C3N5: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Framework for Photocatalytic, Photovoltaic and Adsorbent Applications

  • Author(s) / Creator(s)
  • Modification of carbon nitride based polymeric 2D materials for tailoring their optical, electronic and chemical properties for various applications has gained significant interest. The present report demonstrates the synthesis of a novel modified carbon nitride framework with a remarkable 3:5 C:N stoichiometry (C3N5) and an electronic bandgap of 1.76 eV, by thermal deammoniation of melem hydrazine precursor. Characterization revealed that in C3N5 polymer, two s-heptazine units are bridged together with azo linkage, which constitutes an entirely new and different bonding fashion from g-C3N4 where three heptazine units are linked together with tertiary nitrogen. Extended conjugation due to overlap of azo nitrogens and increased electron density on heptazine nucleus due to the aromatic π network of heptazine units lead to an upward shift of the valence band maximum resulting in bandgap reduction down to 1.76 eV. XRD, He-ion imaging, HR-TEM, EELS, PL, fluorescence lifetime imaging, Raman, FTIR, TGA, KPFM etc clearly show that the properties of C3N5 are distinct from pristine carbon nitride (g-C3N4). When used as an electron transport layer (ETL) in MAPbBr3 based halide perovskite solar cells, C3N5 outperformed g-C3N4, in particular generating an open circuit photovoltage as high as 1.3 V, while C3N5 blended with MAxFA1-xPb(I0.85Br0.15)3 perovskite active layer achieved a photoconversion efficiency (PCE) up to 16.7 %. C3N5 was also shown to be an effective visible light sensitizer for TiO2 photoanodes in photoelectrochemical water splitting. Due to its electron-rich character, the C3N5 material displayed instantaneous adsorption of methylene blue from aqueous solution reaching complete equilibrium within 10 min, which is significantly faster than pristine g-C3N4 and other carbon-based materials. C3N5 coupled with plasmonic silver nanocubes promotes plasmon-exciton co-induced surface catalytic reactions reaching completion at much low laser intensity (1.0 mW) than g-C3N4 which showed sluggish performance even at high laser power (10.0 mW). The relatively narrow bandgap and 2D structure of C3N5 make it an interesting air-stable and temperature-resistant semiconductor for optoelectronic applications while its electron-rich character and intra-sheet cavity make it an attractive supramolecular adsorbent for environmental applications.

  • Date created
    2019-02-10
  • Subjects / Keywords
  • Type of Item
    Article (Published)
  • DOI
    https://doi.org/10.7939/r3-wpq9-ag04
  • License
    Attribution-NonCommercial 4.0 International