Usage
  • 1702 views
  • 710 downloads

Minimum Degree Spanning Trees on Bipartite Permutation Graphs

  • Author / Creator
    Smith, Jacqueline
  • The minimum degree spanning tree problem is a widely studied NP-hard variation of the minimum spanning tree problem, and a generalization of the Hamiltonian path problem. Most of the work done on the minimum degree spanning tree problem has been on approximation algorithms, and very little work has been done studying graph classes where this problem may be polynomial time solvable. The Hamiltonian path problem has been widely studied on graph classes, and we use classes with polynomial time results for the Hamiltonian path problem as a starting point for graph class results for the minimum degree spanning tree problem. We show the minimum degree spanning tree problem is polynomial time solvable for chain graphs. We then show this problem is polynomial time solvable on bipartite permutation graphs, and that there exist minimum degree spanning trees of these graphs that are caterpillars, and that have other particular structural properties.

  • Subjects / Keywords
  • Graduation date
    Spring 2011
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3S04H
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.