This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
- 362 views
- 488 downloads
Influence of vegetation, slope and LIDAR sampling angle on DEM accuracy
-
- Author(s) / Creator(s)
-
Detailed GIS studies across spatially complex rangeland landscapes, including the Aspen Parkland of western Canada, require accurate digital elevation models (DEM). Following the interpolation of last return lidar (light detection and ranging) data into a DEM, a series of 256 reference plots, stratified by vegetation type, slope and lidar sensor sampling angle, were surveyed using a total laser station, differential GPS and 27 interconnected benchmarks to assess variation in DEM accuracy. Interpolation using Inverse Distance Weighting IDW resulted in lower mean error than other methods. Across the study area, overall signed error and RMSE were +0.02 m and 0.59 m, respectively. Signed errors indicated elevations were over-estimated in forest but under-estimated within meadow habitats. Increasing slope gradient increased vertical absolute errors and RMSE. In contrast, lidar sampling angle had little impact on measured error. These results have implications for the development and use of high-resolution DEM models derived from lidar data.
-
- Date created
- 2006
-
- Subjects / Keywords
-
- Type of Item
- Article (Published)
-
- License
- © 2006 Her Majesty the Queen in right of Canada. This version of this article is open access and can be downloaded and shared. The original author(s) and source must be cited.