Usage
  • 41 views
  • 148 downloads

Synthesis and Characterization of Phosphorylcholine-based Polymers and Nanogels via the Reversible Addition Fragmentation Chain Transfer Process

  • Author / Creator
    Bhuchar, Neha
  • 2-Methacryloyloxyethyl Phosphorylcholine is an interesting biocompatible monomer. An improved method for the synthesis of poly(MPC) and its copolymers using Reversible Addition-Fragmentation chain Transfer (RAFT) has been discussed in the first part of the thesis. Previous reports related to the synthesis of MPC homopolymers and copolymers in aqueous medium are found to be less effective because of the hydrolysis of chain transfer agent in water. Hydrolysis of chain transfer agent results in the loss of active chain ends thereby, reducing control over polymerization and increasing the polydispersity of resulting polymers. Therefore, in this work MPC polymers were synthesized by RAFT using methanol as solvent. This method of synthesis produced polymers having controlled molecular weights as well as narrow polydispersities. In the second part of the work, methoxydiethylene glycol methacrylate (MeODEGM)-MPC based thermo-responsive core-shell nanogels were synthesized for use in protein encapsulation and release. The size of the nanogels was controlled by varying the concentration of cross-linker. The nanogels were synthesized using an acid degradable crosslinker which helped in the release of encapsulated protein at acidic pH. The effect of various parameters on encapsulation efficiency of proteins was studied and it was found that apart from the size of protein, the cross-linker concentration of nanogel also affected the amount of protein encapsulated.

  • Subjects / Keywords
  • Graduation date
    2011-11
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3DT0V
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
    • Department of Chemical and Materials Engineering
  • Supervisor / co-supervisor and their department(s)
    • Narain, Ravin (Chemical and Materials Engineering)
  • Examining committee members and their departments
    • Zeng, Hongbo (Chemical and Materials Engineering)
    • Liu, Yang (Civil and Environmental Engineering)