Usage
  • 197 views
  • 1107 downloads

Design of Axially-loaded Wide-flange Columns Subjected to Torsion Through One Flange

  • Author / Creator
    Quintin, Riley
  • It has become common for steel fabricators to find torsional loads included in the design documents of many industrial steel structures. These loads arise in wide-flange beam-to-column moment connections when the beam is subject to weak axis bending, which in turn, is transferred to the column as torsion applied to the adjoining flange. If the wide-flange column is unstiffened at the connection, localized distortion of the web can lead to additional rotation of the connected flange that are not accounted for in classical elastic torsion theory. Due to a lack of codified guidelines or relevant literature on how to design for this behaviour, designers routinely add full-depth web stiffeners at the connection to prevent localized distortion of the member, which is costly and time consuming. Previous research has revealed some information about how the torsional moment is shared between the column web in bending and flange in torsion, but no full-scale tests considered the presence of axial load. The current study performs parametric numerical analysis studies to consider the effects of cross sectional geometry and the deleterious effects of axial load on the strength and stiffness of the wide-flange column. Fifteen full-scale tests have been conducted to verify the findings from numerical simulations and develop a design procedure for predicting the strength and stiffness of the member. Formulations have been provided to calculate the behavior of unstiffened axially loaded wide-flange members subjected to torsion through one flange.

  • Subjects / Keywords
  • Graduation date
    Spring 2018
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3513VB16
  • License
    Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.