the samples, and plot the average gradient

magnitudes in the Figure. This gives us an estimate of which layer parameters

are more likely to be updated in our approach. The first fully connected layer,

‘lin1’, has the highest gradient magnitudes of all the layers for all misclassified
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samples. This means that BGD is most likely to sample gradients from ‘lin1’

layer, without considering any other layer. In the Top-k approach, however,

this happens deterministically, and therefore, the majority of the elements up-

dated belong to the ‘lin1’ layer. Zhou et al. in [45] show that when networks

are aggressively pruned, almost all parameters in certain layers get pruned.

As altering the fewest possible parameters is one of our primary goals, we aim

to provide equal opportunity to parameters in each layer. Specifically, we nor-

malize by dividing the gradient magnitudes of each layer by the total gradient

magnitude of that layer. If a layer has l parameters, then all parameters in

the layer are normalized by the following:

P (W) =









∣

∣

∣

∂L
∂wi

∣

∣

∣

∑l

j

∣

∣

∣

∂L
∂wj

∣

∣

∣









d

i=0

The gradients after normalization are visualized in Figure 4.13(c) & (d).

Normalization preserves the gradient distribution among parameters within

each layer while ensuring the proportional contribution of each parameter

within its respective layer. The distribution of gradient magnitudes is there-

fore standardized across layers. In a layer, the gradients retain their individual

distributions relative to other parameters in that layer. Thus, while our algo-

rithm samples gradients uniformly across all layers, high-gradient parameters

within a layer are more likely to be sampled.

Prioritizing parameters with high gradients (relative to other parameters

in the same layer) can, however, lead to updates that do not reduce the sample

loss as effectively as those from non-normalized gradients. This is because the

sampled parameters are more likely to have relatively lower gradients upon

normalization. Therefore, normalization potentially misleads our algorithm

and may cause failure to solve misclassifications.

Apart from investigating the robustness of our approach via changes to the

prior probabilities distribution, normalization enables us to gain insights about

altering relatively lower gradient parameters. We investigate these effects by

comparing the results of our approach to a non-normalized variant. In figure

4.14, we compare the distribution of accuracies for both testing and training
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BGD BGD-Norm
POC 100 ± 0 100 ± 0
POPA 1.9e-05 ± 1.5e-05 1.9e-05 ± 1.5e-05
∆ TL -3.3e-03 ± 2.5e-05 -3.3e-3 ± 5.3e-04
∆ TA 0.09 ± 0.07 0.11 ± 0.08

Table 4.11: Comparing BGD with BGD-Norm for the AlexNet architecture

BGD BGD-Norm
POC 100 ± 0 100 ± 0
POPA 0.02 ± 0.02 0.02± 0.02
∆ TL -3.3e-03 ± 1.8e-05 -6.7e-3 ± 4.8e-05
∆ TA 0.03± 0.01 0.04 ± 0.05

Table 4.12: Comparing BGD with BGD-Norm for the MLP architecture

dataset. Table 4.11 & 4.12 record the values of each metrics defined in Section

4.2. We observe that although normalization has the potential to obstruct our

method, BGD-Norm succeeds in correctly classified 100% of the misclassifed

samples for both networks.

In earlier experiments, we observed decreases in both training loss and

training/testing accuracy, despite not fine-tuning on training examples. Simi-

lar behavior was observed with BGD-Norm. The decrease in training loss was

more pronounced in BGD-Norm compared to BGD. Since the only difference

between the two methods is that BGD-Norm is more likely to sample relatively

lower gradient parameters (compared to BGD), we can conclude that updating

low gradient parameters promotes over-reliance on certain features. Although

these features are not uniquely extracted from the sample, the over-reliance

(on fewer features) causes the network to disrupt a few training and testing

examples, hence the decrease in accuracies.
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(a) All misclassified samples

(b) First 100 misclassified sample

Figure 4.5: Comparing the testing accuracies for BGD, BGD-C, and different
baseline approaches for the AlexNet network.
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(a) All misclassified samples

(b) First 100 misclassified sample

Figure 4.6: Comparing the training accuracies for BGD, BGD-C, and different
baseline approaches for the AlexNet network.
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(a) All misclassified samples

(b) First 100 misclassified sample

Figure 4.7: Comparing the training loss for BGD, BGD-I, BGD-C, and differ-
ent baseline approaches for the AlexNet network.
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(a) All misclassified samples

(b) First 100 misclassified sample

Figure 4.8: Comparing the testing accuracies for BGD, BGD-C, and different
baseline approaches for the MLP network.
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(a) All misclassified samples

(b) First 100 misclassified sample

Figure 4.9: Comparing the training accuracies for BGD, BGD-C, and different
baseline approaches for the MLP network.
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(a) All misclassified samples

(b) First 100 misclassified sample

Figure 4.10: Comparing the training loss for BGD, BGD-I, BGD-C, and dif-
ferent baseline approaches for the MLP network.
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(a) (b) (c)

Figure 4.11: Performance metrics after updating each of the top-k gradient
parameters for the AlexNet network.

(a) (b) (c)

Figure 4.12: Performance metrics after updating each of the top-k gradient
parameters for the MLP network.

(a) AlexNet (b) MLP

(c) AlexNet (d) MLP

Figure 4.13: Layer-wise variance in gradient magnitudes before (first row)
and after (second row) normalization. For both architectures, the gradient
magnitude is summed for a layer l. This is averaging across all the misclassified
samples for visualization purposes.
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(a) AlexNet (b) MLP

Figure 4.14: Comparing testing and training accuracies for both architectures.
Here, ‘BGD-II’ is our approach, introduced in Chapter 3, is compared with
the normalized variant of our approach, ‘BGD-Norm’.
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Chapter 5

Conclusion

In this thesis, we propose a sparse regularizer called Budgeted Gradient De-

scent (BGD), that aims to modify the network such that previous misclas-

sifications are corrected. Like SGD, the network learns from each misclas-

sified sample sequentially. Apart from learning from misclassifications, our

secondary focus lies in preserving the pre-trained network’s generalizability.

Our approach is blind to the training data, and therefore does not require its

presence after deployment. Given the sparse nature of our algorithm, it also

provides us with an opportunity to understand how much sparsity is beneficial

for preserving network generalizability.

5.1 Takeaways

From experiments with the AlexNet and an MLP network on the MNIST

dataset, we gather the following conclusions: (For the below list, the mentioned

gradients are computed on a single misclassified sample.)

1. The first-order variant of our approach, BGD-I, uses the first-order up-

date rule while the second-order variant, BGD-II, uses the second-order

update rule. We observe that while BGD-II provides aggressive updates

to parameters, fewer parameters need to be updated to solve the misclas-

sifications. Comparatively, BGD-I updates a larger fraction of parame-

ters, while the magnitude of these updates are relatively low. Therefore,

if one aims to alter the fewest network parameters possible, one might
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prefer BGD-II. On the other hand, one might choose BGD-I, to better

preserve generalizability.

2. Another variant of our approach, BGD-C, avoids updating the parame-

ters that produce very high training loss. While achieving this goal may

lead to increase in generalization preservation, it solves less misclassi-

fications, and does not guarantee an increase in training and testing

accuracies.

3. On comparing all the variants of our approaches with various baseline

approaches, namely, Random Sampling, Retraining, Finetuning, Top-k,

and L1-Regularization, we find that our approaches BGD-I and BGD-II

can successfully solve most misclassifications. Moreover, when tested for

generalizability in the long term (by sequentially updating the network

on samples), we find that most approaches that alter the majority of the

network lead to it losing its generalizability.

4. Our approach is guided by the gradient calculated on the misclassified

sample. Upon systematically updating parameters, one at a time, from

the top-100 magnitude-wise gradient parameters, we observe that al-

though updating parameters with relatively higher gradient magnitudes

help with lowering sample loss, and correct classifications of misclassi-

fied samples, there is no clear relationship between the rankings of these

parameters (magntitude-wise), and correct predictions of misclassified

samples in these top parameters.

5. We observe that sparsity plays a role in preventing sample memorization

and preserving network’s generalizability. The Top-k approach, for ex-

ample, updates k network parameters. Even though it is a small fraction

of parameters, a misclassified sample might not need to be updated by

all top k parameters. There might exist a solution that comprises a sub-

set of those top k parameters. Introducing such sparsity can decrease

sample memorization and loss of generalizability by limiting localized

overfitting.
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5.2 Future directions

We assume that the misclassifications can be solved by the gradients of the

loss calculated on the single sample. However, in pruning literature there exist

other utility functions and criteria. One such criterion for sampling parameters

can be the activation values of each neuron. A future study, guided by said

criterion, may investigate the relationship among correcting misclassifications,

overall loss, and loss/increase in generalizability.

Among the variants of our proposed method is BGD-II that provides

second-order updates to selective parameters. As these updates are aggres-

sive, very few parameters need to be updated. However, we observe that a

lack of additional regularization and training data ensuring preservation of gen-

eralizability can be challenging. Therefore, the second order variant, BGD-II,

fails to preserve generalizability in the long run. However, we compute these

second order updates based on the Empirical Fisher approximation. As it pro-

vides only an approximation to the Hessian matrix, the second-order updates

may not be accurate, thereby degrading our approach. To investigate the de-

pendence of our approach, BGD-II needs to be evaluated after applying other

alternative Hessian approximation techniques, such as, Kronecker-Factored

Approximate Curvature (KFAC) [24].
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