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Abstract

The minimum degree spanning tree problem is a widely studied NP-hard variation

of the minimum spanning tree problem, and a generalization of the Hamiltonian

path problem. Most of the work done on the minimum degree spanning tree prob-

lem has been on approximation algorithms, and very little work has been done

studying graph classes where this problem may be polynomial time solvable. The

Hamiltonian path problem has been widely studied on graph classes, and we use

classes with polynomial time results for the Hamiltonian path problem as a starting

point for graph class results for the minimum degree spanning tree problem. We

show the minimum degree spanning tree problem is polynomial time solvable for

chain graphs. We then show this problem is polynomial time solvable on bipartite

permutation graphs, and that there exist minimum degree spanning trees of these

graphs that are caterpillars, and that have other particular structural properties.
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Chapter 1

Introduction

1.1 Overview

A spanning tree of a graph is a minimum set of edges that connect all the vertices

of the graph. A minimum degree spanning tree is a spanning tree of a graph with

the restriction that the maximum degree of a vertex in the tree is minimized. The

problem of finding the minimum maximum degree of a spanning tree is NP-hard

in general. Thus, it is believed that there is no polynomial time algorithm for the

problem. The best approximation algorithm finds a solution that is within one of

the optimal value.

For a given NP-hard problem, there may exist restricted graph classes with par-

ticular properties that allow a polynomial time solution to be found to solve the

problem on that class. The minimum degree spanning tree problem is a general-

ization of the problem of finding a Hamiltonian path in a graph, which is NP-hard

in general. The Hamiltonian path problem is well-studied on graph classes and the

problem is known to be polynomial time solvable on many classes.

In this thesis, we first motivate and define the minimum degree spanning tree

problem, present some background and related work, and then show that the prob-

lem can be solved in polynomial time on chain graphs and bipartite permutation

graphs. We also give a number of structural results for the longest path problem

and the minimum degree spanning tree problem on bipartite permutation graphs.
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1.2 Motivation

While there is a good approximation algorithm for this problem, it is still worth-

while to study this problem on graph classes as the complexity of the problem was

previously unknown on most classes. The minimum degree spanning tree problem

on graph classes is interesting from a theoretical standpoint to discover where the

boundary is between classes where the problem is NP-hard and where it is polyno-

mial time solvable. It is also interesting to compare the boundary for this problem

to the boundary for the Hamiltonian path and longest path problems.

There is only a small amount of work done on solving the minimum degree

spanning tree problem on graphs with particular properties. Czumaj and Stroth-

mann [15] studied k-connected and planar graphs and gave some complexity re-

sults on finding a spanning tree in these graphs with maximum degree less than

some bound, when certain degree conditions were satisfied. To the best of our

knowledge, there does not exist any other work on the minimum degree spanning

tree problem for restricted graph classes. Our work begins to fill in that gap.

The Hamiltonian path problem is a restricted version of the minimum degree

spanning tree problem, and the longest path problem is a generalization of the

Hamiltonian path problem that is related to the minimum degree spanning tree prob-

lem. These problems have polynomial time solutions on many graph classes. Both

of these problems are linear time solvable on bipartite permutation graphs.

The class of bipartite permutation graphs is the graph class we focus on most

in this thesis. Bipartite permutation graphs have a strong ordering of their vertices.

This ordering has adjacency and enclosure properties that allow for polynomial

time solutions to problems that are NP-hard in general. In addition to the Hamil-

tonian path problem and the longest path problem, a number of other polynomial

time algorithms for generally hard problems exist for this class. Examples of other

problems solved for bipartite permutation graphs include the path cover problem

and the edge domination problem.

Fürer and Raghavachari [25] mention some practical applications of the mini-

mum degree spanning tree problem in areas such as non-critical network broadcast-
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ing. Reducing the maximum work done by each node in a network in propagating a

message is critical in networks with constraints on resources like power. Addition-

ally, there is a cost associated with splitting a message from one node to several,

and one might want to reduce the number of splits made by a node. The minimum

maximum degree of a spanning tree of a graphG plays an important role in the edge

reconstruction conjecture. Graphs with at least cn log ∆∗G edges, where ∆∗G is the

minimum maximum degree of a spanning tree of G, are edge-reconstructible [8].

Although few polynomial time exact algorithms for graph classes are known,

the minimum degree spanning tree problem and its variations have been widely

studied in other contexts. In Chapter 2, we discuss work done in this area.

1.3 Definitions and Graph Classes

A graph G is a pair of sets (V,E), where V is a set of vertices and E is a set of

unordered pairs (u, v), called edges, such that u, v ∈ V . Let n = |V | and m = |E|.

We may refer to V and E as V (G) and E(G) if the context is not clear. The order

of a graph G is the number of vertices, n. A graph G = (V,E, c) is a weighted

graph, with cost function c from E to R. A graph G = (V, F ) is directed if F is a

set of ordered pairs (u, v), u, v ∈ V , instead of unordered pairs. We will deal only

with undirected graphs in this thesis. An edge is incident on a vertex v if the edge

is (u, v) for some u.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′) with V ′ ⊆ V and

E ′ ⊆ E. A spanning subgraph of a graph G is a subgraph of G that contains all

vertices ofG. An induced subgraph of a graphG = (V,E) is a graphG′ = (V ′, E ′)

such that V ′ ⊆ V and E ′ = {(u, v)|u, v ∈ V ′ and (u, v) ∈ E}.

The complement of a graph G = (V,E) is the graph G = (V,E) such that

(u, v) ∈ E if and only if (u, v) /∈ E, for all u, v ∈ V .

A path is a sequence of vertices v1, v2, ..., vk with edges (vi, vi+1) for 1 ≤ i < k

and with vi 6= vj for all i 6= j. The size of the path P is k, the number of vertices in

the path, denoted |P |. The length of the path is k − 1, the number of edges in the

path. Vertices v1 and vk are endpoints of the path. A (u, v)-path is a path with u and

3



v as endpoints. A cycle is a sequence of vertices v1, v2, ..., vk with edges (vi, vi+1)

and (vk, v1), for 1 ≤ i < k and with vi 6= vj , for all i 6= j. A walk is a sequence of

vertices v1, v2, ..., vk with edges (vi, vi+1) for 1 ≤ i < k. Vertices may be repeated.

A walk is a closed walk if v1 = vk.

A graph is connected if for every pair of vertices u, v ∈ V there exists a path

in G from u to v. A connected component of a graph is a maximal connected

subgraph of G; c(G) is the number of connected components in G. A clique in a

graph is a set of vertices K such that every pair of vertices in K is connected by an

edge. An independent set is a set of vertices I ⊆ V such that for all pairs u, v ∈ I ,

(u, v) /∈ E. The independence number of a graph G, denoted α(G), is the size of

the largest independent set in G. Let S be a set of vertices such that S ⊆ V . We

define G − S to be the subgraph of G constructed by removing the vertices in S

and all their incident edges. A cutset of a connected graph G = (V,E) is a set of

vertices S ⊂ V such that G− S has more than one connected component. A graph

is k-connected if it remains connected if less than k vertices are deleted from the

graph. Equivalently, a graph is k-connected if its smallest cutset is of size k.

Vertices u and v are adjacent if (u, v) ∈ E. The neighbourhood of v is the set of

all vertices adjacent to v in G, and is denoted NG(v). The degree of a vertex v in G

is the size of NG(v), denoted degG(v). The subscript for neighbourhood and degree

may be omitted if the context is clear. ∆(G) is the maximum degree of a vertex in

G, and δ(G) is the minimum degree of a vertex in G. A vertex v dominates a vertex

set S if v is adjacent to every vertex in S. That is, v dominates S if S ⊆ N(v). A

vertex v in a graph G is a leaf if degG(v) = 1.

A tree T = (V,E) is a connected acyclic graph. More properties of trees will

be discussed in Section 2.6.

A spanning tree of a graph G is a spanning subgraph ofG that is a tree. A graph

that is not connected does not have a spanning tree. Win defines a k-tree T of a

graph G to be a spanning tree of G with ∆(T ) = k [57]. In this thesis, we will

use k-tree in this way. A k-tree is also commonly defined recursively as follows: A

clique with k+1 vertices is a k-tree. Given a k-tree Tn with n vertices, a k-tree with

n+1 vertices can be constructed by making a new vertex adjacent to the vertices of
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a k-clique in Tn [3]. However, our references to k-trees will be to the first definition.

The complexity class P is the set of decision problems that can be solved in

polynomial time. The class NP is the set of decision problems that are verifiable in

polynomial time. That is, given a certificate for a solution to the problem, we can

verify that the certificate is correct in polynomial time. The class NP-complete is

the set of decision problems that are in NP, and are as hard as any problem in NP. A

problem is NP-hard if and only if there exists an NP-complete problem that is poly-

nomial time reducible to it. If an optimization problem has a decision version that

is NP-complete, then the optimization problem is NP-hard. For more information

on complexity classes, see [12] or [27].

Problems that are known to be hard in general sometimes have polynomial time

solutions if the problem input is restricted to have certain properties. A graph class

is a family of graphs that share some property. We now define a number of graph

classes that have properties that are helpful in finding polynomial time solutions

to the minimum degree spanning tree problem, and other related problems. These

definitions can be found in [7] and [29].

A hereditary graph class is a graph class where any induced subgraph of a graph

in the class is also in the graph class.

A bipartite graph has V = X ∪ Y where X and Y are disjoint, independent

sets and is denoted G = (X, Y,E). Equivalently, a bipartite graph contains no odd

cycles. Instead of using n when discussing the order of a bipartite graph, we use

p = |X| and q = |Y |.

Chordal graphs are graphs where each cycle of length greater than three has a

chord. A chord is an edge between two vertices in a cycle that is not part of the

cycle.

Chordal bipartite graphs are bipartite graphs where any cycle of length greater

than four has a chord. Strictly speaking, these graphs are not chordal as there can

be induced cycles of length four.

Convex graphs are bipartite graphs G = (X, Y,E) where there exists an or-

dering of X such that for every y ∈ Y , N(y) is consecutive in the ordering. This

ordering is a convex ordering. Such an ordering does not need to exist for both X
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Figure 1.1: A hierarchy of the graph classes discussed in this thesis. For each class,
its superclasses are above it and subclasses are below.

and Y for G to be a convex graph.

Biconvex graphs are bipartite graphsG = (X, Y,E) where there exists a convex

ordering of both X and Y .

Given a permutation π = (π1, π2, ..., πn) of the numbers 1 to n, the permutation

graph generated by π is a graph with one vertex corresponding to each number in

the permutation, with an edge between two vertices if and only if the two numbers

they represent are in reverse order in the permutation. A graph is a permutation

graph if and only if it is generated by some permutation.

A graph is a bipartite permutation graph if it is both a bipartite graph and a

permutation graph. A biconvex graph is a bipartite permutation graph if and only

if (x1, y1), (xp, yq) ∈ E [1]. A bipartite permutation graph has a strong ordering,

which will be defined in the next chapter.

A bipartite graph is a chain graph if it contains no induced 2K2 [58]. Therefore,
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an induced subgraph of a chain graph is also a chain graph. A chain graph has a

nested neighbourhood ordering, which will be defined in the next chapter.

An asteroidal triple is a set of three vertices such that two vertices are joined

by a path that does not visit the neighbourhood of the third [14]. A graph with no

asteroidal triple is called an asteroidal-triple free (AT-free) graph. AT-free graphs

contain interval, permutation and cocomparability graphs. Bipartite permutation

graphs are exactly those AT-free graphs that are also bipartite [7].

A transitive orientation is an assignment of a direction to each edge in a graph

to produce a directed graph (V, F ) that satisfies the following condition [29]:

(a, b) ∈ F and (b, c) ∈ F implies (a, c) ∈ F , for all a, b, c ∈ V .

A graph with such an orientation is said to be transitively orientable, and is called

a comparability graph. Cocomparability graphs are graphs with transitively ori-

entable complements. They contain both permutation graphs and interval graphs.

A graph G = (V,E) is an interval graph if it is the intersection graph of inter-

vals on a line. Each vertex {v1, ..., vn} ∈ V corresponds to some interval I1, ..., In

and (vi, vj) ∈ E if and only if Ii ∩ Ij 6= ∅. The interval graphs are the graphs that

are AT-free and chordal.

A graph G = (V,E) is a threshold graph if there exists a partition of V into a

clique and an independent set, I , with an ordering of I , v1, v2, ..., vr, r = |I|, such

that NG(vi) ⊆ NG(vi+1) for i = 1...r − 1.

Trees are also a graph class. A subclass of trees that we will look at in this thesis

is the class of caterpillars. A caterpillar is a tree T where the subtree P formed by

removing all leaf vertices from T is a path. P is called the spine of T . Note that

V (T )− V (P ) is an independent set. Equivalently, a tree is a caterpillar if and only

if it does not contain the subgraph in Figure 1.2. It is worth noting that caterpillars

are exactly trees that are permutation graphs [6].

Figure 1.2: A tree is a caterpillar if and only if it does not contain this subgraph.
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1.4 Problem Definitions

The minimum spanning tree problem is a classic graph theory problem, initially

presented by Czech mathematician Otakar Borůvka [5]. The problem is, given a

weighted graph G = (V,E, c), find a spanning tree T of G such that the total cost

of the edges in T is minimized over all spanning trees of G.

Problem 1.1. Minimum Spanning Tree: Given a weighted graph G = (V,E, c)

find T such that w(T ) =
∑

(u,v)∈T

w(u, v) is minimized.

Borůvka’s interest in the problem began when tasked with finding the most eco-

nomical construction of the electric power network in southern Moravia [30]. While

Borůvka was the first to explicitly define a minimum spanning tree of a graph, dis-

cussions that came close to defining the problem also existed in work on anthropo-

logical classification in the early 1900s [30].

A simplified version of the algorithm presented by Borůvka is this: given a

graph G, and a tree T = (V (G), ∅), for every connected component of T , add the

shortest edge to connect that component to another connected component to E(T ).

This algorithm assumes that each edge weight is distinct.

The two most famous solutions for the minimum spanning tree problem are

Kruskal’s algorithm and Prim’s algorithm. Kruskal’s algorithm builds a minimum

spanning tree T for graph G as follows: let T = (V (G), ∅). Then, while T is not

a spanning tree of G, take the lowest weight edge (u, v) ∈ G that is not in T such

that it does not create a cycle in T , and add it to T [35]. Kruskal also gives a dual

of this algorithm, which constructs T from G by at each step removing the highest

weighted edge that does not disconnect the graph.

Prim’s algorithm chooses an arbitrary initial vertex x, and sets T = (V (G), ∅).

Then, while T is not a spanning tree, it takes the lowest weight edge (u, v) such that

u is in the same connected component as x and v is not, and adds it to T [46].

Prim published this algorithm in 1957, and it was also independently discovered

by Dijkstra in 1959 [18]. However, this solution was first discovered in 1930 by
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Jarnı́k [33], in response to Borůvka’s paper: the subtitle of his publication was “On

a letter to O. Borůvka” [30]. It appears that Kruskal was the first to discover the

solution that bears his name.

Each of these algorithms runs in polynomial time, and so the minimum spanning

tree problem can be solved in polynomial time. Currently the fastest algorithm for

solving the minimum spanning tree problem runs in O(mα(m,n)) time on an n-

vertex, m-edge graph, where α is the inverse Ackermann function, and is due to

Chazelle [10].

A minimum degree spanning tree (MDST) of a connected graph G is a spanning

tree T of G such that ∆(T ) is minimum over all spanning trees of G. We denote

the minimum ∆(T ) of all spanning trees T of a graph G as ∆∗G. The subscript may

be omitted if the context is clear. An MDST of G is a k-tree with k = ∆∗G.

We consider the following problems for unweighted, undirected graphs.

Problem 1.2. Degree Constrained Spanning Tree: Given a graph G and an inte-

ger k, does G have a spanning tree T such that ∆(T ) ≤ k?

The degree constrained spanning tree problem is NP-complete, and remains NP-

complete when k is restricted to two [27]. When k = 2, this is the Hamiltonian path

problem.

Problem 1.3. Minimum Degree Spanning Tree: Given a graph G, compute the

value of ∆∗G.

The minimum degree spanning tree problem is the optimization version of the

degree constrained spanning tree problem, looking for the minimum k such that

G has a spanning tree with ∆(T ) = k. This minimum k is ∆∗G. Therefore, the

minimum degree spanning tree problem is NP-hard.

Problem 1.4. Minimum Degree Spanning Tree Construction: Given a graph G,

find a spanning tree of T of G such that ∆(T ) = ∆∗G.
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1.5 Contributions

In this thesis, we investigate two graph classes, chain graphs and bipartite permuta-

tion graphs. In Chapter 3, we present a polynomial time algorithm for solving the

minimum degree spanning tree problem and finding an MDST in a chain graph, as

well as a formula for ∆∗G for a chain graph G.

In Chapter 4, we give some structural results for longest paths in bipartite per-

mutation graphs, and show that there exists an MDST of a given bipartite permu-

tation graph that contains no edge crossings, as well as one that contains a longest

path in the given graph. We combine these results to show that for a bipartite per-

mutation graph G, there exists an MDST of G that is a crossing-free caterpillar

containing a longest path. We also present a dynamic programming algorithm that

computes ∆∗G for a bipartite permutation graph G and finds an MDST of G, in

polynomial time.
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Chapter 2

Background

In this section, we discuss background work related to the minimum degree span-

ning tree problem in general and on specific graph classes.

In the first part of this chapter, we present background work on the minimum

degree spanning tree problem. First, we give the complexity of problems of the

minimum degree spanning tree problem and of some related problems. Since the

minimum degree spanning tree problem is NP-hard in general, we then give some

attention to work done on approximation algorithms for the problem and some of

its variations. This review will only discuss work on undirected graphs. We also

review background work on sufficient conditions for a graph to have a k-tree, along

with the conditions for a graph to have a Hamiltonian path that inspired them.

The second part of this chapter discusses previous work that we use to assist us

in obtaining our results. We present some vertex orderings and other properties of

the bipartite graph classes introduced in the first chapter. We discuss what is known

about the complexities of problems related to the minimum degree spanning tree

problem on certain graph classes. Lastly, we introduce a number of properties of

trees that will be used in this thesis.

2.1 Complexity, Related Problems, and Variations on
the Minimum Degree Spanning Tree Problem

We now discuss some problems related to the minimum degree spanning tree prob-

lem and their complexities.
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A Hamiltonian path in a graphG is a path that contains each vertex ofG exactly

once.

Problem 2.1. Hamiltonian Path: Given a graph G, does G have a Hamiltonian

path?

Consider the degree constrained spanning tree problem with k = 2. This is

equivalent to the Hamiltonian path problem, and so the minimum degree spanning

tree problem is a generalization of the Hamiltonian path problem. The Hamiltonian

cycle problem asks if there exists a cycle that spans G. Both the Hamiltonian path

and the Hamiltonian cycle problems are NP-complete [27]. This implies the NP-

completeness of the degree constrained spanning tree problem. In addition, Garey

and Johnson [27] give the following reduction from the Hamiltonian path problem

to the degree constrained spanning tree problem where the parameter k is a fixed

constant. Let G be a graph with at least three vertices. Construct G′ by adding

k − 2 leaves to each vertex of G. G′ has a spanning tree with maximum degree k if

and only if G has a Hamiltonian path. Thus, the degree constrained spanning tree

problem is NP-complete for any fixed k ≥ 2.

Problem 2.2. Longest Path (decision): Given a graph G and a positive integer k,

does G contain a path with k or more edges?

Problem 2.3. Longest Path (optimization): Given a graph G, what is the largest k

such that G contains a path with k edges?

If we let k = |V | − 1 in the longest path decision problem, this is the same as

the Hamiltonian path problem, and so the longest path decision problem is another

generalization of the Hamiltonian path problem. The longest path decision problem

is NP-complete [27], and so the longest path optimization problem is NP-hard. For

the purposes of this thesis, we will refer to the longest path optimization problem

as the longest path problem.

For any graph class, if the Hamiltonian path problem is NP-complete, then its

generalizations, the decision versions of the longest path problem and the degree

constrained spanning tree problem are also NP-complete. The longest path problem

and the minimum degree spanning tree problem are NP-hard on such a class.
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We will see that the Hamiltonian path problem is polynomial time solvable

on graph classes such as interval graphs, bipartite permutation graphs, and chain

graphs. These classes are a good starting point for finding polynomial time results

for the minimum degree spanning tree problem.

We now look at some generalizations of the minimum degree spanning tree

problem on weighted graphs.

Given a weighted graph G, there are two constraints to be optimized: the max-

imum degree of any vertex in a spanning tree, and the weight of the spanning tree.

Since there may not be a minimum weight tree with the minimum maximum de-

gree, variations of this problem must involve some compromise between the weight

of the spanning tree and the maximum degree of any vertex.

Problem 2.4. Minimum Degree Minimum Spanning Tree (MDMST): Given a

weighted graph G, find the minimum maximum degree of a minimum weight span-

ning tree of G.

The MDMST problem finds the minimum weight of a spanning tree, but the

minimum maximum degree of a minimum weight spanning tree may be higher

than is possible in a spanning tree with higher weight. The MDMST problem com-

promises on the optimality of the maximum degree of a vertex in order to achieve

optimality on the weight of the tree. In the unweighted case, the MDMST problem

is the minimum degree spanning tree problem, and so it is NP-hard.

Problem 2.5. Bounded Degree Minimum Spanning Tree (BDMST): Given a

weighted graph G and a set of integer degree bounds, find a spanning tree that

satisfies the degree bounds, and has smallest possible weight.

For the BDMST problem, these degree bounds may be some constant upper-

bound B for all vertices, or each vertex v can have its own upper bound Bv. There

may also be a specified lower boundAv for each vertex v as well. If no lower bound

is specified, Av = 1 for all v is implied, since this is required in any spanning tree.

Thus, the BDMST problem finds a spanning tree T such that Av ≤ degT (v) ≤ Bv

for each vertex v and the weight of T is minimized over all spanning trees satisfying

these degree bounds. The BDMST problem is also NP-hard.
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There are a number of other problems that are related to the minimum degree

spanning tree problem, but are not generalizations or specifications of the problem.

The following problems related to Minimum Degree Spanning Tree are also NP-

complete [27]: Maximum Leaf Spanning Tree, Steiner Tree in Graphs, Partition

into Hamiltonian Subgraphs, and Degree Bounded Connected Subgraph.

A minimum degree Steiner tree for some D ⊆ V is a minimum degree tree

in G that spans at least the vertices in D. The minimum degree spanning tree

problem is a special case of the minimum degree Steiner tree problem, when D =

V . This problem is used to obtain some of the approximation results presented in

this chapter.

The spanning tree problem is a classic problem in graph theory, and so many

variations of the problem have been studied. We will mention some problem vari-

ations here, but we will not focus on them in detail. For an extensive survey of

spanning tree problems, see [45].

The problem of finding a minimum spanning tree of a graph that has a degree

constraint on exactly one vertex in the graph is linear-time reducible to the mini-

mum spanning tree problem [26]. Additionally, if only some vertices in the graph

have degree constraints, and these vertices form an independent set, the problem is

solvable in polynomial time [39].

While the minimum degree spanning tree problem is NP-hard, finding a span-

ning tree of a graph with maximum ∆(T ) can be solved efficiently with a greedy

algorithm. For example, for a graph G = (V,E), choose v ∈ V such that

degG(v) = ∆(G). Begin constructing a maximum degree spanning tree T by

adding all edges in G that are incident on v. Continue to add edges to T until it

is a spanning tree. We have that ∆(T ) = ∆(G), and it cannot be any greater.

However, the maximization versions of other related problems are not all easy.

Finding a spanning tree of a graph with the maximum possible number of leaves is

NP-hard [22].
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2.2 Approximations

Since the minimum degree spanning tree problem is NP-hard, much of the work

done on this problem has been in the area of approximation algorithms. We discuss

some approximation algorithms here; for a more complete review of this area, see

[48].

In this section, we review approximation algorithms for two variations of the

minimum spanning tree problem, the MDMST problem and the BDMST problem.

In the unweighted case, the MDMST problem is equivalent to the minimum degree

spanning tree problem.

2.2.1 Unweighted Approximations

We first discuss work on approximation algorithms for the minimum degree span-

ning tree problem, which is defined for unweighted graphs.

Fürer and Raghavachari [24] first gave a polynomial time algorithm that returns

a spanning tree T with ∆(T ) ∈ O(∆∗+log n). The algorithm reduces the minimum

degree spanning tree problem to a maximal matching in auxiliary graphs.

In [25], Fürer and Raghavachari present a better polynomial time approximation

algorithm for the minimum degree spanning tree problem, and more particularly, for

the minimum degree Steiner tree problem, that produces a Steiner tree T such that

∆(T ) ≤ ∆∗G + 1.

The algorithm presented is shown to produce a spanning tree T of G that has

∆(T ) ≤ ∆∗G + 1. Finding an upper bound on ∆∗G is easy; simply produce any

spanning tree T of G, and we know that ∆∗G ≤ ∆(T ). The proof of correctness for

this algorithm relies on a witness set to give a lower bound on ∆∗G and show that

∆∗G is within one of optimal. A witness set is a subset of the vertices of G, W ⊆ V

with |W | = w, and the removal of W from G disconnects G into t components.

Let d = dw+t−1
w
e. Then [25] shows that ∆∗G ≥ d.

The algorithm for producing this spanning tree ofG with ∆(T ) ≤ ∆∗G+1 relies

on a series of improvements to an initial arbitrary spanning tree T . At each iteration

of the algorithm, a forest F is created from T by removing the set of vertices with
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degree ∆(T ) and ∆(T )− 1 and their incident edges. If there is no edge in E(G)−

E(T ) that is between two components of F , the algorithm terminates. Otherwise,

choose (u, v) ∈ E(G)− E(T ) such that u and v are in different components of F ,

and consider the cycle C created by adding (u, v) to T . If there exists some vertex

w ∈ C such that degT (w) = ∆(T ), and if degT (u) ≤ ∆(T ) − 2 and degT (v) ≤

∆(T ) − 2 then w can be improved by adding (u, v) to T and removing an edge of

C that is incident on w. Each such improvement reduces the number of vertices of

T of degree ∆(T ), and can potentially decrease ∆(T ). If no further improvements

can be made, the set of vertices of degree ∆(T ) and ∆(T )− 1 is a witness set that

shows ∆(T ) ≤ ∆∗G + 1. This algorithm runs in O(mnα(m,n) log n), where α is

the inverse Ackermann function.

2.2.2 Weighted Approximations

We now discuss approximations for some variations of the minimum degree span-

ning tree problem on weighted graphs.

Two results for a more general version of the minimum degree spanning tree

problem are presented by Fischer in [23]. Here, we consider the minimum max-

imum degree over all spanning trees of a graph, ∆∗, and the minimum cost of a

spanning tree with maximum degree ∆∗, cost∗. The first is a generalization of

Fürer and Raghavachari’s work in [25] to weighted graphs that produces a span-

ning tree T such that cost(T ) ≤ cost∗ and ∆(T ) ≤ k · (∆∗ + 1), where k is the

number of distinct edge weights in the graph.

The second result in [23] generalizes [24] to weighted graphs as well. It pro-

duces a spanning tree T such that cost(T ) ≤ cost∗ and ∆(T ) ∈ O(∆∗ · log n).

These algorithms rely on the notion of tree rank of a tree T , which is an array

{tn−1, ..., t1} where tk is the number of vertices in T with degree k. These rank-

ings are considered in lexicographic order. Then, a series of neutral weight edge

swaps (swapping an edge of weight c in T for another edge of weight c not in T )

are performed. A tree is considered locally optimal if there does not exist a neu-

tral weight edge swap that decreases the tree rank. If T is locally optimal, then

∆(T ) ≤ b · ∆∗ + dlogb ne for some constant b > 1. The time complexity of this
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algorithm is O(n4+ 1
ln b ).

Goemans conjectured that, given a graphG and a constant upper bound k for all

vertex degrees in a spanning tree of G, there exists a polynomial time algorithm to

find a spanning tree T such that ∆(T ) ≤ k+1 and the cost of T is at mostOPT (k),

where OPT (k) is the optimal cost of a spanning tree that satisfies the upper bound

k. Later, in [28], Goemans presented an algorithm for a version of the weighted

BDMST problem that produces a solution within two of optimal. This algorithm

considers weighted graphs with an upper and lower bound on the degree of each

vertex v. It settles a slightly weaker version of the conjecture, finding a spanning

tree with cost at most OPT (k) and ∆(T ) ≤ k + 2 [28].

Ravi and Singh [47] give a generalization of Fürer and Raghavachari’s ∆∗ + 1

approximation algorithm for the BDMST problem. Their polynomial time algo-

rithm either shows that the degree bounds given in the problem statement are in-

feasible, or returns a spanning tree T such that degT (v) ≤ Bv + k where k is the

number of distinct edge costs in T . Previous approximation algorithms for these

problems used witness sets to find a lower bound on the optimal solution. Ravi and

Singh [47] instead use linear programming to give a stronger lower bound.

More recently, Singh and Lau [50] presented an algorithm for the BDMST prob-

lem that produces a spanning tree T such that weight(T ) ≤ OPT and Av − 1 ≤

degT (v) ≤ Bv + 1, for all v, where OPT is the weight of an optimal solution and

Av, Bv are the given bounds on the degree of vertex v. This result generalizes the

result in [25] to weighted graphs and proves Goemans’ conjecture correct. It is also

essentially the best possible result in polynomial time for the BDMST problem,

unless P = NP .

The BDMST problem is again considered in [9], using the methodology applied

by Edmonds to the weighted matching problem. Their first algorithm finds a tree

T of optimal cost with ∆(T ) ≤ b
2−bB + logb n, b ∈ (1, 2), where B is the upper

bound for all vertex degrees in T , in polynomial time. Their second algorithm

improves on this by finding a spanning tree T of optimal cost with ∆(T ) ≤ B +

O( logn
log logn

) in quasi-polynomial time. A quasi-polynomial time algorithm is slower

than a polynomial time algorithm, but still faster than exponential time. This second
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algorithm gets a huge improvement on the accuracy of ∆(T ), but at the expense of

being slower than polynomial time. This improvement in error on the maximum

degree is achieved using an analogy to bipartite matching, and by using augmenting

path techniques.

These approximation algorithms are for general weighted graphs which may

be considered as complete graphs with some edges having infinite weight. There

has also been work done on finding low degree, low weight spanning trees for

Euclidean graphs, where each vertex represents a point in the plane, and each pair

of points is connected by an edge with weight equal to the distance between the

points. The goal is to find a minimum weight spanning tree T such that the degree

of each vertex in bounded above by some k. This problem is explored in [37], [49],

[21], and [34]. The most recent results from [34] state that the problem is NP-hard

for 2 ≤ k ≤ 3 and polynomial time solvable for k ≥ 5. The complexity is still

unknown for k = 4, and so [34] gives an approximation algorithm that shows there

always exists a spanning tree in a such a collection of points in the plane, where the

maximum degree is 4, and the cost of this tree is at most
√
2+2
3

times the optimal

cost.

2.3 Hamiltonicity and k-trees

We discuss conditions for Hamiltonicity and for a graph to have a k-tree related

to the minimum degree of a vertex in a graph, the independence number, and the

connectivity.

One of the first sufficient conditions for Hamiltonicity of a graph is Dirac’s the-

orem, which states that for a given graph G, if δ(G) ≥ n
2
, then G has a Hamiltonian

cycle [19]. Ore showed that if degG(x) + degG(y) ≥ n − 1, for all x, y ∈ V such

that (x, y) /∈ E, then G has a Hamiltonian cycle [44]. This result introduces the

theme of independent sets in results for sufficient conditions for Hamiltonicity of

graphs.

Chvátal and Erdös presented further results related to independent sets and

Hamiltonicity in [11]. Let G be a graph with n ≥ 3. If G is k-connected and
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has no independent set of size greater than k, then G has a Hamiltonian cycle. Sim-

ilarly, if G is k-connected and has no independent set of size greater than k + 1,

then G has a Hamiltonian path [11].

Bondy and Chvátal showed, for a connected graph G = (V,E) with some

(u, v) /∈ E such that degG(u) = degG(v) ≥ n − 1, G has a Hamiltonian path

if and only if G+ (u, v) has a Hamiltonian path [4].

We now discuss some generalizations of these conditions for Hamiltonicity.

These generalizations give a sufficient condition for a graph to have a k-tree.

Win generalized Ore’s result to show that if a graph G satisfies the condition in

Equation 2.1 for a given k, then G has a spanning tree T with ∆(T ) ≤ k [56].

Win’s Condition [56]:∑
x∈I

deg(x) ≥ n− 1, for every k-element independent set I ⊂ V (2.1)

Win’s upper bound k on ∆∗G of a graph G also gives a lower bound on the

degrees of vertices in G. That is, δ(G) ≥ (n − 1)/k, a generalization of Dirac’s

theorem.

Win proved a conjecture of Las Vergnas in [55], which generalizes the result of

Chvátal and Erdös: every k-connected graph with independence number α ≤ k+ c

contains a spanning tree with no more than c + 1 terminal vertices. Neumann-

Lara and Rivera-Campo generalized this result to bounded degree spanning trees,

showing that if G is k-connected with α ≤ 1 + ks for s ≥ 1, then G has a spanning

tree with no vertices with degree larger than s + 1 [43]. Another result, also from

[43], gives a less tight bound on the maximum degree of the tree, but also provides

information about the number of vertices in the tree that have that maximum degree:

let G be a k-connected graph, and s ≥ 3, 0 ≤ c ≤ k. If α ≤ 1 + k(s− 1) + c then

G has a spanning tree T with no vertices with degree larger than s+ 1, and with at

most c vertices in T having degree s+ 1.

These results are interesting on dense graphs, but sparser graphs that have

Hamiltonian paths are less likely to satisfy these conditions. Czumaj and Stroth-

mann [15] looked at algorithms for a degree bounded spanning tree problem on

k-connected graphs, and also compiled results for the problem on planar graphs,
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which are sparse. They presented a table of results which gives the complexity of

finding a spanning tree with maximum degree less than a bound ∆T , given the con-

nectivity of a graph, k, and its maximum degree ∆(G). These results are given in

Figure 2.1.

Figure 2.1: Complexities of finding a spanning tree T with ∆(T ) ≤ ∆T in a k-
connected general or planar graph G with ∆(G) bounded. [15]

Another generalization of Win’s work is by Zhenhong and Baoguang, who pre-

sented results related to the edge-connectivity of a graph. They defined a dk-tree as

a tree T such that for all v ∈ V (T ), degT (v) ≤ bdegG(v)+k−1
k

c+ c, where c depends

on k [59]. Then, if G is a k-edge-connected graph, with k ≥ 2, G has a dk-tree with

c = 1 for k = 2 and c = 2 for k ≥ 3 [59].

Win’s condition for k ≥ 2, Equation 2.1, was explored further by Czygrinow et

al in [16]. They also explored the structure of spanning trees with small maximum

degree. Their results state that given a graph G that satisfies Equation 2.1 for some

k, then either:

1. G has a spanning tree T with ∆(T ) < k, or

2. G is a graph made up of k cliques,G1, G2, ..., Gk with |V (Gi)| > 1 for at least

3 distinct i, and one dominating vertex adjacent to all vertices of G1, ..., Gk,

or

3. for every maximum length path P in G, there exists a spanning tree T of G

such that

(a) T is a caterpillar,

(b) ∆(T ) = k,
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(c) the spine of T is P ,

(d) the set {v ∈ V |degT (v) ≥ 3} is an independent set in T .

There exists a k that satisfies Equation 2.1 for all graphs, although this k does not

necessary give a good bound on ∆∗G. Consider a graph G that is a clique Kr, r ≥ 3,

with r leaves, each adjacent to exactly one vertex in the clique. The size of the

largest independent set inG is r, but the sum of the degrees of this set is r < 2r−1.

Then k = r + 1 as there is no independent set of size r + 1. On the other hand,

regardless of the size of G, ∆∗G = 3. For large r, Equation 2.1 gives a poor bound

on ∆∗G. This bound is tighter for denser graphs, and worse for sparse graphs and

graphs with many leaves.

Figure 2.2: Two bipartite permutation graphs where Win’s condition, Equation 2.1,
for a k-tree is not tight and tight, respectively.

Figure 2.2 shows two bipartite permutation graphs where Win’s condition has

different accuracy. In Figure 2.2 (a), n = 16 and the condition is satisfied at k = 10,

as there is no independent set of size 10, and there exists an independent set of size

9 with degree sum less than n − 1 (the set of all leaf vertices, for example). But

the graph itself is a caterpillar and so ∆∗G = ∆(G) = 3. So Win’s condition is not

accurate here. The graph in Figure 2.2 (b) has n = 8, and satisfies Win’s condition

at k = 3. For this graph, ∆∗G = 3, so Win’s condition is tight. These examples show

that these results of [16] will not necessarily give much information about k-trees

in bipartite permutation graphs.

Bondy and Chvátal’s work was generalized by Kishimoto and Kano for j-

connected graphs. They present three results in [38]. Let G be a j-connected

graph, for some j ≥ 1, and let k ≥ 2. First, for some (u, v) /∈ E such that
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degG(u) + degG(v) ≥ n − 1 − (k − 2)j, then G has a spanning k-tree if and

only if G + (u, v) has a spanning k-tree. Next, for some (u, v) /∈ E such that

degG(u) + degG(v) ≥ n − k + 1, then G has a spanning k-tree if and only

if G + (u, v) has a spanning k-tree. Finally, if for all (u, v) /∈ E, we have

degG(u) + degG(v) ≥ n− 1− (k − 2)j, then G has a spanning k-tree.

2.4 Vertex Orderings and Properties of Bipartite Graph
Classes

We now discuss vertex orderings for bipartite graph classes.

A convex ordering of one vertex set of a bipartite graph (assume X) is an or-

dering of the vertices of X such that for every y ∈ Y , N(y) is consecutive in the

ordering ofX . As previously mentioned, a bipartite graphG = (X, Y,E) is convex

if there exists a convex ordering of X or Y , and is biconvex if there exists a convex

ordering of both X and Y .

An ordering of the vertices X of a bipartite graph G = (X, Y,E) has the adja-

cency property if for each vertex y ∈ Y , the vertices of N(y) are consecutive in the

ordering of X , and has the enclosure property if for every pair of vertices u, v ∈ Y ,

if N(u) ⊂ N(v), then N(v)−N(u) is consecutive in the ordering of X .

A strong ordering of a bipartite graph G = (X, Y,E) is an ordering x1, ..., xp

of the vertices in X and y1, ..., yq of the vertices in Y , such that for all (xi1 , yj1),

(xi2 , yj2) ∈ E with xi1 < xi2 and yj1 > yj2 , (xi1 , yj2), (xi2 , yj1) ∈ E. A strong

ordering is symmetric. That is, if x1, x2, ..., xp, y1, y2, ..., yq is a strong ordering of a

bipartite graph G = (X, Y,E), then xp, xp−1, ..., x1, yq, yq−1, ..., y1 is also a strong

ordering of G.

Figure 2.3 shows a bipartite permutation graph with vertices ordered as in a

strong ordering of G.

Theorem 2.6. The following are equivalent for a bipartite graphG = (X, Y,E) [51]:

1. G is a bipartite permutation graph.

2. There exists a strong ordering of X ∪ Y .
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Figure 2.3: A bipartite graph with X and Y ordered as in a strong ordering of G.

3. There exists an ordering of X that has both the adjacency and the enclosure

properties.

A nested neighbourhood ordering of a bipartite graph is an ordering x1, ..., xp,

y1, ..., yq of the vertices such that N(xi) ⊇ N(xj), for i < j, and N(yi) ⊇ N(yj),

for i < j. In a nested neighbourhood ordering, the highest degree vertices have the

lowest index, and the lowest degree vertices have the highest index. An additional

property of a nested neighbourhood ordering is if i < j, then deg(xi) ≥ deg(xj)

and deg(yi) ≥ deg(yj). A graph is a chain graph if it has a nested neighbourhood

ordering.

Figure 2.4 shows a chain graph with vertices ordered as in a nested neighbour-

hood ordering.

Figure 2.4: A graph with a nested neighbourhood ordering.

Note that a nested neighbourhood ordering is not a strong ordering, but reversing
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the ordering of either X or Y gives a strong ordering. That is, if x1, ..., xp, y1, ..., yq

is a nested neighbourhood ordering, then xp, ..., x1, y1, ..., yq is a strong ordering.

We use the strong ordering property of some bipartite graphs to introduce more

definitions and properties for these graphs.

A path P in a bipartite graph G = (X, Y,E) with strong ordering x1, ..., xp and

y1, ...yq is a zig-zag if P can be written as {xa1 , yb1 , xa2 , yb2 , ..., xai , ybi , (xai+1
)},

where aj < ak and bj < bk for j < k. From [52], we know that every bipartite

permutation graph has a longest path that is a zig-zag. Figure 2.5 shows in bold two

longest paths in the strongly ordered bipartite graph from Figure 2.3. The path in

Figure 2.5 (a) is not a zig zag, while the path in Figure 2.5 (b) is a zig zag.

Figure 2.5: Two longest paths in a bipartite graph: (a) is not a zig zag, while (b) is
a zig zag.

An edge crossing in a bipartite graph G = (X, Y,E) with ordering x1, ..., xp

and y1, ...yq is a pair of edges (xi1 , yj1), (xi2 , yj2) ∈ E where i1 < i2 and j1 > j2.

For example, the edges (x1, y3), (x2, y2) in Figure 2.3 are an edge crossing.

Note that a path in a bipartite graph is a zig-zag if and only if it has no edge

crossings.

2.5 Algorithms and Complexity for Hamiltonicity and
other Related Problems on Graph Classes

Examining algorithms for solving the Hamiltonian path and longest path problems

on restricted graph classes may provide insight into how to solve the minimum

degree spanning tree problem. The main focus of this thesis is on bipartite permu-

tation graphs and their superclasses, subclasses, and other related graph classes, as

in Figure 1.1. We discuss what is known about the complexity of Hamiltonian path
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and longest path on the classes shown in Figure 1.1.

We start with one of the highest level superclasses of bipartite permutation

graphs as shown in Figure 1.1, bipartite graphs. Moon and Moser explored the

Hamiltonicity of bipartite graphs in [41], and showed both the Hamiltonian cycle

and Hamiltonian path problems remain NP-complete on bipartite graphs.

The most basic necessary condition for a bipartite graph G = (X, Y,E) to

have a Hamiltonian cycle is that p = q. For a Hamiltonian path to exist in a bi-

partite graph, we must have |p − q| ≤ 1. Moon and Moser [41] present some

sufficient conditions for the existence of a Hamiltonian cycle in a bipartite graph.

Let p = |X| = |Y | for the following results. A bipartite graph G = (X, Y,E) has a

Hamiltonian cycle if for any non-empty subset F of X ∪ Y with |F | = k ≤ p
2
,

such that for every xi ∈ F , degG(xi) ≤ k, then every vertex yj ∈ Y with

degG(yj) ≤ p− k, yj is adjacent in G to some vertex in F . The same holds with X

and Y reversed. A corollary to this is that for a bipartite graph G = (X, Y,E), if

for each k, 1 ≤ k ≤ p
2
, the number of vertices x ∈ X such that degG(x) ≤ k is less

than k, and the same for all y ∈ Y , then G has a Hamiltonian cycle. This can also

be stated as, if G has degG(x) + degG(y) > p for all x, y ∈ G such that (x, y) /∈ E,

then G has a Hamiltonian cycle.

Chordal bipartite graphs are contained in bipartite graphs, and contain bipartite

permutation graphs. Müller [42] gives a reduction from SAT to both Hamiltonian

cycle and Hamiltonian path in chordal bipartite graphs.

A Hamiltonian cycle can be found in a convex graph in polynomial time, as

shown in [42]. Keil showed that there exists a linear time algorithm for finding a

Hamiltonian cycle in an interval graph [36], and [42] presents an O(n2) reduction

from a convex bipartite graph G = (X, Y,E) to an interval graph G′ such that there

exists a Hamiltonian cycle in G′ if and only if there exists a Hamiltonian cycle in

G. The reduction is as follows: assume X is convex. Let G′ = (X ∪ Y,E ∪

{(y1, y2)|NG(y1)∩NG(y2) 6= ∅}). G′ is now an interval graph and Keil’s algorithm

can find a Hamiltonian cycle C in linear time. Since X is an independent set, all

edges in the cycle must be in E. Therefore C is also a Hamiltonian cycle in G.

Müller shows that the Hamiltonian path problem can be solved in O(n2) time
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for convex and biconvex graphs. The complexity of the longest path problem is

unknown for these classes [52].

A number of polynomial time results for problems related to the minimum de-

gree spanning tree problem are known for bipartite permutation graphs. Spinrad,

Brandstädt and Stewart [51] present conditions for a bipartite permutation graph

G = (X, Y,E) to have a Hamiltonian path or Hamiltonian cycle.

Theorem 2.7. [51] Let G = (X, Y,E) be a bipartite permutation graph contain-

ing a Hamiltonian path beginning at x ∈ X . Let x1, ..., xp and y1, ...yq be a strong

ordering of G. Then (x1, y1, x2, y2, ..., xp, yp) or (x1, y1, x2, y2, ..., xp−1, yq, xp) is

also a Hamiltonian path in G, where x1, x2, ..., xp, y1, y2, ..., yq is a strong or-

dering of G. Similarly, if G has a Hamiltonian path beginning at some y ∈ Y ,

then (y1, x1, y2, x2, ..., yq, xq) or (y1, x1, y2, x2, ..., yq−1, xp, yq) is also a Hamilto-

nian path.

Therefore, determining if a bipartite permutation graph has a Hamiltonian path

reduces to just determining if it contains one of the paths in Theorem 2.7. Uehara

and Uno give a linear time algorithm to solve the longest path problem on bipartite

permutation graphs [53].

The results for the Hamiltonian path problem on bipartite permutation graphs

apply to chain graphs, which are a subclass of bipartite permutation graphs. The

longest path problem can be solved in O(n) time on chain graphs, as in [53].

The complexity of the minimum degree spanning tree problem was not known

for any graph class between chain graphs and convex bipartite graphs, prior to our

work.

The other highest level superclass of bipartite permutation graphs that we will

discuss here are AT-free graphs. The complexity of the Hamiltonian cycle and

Hamiltonian path problems on AT-free graphs is unknown [2]. It is also unknown

for the minimum degree spanning tree problem, and for longest path.

Both the Hamiltonian path problem is solvable in polynomial time for cocom-

parability graphs [17]. Recently, Mertzios and Corneil [40] showed that the longest

path problem is also polynomial time solvable for cocomparability graphs. There-

fore, the cocomparability graphs and their subclasses provide an interesting starting
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point for exploring the minimum degree spanning tree problem. The Hamiltonian

path problem and longest path problem can be solved in polynomial time for per-

mutation graphs, since all permutation graphs are cocomparability graphs.

It is also useful to consider graph classes such as interval graphs and threshold

graphs, although they are not directly related to bipartite permutation graphs. As we

have seen when discussing the Hamiltonicity of convex bipartite graphs, there is a

connection between convex bipartite graphs and interval graphs. Threshold graphs

are very similar to chain graphs, and can be thought of as a chain graph with edges

added to either X or Y of a chain graph to form a clique. Both of these classes also

have polynomial time results for problems related to the minimum degree spanning

tree problem.

As previously mentioned, Keil showed there is a linear time solution for the

Hamiltonian path problem on interval graphs [36]. Uehara and Uno showed that the

longest path problem on interval graphs can be reduced to the longest path problem

on convex bipartite graphs [52]. Recently, Ioannidou et al. gave a O(n4) algorithm

to solve the longest path problem on interval graphs [32].

Harary and Peled give a necessary and sufficient condition for a threshold graph

to have a Hamiltonian cycle [31]. This condition gives a lower bound on the degree

of each vertex in G that holds if and only if G has a Hamiltonian cycle. A condition

for a Hamiltonian path is not given, but it is easy to see how the Hamiltonian cycle

condition might be altered for the Hamiltonian path problem. Uehara and Uno also

showed the longest path problem has a linear time solution for threshold graphs

[52].

The results discussed in this section are summarized in Table 2.1. Note that there

is no citation for the NP-hard results for the longest path problem where the Hamil-

tonian path problem is known to be NP-complete since a solution to the longest

path problem gives a solution to the Hamiltonian path problem.
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Graph Class Hamiltonian Path Longest Path
bipartite NP-c [41] NP-hard
chordal bipartite NP-c [42] NP-hard
convex O(n2) [42] unknown
biconvex O(n2) [42] unknown
bipartite permutation O(n) [51] O(n) [53]
chain O(n) [51] O(n) [53]
AT-free unknown unknown
cocomparability O(n2) [17] O(n4) [40]
permutation O(n2) [17] O(n4) [40]
interval O(n) [36] O(n4) [32]
threshold O(n) [31] O(n) [52]

Table 2.1: Complexity results for the Hamiltonian path and longest path problems
for certain graph classes

2.6 Properties of Trees

We make use of properties of trees in many of the proofs in this thesis. In particu-

lar, we use these properties to show that trees we construct from other trees using

particular techniques retain the properties of the initial trees.

Theorem 2.8 gives several characteristics of trees.

Theorem 2.8. For a graph G, the following are equivalent [54]:

1. G is connected and has no cycles.

2. G is connected and has n− 1 edges.

3. G has n− 1 edges and no cycles.

4. G has no cycles and has, for each u, v ∈ V (G), exactly one (u, v)-path.

5. G is a tree.

There are many other properties of trees and spanning trees that we make use of

in this thesis. For these and other properties, see [54].

We know some specific things about the connectivity and colouring of trees.

Adding one edge anywhere in a tree forms a cycle. Every non-leaf vertex in a tree
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is a cut vertex, and every edge in a tree is a cut edge. Since trees have no cycles,

they are bipartite.

Every connected graph has a spanning tree, and a graph that is a tree has exactly

one spanning tree. A path is a tree with maximum degree two.

Let T and T ′ be two distinct spanning trees of a connected graph G. Let e be

an edge in E(T )− E(T ′). Then there exists an edge e′ in E(T ′)− E(T ) such that

T − e+ e′ is a spanning tree of G.
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Chapter 3

Chain Graphs

As previously defined, a bipartite graph G = (X, Y,E) is a chain graph if it has no

induced 2K2, and a chain graph has an ordering of its vertices x1, ..., xp, y1, ..., yq

that is a nested neighbourhood ordering. That is, N(xi) ⊇ N(xj), for i < j, and

N(yi) ⊇ N(yj), for i < j. In this chapter, we assume that |X| ≥ |Y |; that is, that

X is the larger side of the graph.

Let G = (X, Y,E) be a chain graph with nested neighbourhood ordering

x1, ..., xp and y1, ..., yq. Recall that therefore xp, ..., x1, y1, ..., yq is a strong or-

dering of G. By the definition of the nested neighbourhood ordering, x1 is the high

degree vertex in X and y1 is the high degree vertex in Y . The nested neighbour-

hood ordering also has the property that if i < j, then deg(xi) ≥ deg(xj) and

deg(yi) ≥ deg(yj). Since G is a chain graph, x1 dominates Y and y1 dominates X .

The vertices in X will be drawn with xp on the left and x1 on the right. The vertices

in Y will be drawn with y1 on the left and yq on the right.

For the purposes of this work, we will only consider chain graphs that are con-

nected. A disconnected graph does not have an MDST.

In this chapter, we give a degree condition for a chain graph to have a Hamilto-

nian path, and present an algorithm to find a spanning tree with a certain maximum

degree in a chain graph. We then show that this spanning tree is an MDST of G.
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3.1 A Degree Condition for Hamiltonian Chain Graphs

We give an exact condition for a chain graph to have a Hamiltonian path. Equiva-

lently, the condition holds if and only if a chain graph has an MDST with ∆∗G = 2.

Chain graphs are a subclass of bipartite permutation graphs, and we make use

of Theorem 2.7 in our proof.

Theorem 3.1. Let G = (X, Y,E) be a chain graph with nested neighbourhood

ordering x1, ..., xp and y1, ...yq. Then G has a Hamiltonian path if and only if one

of the following conditions holds:

(1) p = q, and

degG(xi) ≥ p− i+ 1, for all xi ∈ X , and

degG(yj) ≥ p− j + 1, for all yj ∈ Y .

(2) p = q + 1, and

degG(xi) ≥ p− i+ 1, 2 ≤ i ≤ p, degG(x1) = q, and

degG(yj) ≥ q − j + 2, for all yj ∈ Y .

Proof. We first show that these conditions are sufficient forG to have a Hamiltonian

path.

Observation: Since G is a chain graph, we know x1 dominates Y and y1

dominates X , and the neighbourhood of each vertex is consecutive in the nested

neighbourhood ordering. We observe that, if degG(xi) ≥ dx, then NG(xi) ⊇

{y1, ..., ydx}. Similarly, if degG(yj) ≥ dy, then NG(yj) ⊇ {x1, ..., xdy}.

Recall that if x1, ..., xp, y1, ..., yq is a nested neighbourhood ordering, then

xp, ..., x1, y1, ..., yq is a strong ordering.

Assume condition (1) holds. We show that G has the Hamiltonian path xp, y1,

xp−1, y2, ..., x1, yp. We now show that condition (1) guarantees we have this path.

We first show that condition (1) guarantees we have each (xi, yj) edge in this

path. Note that we can rewrite the indices in that path xp, y1, xp−1, y2, ..., x1, yp to

be xp, yp−p+1, xp−1, yp−(p−1)+1, ..., x1, yp−1+1. Thus, we want to show that for each

xi, the edge (xi, yp−i+1) is in E. By our assumption that condition (1) holds, then
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degG(xi) ≥ p−i+1, and by our earlier observation, thenNG(xi) ⊇ {y1, ..., yp−i+1}.

Therefore, (xi, yp−i+1) ∈ E for 1 ≤ i ≤ p.

It remains to be shown that (yj, xp−j) ∈ E for all 1 ≤ j < p. By the assumption

that condition (1) holds, degG(yj) ≥ p− j + 1, and by our earlier observation, then

NG(yj) ⊇ {x1, ..., xp−j+1}, and so (yj, xp−j) ∈ E for 1 ≤ j < p.

Therefore, if condition (1) holds, then G has a Hamiltonian path.

Now assume condition (2) holds. Using the same argument as in the proof for

condition (1), we see that (xi, yp−i+1) ∈ E for 2 ≤ i ≤ p, and (yj, xp−j) ∈ E for

1 ≤ j ≤ q. Therefore, G has the Hamiltonian path xp, y1, xp−1, y2, ..., x2, yp−1, x1.

We now show that these conditions are necessary for G to have a Hamiltonian

path.

Assume p = q and condition (1) does not hold for all vertices. By Theorem 2.7,

if neither xp, y1, xp−1, y2, ..., x1, yp nor y1, xp, y2, xp−1, ..., yp, x1 is a Hamiltonian

path of G, then G has no Hamiltonian path. If condition (1) does not hold, then

there exists a vertex xi such that degG(xi) < p − i + 1, or a vertex yj such that

degG(yj) < p− j + 1.

If degG(xi) < p− i+1, then NG(xi) ⊆ {y1, ..., yp−i}. Therefore, (xi, yp−i+1) /∈

E. This edge is in both xp, y1, xp−1, y2, ..., x1, yp and y1, xp, y2, xp−1, ..., yp, x1,

and therefore G does not have a Hamiltonian path. An equivalent argument can be

made if degG(yj) < p− j + 1.

We can also, by the same argument, see that if p = q + 1 and condition (2) is

not satisfied for some vertex, then G does not have a Hamiltonian path.

Therefore, the conditions are necessary and sufficient, and so the theorem holds.

3.2 A Minimum Degree Spanning Tree Construction
Algorithm for Chain Graphs

We present an algorithm that constructs a spanning tree with a certain maximum

degree on a chain graph. Later, we will show that this algorithm solves the minimum

degree spanning tree problem and the minimum degree spanning tree construction
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problem on chain graphs.

3.2.1 Algorithm

LetG = (X, Y,E) be a chain graph with a nested neighbourhood ordering x1, ..., xp

and y1, ..., yq. We present an algorithm to construct T , a spanning tree of G.

The edges of T will be determined by partitioning G into subgraphs, construct-

ing spanning trees on the subgraphs, and then connecting the resulting components.

We define a part to be one of these subgraphs. The parts will be chosen using a

formula that finds a set of vertices in either X or Y of the unpartitioned portion of

G such that each vertex in this set has degree less than or equal to some value, and

the size of this set divided by the size of its neighbourhood is maximum.

As we construct the partition of G, each part will consist of consecutive sets of

vertices and will be chosen from one end of the unpartitioned portion of G. The

maximum part in the unpartitioned portion of G may have its larger vertex set from

either X or Y . Since every induced subgraph of a chain graph is also a chain graph,

each part is a chain graph. As stated at the beginning of this chapter, we assume

|X| ≥ |Y |. Therefore we will assume that |X(C)| > |Y (C)|, and so there may

exist a part C of G where X(C) ⊂ Y (G) and Y (C) ⊂ X(G). Through the rest of

the chapter, we will refer to theX and Y sides of each part. Note that these labels in

the part do not necessarily correspond to X and Y in G. For a given part C, X(C)

is the larger side of C.

We use four algorithms to construct this spanning tree for a chain graph G.

ChainGraphMDST is Algorithm 1, Partition is Algorithm 2, PartMDST is Algo-

rithm 3, and ComputeRatios is Algorithm 4. The algorithms can be found at the

end of this subsection, and are further explained and proved correct in Subsection

3.2.2. Later in the chapter, we show these algorithms solve the minimum degree

spanning tree problem.

We define the following values and ratios for use in the algorithms and in The-

orem 3.5:

For a chain graph G = (X, Y,E), let k be the number of distinct vertex degrees

in X and let l be the number of distinct vertex degrees in Y . Let a1, ..., ak be the
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distinct degrees of vertices in X with a1 < a2 < ... < ak, and let αi be the number

of vertices in X with degree ≤ ai. Let b1, ..., bl be the distinct degrees of vertices

in Y with b1 < b2 < ... < bl, and let βi be the number of vertices in Y with degree

≤ bi. Note that the vertices with degree≤ ai will be xp, ..., xp−αi+1 and the vertices

with degree ≤ bi will be yq, ..., yq−βi+1. That is, these vertices will be sequential

starting from the highest indexed vertices in X or Y .

The ratios below are used to determine how to partition the chain graph to con-

struct the MDST.

For all i, 1 ≤ i ≤ k,

fX(i, G) =

{
0 if for some x ∈ X with degG(x) = ai,∃ y ∈ NG(x) s.t. degG(y) = 1
αi

ai
otherwise

For all i, 1 ≤ i ≤ l,

fY (i, G) =

{
0 if for some y ∈ Y with degG(y) = bi,∃ x ∈ NG(y) s.t. degG(x) = 1
βi
bi

otherwise

The ComputeRatios algorithm shows how to compute these values.

We now show a detailed example of how these algorithms work before present-

ing them formally.

Figure 3.1: A chain graph with degrees, ai and bi, labeled.

Given the chain graph in Figure 3.1, we have a1 = 2, a2 = 5, a3 = 8, b1 = 1,

b2 = 4, and b3 = 9. Therefore, we have α1 = 5, α2 = 8, α3 = 9, β1 = 3, β2 = 6,

and β3 = 8.
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Using these values, we get the following for fX and fY : fX(1, G) = 5
2
,

fX(2, G) = 8
5
, fX(3, G) = 0, fY (1, G) = 3

1
, fY (2, G) = 6

4
, and fY (3, G) = 8

9
.

These values are computed by the ComputeRatios algorithm.

Now that we have the values of fX and fY , we use these constraints to partition

the graph into a number of parts, starting with the largest ratio. Each part consists

of a set of vertices that must be connected to the other set in the part in a spanning

tree of the graph. We will see that these parts can be chosen from either end of the

graph, since it is not known whether the highest constraint will come from fX or

fY . These parts will be denoted Ci, with X(Ci) being the larger side and Y (Ci)

being the smaller side. These parts are constructed by the Partition algorithm.

Figure 3.2: A chain graph partitioned. From left to right, the parts are C2, C3, and
C1.

In Figure 3.2, we see the partitions of this graph as indicated by the values of

fX and fY . The value of fY (1, G) was largest, and so the first part, C1, consists of

the highest indexed β1 vertices in Y (G) and their neighbourhood.

Next, we want to construct spanning trees on each part. We do this in a greedy

manner, by assigning each vertex in X(Ci) to a vertex in Y (Ci) and adding an edge

between them, for each Ci. The way the parts are chosen allows us to distribute the

edges over Y (Ci) in such a way that the highest degree and the lowest degree of a

vertex here differs by at most one.

In Figure 3.3, we see the first step in creating a spanning tree on a part. Each

vertex in X(Ci) has degree one and degrees of vertices in Y (Ci) differ by at most
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one.

Figure 3.3: Constructing spanning trees on each part.

The second step in creating spanning trees on parts is to connect the compo-

nents. There is one component for each vertex in Y (Ci), and we denote this number

as qi. We now greedily add the qi − 1 edges required to connect the spanning for-

est of each part, and maintain the difference between highest and lowest degree of

vertices in Y (Ci) to be no more than one. The highest degree of a vertex in Y (Ci)

also increases by at most one.

Figure 3.4 shows the spanning trees constructed on each part. These spanning

trees on parts are constructed by the PartMDST algorithm.

Figure 3.4: A spanning tree is constructed on each part in the partition of a chain
graph.

Once a spanning tree has been constructed on each part, we must connect each

part to create a spanning tree of the whole graph. We add the edge crossing each gap

between parts from the lower indexed vertex in Y (G) to the lower indexed vertex

in X(G). These edges are indicated in bold in Figure 3.5. The dashed edges cannot

be used to connect the parts since they do not exist in the graph.
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Figure 3.5: Spanning trees on each part are connected to form a spanning tree for
the graph.

We have created a spanning tree for a chain graph with a certain maximum

degree. The maximum degree of the spanning tree is determined by the ratio, fX or

fY , associated with C1. In our example, the maximum degree of the spanning tree

is four. Looking at C1, we can see why we have this maximum degree: we must add

edges from each of the three vertices with degree one in Y (G) to their neighbour in

X(G). Then, we must connect this component to the rest of the spanning tree by

adding another edge to this one vertex.

Since the ratio 3
1

is larger than any other ratio in the graph, no other part will

produce a maximum degree any larger than that of C1. Therefore, we can see that

C1 gives the maximum degree of a vertex in this spanning tree. These claims will

be proven formally later in this chapter.

We now present the algorithms formally.
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Algorithm 1: ChainGraphMDST
Input: A chain graph G = (X, Y,E) with |X| ≥ |Y |
Output: A spanning tree T of G

// initialize T to contain the vertices of G and no
edges

T = (X, Y, ∅);
// G′ is the unpartitioned portion of G
G′ ← G;
i← 1;
while G′ 6= ∅ do

// Ci is the next part of G′

Ci ← Partition(G′);
// build an MDST for Ci and add these edges to T
T ← T ∪ PartMDST(Ci);
G′ ← G′ − Ci;
i← i+ 1;

end
r ← i− 1;
// connect the components of T from left to right

in a drawing of G
C = an ordering of the parts Ci such that Cj < Ck if Cj is to the left of Ck in
a drawing of G;
// j is the index of a part in the ordering C
foreach j = 1...r − 1 do

a← min{k |xk ∈ X(G)∩C[j]};
b← max{k | yk ∈ Y (G)∩C[j]};
E(T )← E(T ) ∪ {(xa−1, yb)};

end
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Algorithm 2: Partition
Input: A chain graph G′ = (X ′, Y ′, E ′) with |X ′| ≥ |Y ′|
Output: A part C that is the subgraph of G′ constructed by finding the

maximum value of fX and fY , using this ratio to choose the vertices
for X(C), and adding their neighbours in G′ as Y (C)

ai, αi, bi, βi are as defined earlier in this section;
c, d = ComputeRatios(G′);
// construct part C based on the values of c and d

if αc

ac
≥ βd

bd
then

W = {x | degX′(x) ≤ ac};
N(W ) = {y | y ∈ NG′(x) for some x ∈ W};

else
W = {y | degY ′(y) ≤ bd};
N(W ) = {x |x ∈ NG′(y) for some y ∈ W};

end
C = (W,N(W ), {(u, v) |u, v ∈ W ∪N(W ), (u, v) ∈ E ′});
return C;

Algorithm 3: PartMDST
Input: A chain graph Ci = (Xi, Yi, Ei) with |Xi| ≥ |Yi|
Output: A spanning tree Ti = (Xi, Yi, Fi) of Ci

foreach x = xpi ...x1 ∈ Xi do
choose yj ∈ NCi

(x) s.t. degTi(yj) minimized, break ties by lowest index;
Fi ← Fi ∪ {(x, yj)};

end
choose yj ∈ Yi s.t. degTi(yj) is minimized, break ties by lowest index;
// we connect the qi components of Ti, starting at yj
// we add an edge from qi − 1 vertices in Yi to their

highest indexed neighbour in Xi

C(v) = the component of Ti a vertex v is in;
for k = j...(j + qi − 2) mod qi do

l = maxh s.t. C(xh) 6= C(yk), degTi(xh) = 1, and (xh, yk) ∈ E;
Fi ← Fi ∪ {(xl, yk)};

end
return Ti;
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Algorithm 4: ComputeRatios
Input: A chain graph G′ = (X ′, Y ′, E ′)
Output: The indices c and d that represent the maximum values of fX(i, G′)

and fY (i, G′) respectively.

index = |X ′|, c = 0, d = 0, fc = 1, fd = 1;
while index > 0 do

while degG′(xindex) ≡ degG′(xindex−1) do
index−−;

end
if degG′(y) = 1 for some y ∈ NG′(xindex) then

thisRatio = 0;
else

thisRatio = index
degG′ (xindex)

;
end
if fc ≤ thisRatio then

fc = thisRatio;
c = i s.t. αi = index;

end
index−−;

end
index = |Y ′|;
while index > 0 do

while degG′(yindex) ≡ degG′(yindex−1) do
index−−;

end
if degG′(x) = 1 for some x ∈ NG′(yindex) then

thisRatio = 0;
else

thisRatio = index
degG′ (yindex)

;
end
if fd ≤ thisRatio then

fd = thisRatio;
d = i s.t. βi = index;

end
index−−;

end
return c, d;
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3.2.2 Proof of Correctness

We first give some further explanation of the algorithms presented in the previous

subsection. ComputeRatios computes the values of fX and fY to be used by Pariti-

ton.

Partition finds the most constraining part of a chain graph, that is the part of

the graph that has the largest ratio fX or fY . PartMDST adds edges from the larger,

constraining side of a part to the smaller side, pairing each vertex inXi with a vertex

in Yi, where i is the part index. (We note that Xi and Yi in a part may be reversed

from X and Y in G, depending on how the partition was chosen.) This results in a

forest of qi components. Another qi − 1 edges must be added to finish a spanning

tree on the partition.

ChainGraphMDST takes the spanning trees constructed by PartMDST, which

result in r components, where r is the number of parts in the final partition of G.

The spanning trees for each part are then connected to their adjacent parts, in a way

to avoid increasing ∆(T ) unless necessary.

Since the definitions of fX(i, G) and fY (i, G) ensure the part with the maximum

ratio does not contain leaves in its smaller side, we can assume that for each part

Ci, there are no vertices in y ∈ Yi with degCi
(y) = 1.

We now show that these algorithms construct a spanning tree with a particular

maximum degree of a chain graph G.

Lemma 3.2. Immediately following the first loop of the PartMDST algorithm and

before the second loop, there exists some k, 1 ≤ k < qi, such that degTi(yj) = dpi
qi
e

for all 1 ≤ j ≤ k and degTi(yj) = bpi
qi
c for all k < j ≤ qi.

Proof. We first show that degTi(yj) > degTi(yk) implies j < k. Since G is a

chain graph, NG(yj) ⊇ NG(yk) if j < k. If degTi(yk) > degTi(yj), then there was

some vertex in NG(yk) that was paired to yk instead of yj . But since we break ties

by lowest index, and j < k, then we should have made that vertex adjacent to yj

instead, a contradiction. Therefore degTi(yj) > degTi(yk) implies j < k.

By the generalized pigeonhole principle, if we are connecting pi vertices of Xi

to qi vertices of Yi, then the maximum degree of a vertex in Yi is at least dpi
qi
e. In
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fact, the maximum degree of a vertex in Yi is at least the ceiling of the maximum

ratio inside this part. Since Ci was chosen as the part that maximized the ratio, this

is dpi
qi
e. So the maximum vertex degree in Yi in Ti after the pairing will be at least

dpi
qi
e.

Assume the maximum degree of some vertex in Yi of Ti is larger than dpi
qi
e. That

is, there exists y ∈ Yi s.t. degTi(y) ≥ dpi
qi
e + 1 > dpi

qi
e. When an edge is added

from a vertex x ∈ Xi to a vertex in Yi whose degree is already dpi
qi
e, then all other

neighbours of x in Yi have degree at least dpi
qi
e as well.

When we try to add this new edge, the total degree ofNTi(x) is≥ |NTi(x)|∗dpi
qi
e,

and, since we have a vertex x ∈ X that current does not have a neighbour in Ti,

|NTi(x)| ∗dpi
qi
e < |NTi(NTi(x))|. Equivalently, |NTi

(NTi
(x))|

|NTi
(x)| > dpi

qi
e. Therefore there

is a larger ratio in Ci and the part would have been chosen differently. But since

this part was chosen, we have a contradiction. Therefore, the maximum degree of

any vertex in Yi of Ti is dpi
qi
e.

Now we show that the minimum degree of any vertex in Yi of Ti at this point is

bpi
qi
c. Assume there exists a vertex with degree in Ti less than bpi

qi
c. Since we know

that higher indexed vertices in Yi will have degrees no larger than the lower indexed

vertices, we can say that degTi(yqi) < b
pi
qi
c. Let Dqi be the set of vertices in Yi that

have the same degree in G as yqi (including yqi). SinceG is a chain graph, we know

that NCi
(Dqi) = NCi

(yqi).

Since we paired each vertex in Xi of Ti to its lowest degree neighbour in Ci,

breaking ties by lowest index, if there is a vertex inDqi that has degree less than bpi
qi
c

in Ti, then the maximum degree in Ti of a vertex in Dqi differs from the minimum

degree by exactly one. Since the degree in Ti of yqi is strictly less than bpi
qi
c, then

the maximum degree in Ti of a vertex in Dqi is ≤ bpi
qi
c.

Since there is at least one vertex with degree strictly less than bpi
qi
c, we get

|NTi(Dqi)| < |Dqi| ∗ b
pi
qi
c. Therefore, |NTi

(Dqi )|
|Dqi |

< bpi
qi
c.

For simplicity, let n′ = |NTi(Dqi)| and d′ = |Dqi |. We have that n′

d′
< pi

qi
. We

now show that this implies pi
qi
< pi−n′

qi−d′ and so we would have chosen our part to not

include Dqi and its neighbourhood in Ti.

From n′

d′
< pi

qi
, we get that −n′ > −d′pi

qi
.
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pi − n′

qi − d′
>
pi − d′ piqi
qi − d′

=
pi(1− d′

qi
)

qi − d′
=
pi

1
qi

(qi − d′)
qi − d′

=
pi
qi

(3.1)

Therefore, the part Ci would not have been chosen to contain the vertices in Dqi

and NTi(Dqi), and so the minimum degree of any vertex in Yi of Ti is bpi
qi
c.

Therefore, the lemma holds.

Lemma 3.3. The PartMDST algorithm returns a spanning tree Ti of Ci with

∆(Ti) =

{
dpi
qi
e if dpi

qi
e × qi = pi + qi − 1 ,

dpi
qi
e+ 1 otherwise .

Proof. We will first show that Ti is a spanning tree of Ci. In PartMDST, Ti is

defined to contain the same vertices as Ci. The first loop adds one edge for each

x ∈ Xi: pi edges. The second loop adds j+ qi− 2− j+ 1 = qi− 1 edges, totalling

pi + qi − 1 edges.

After the first loop, there are qi components in Ti. For each iteration of the sec-

ond loop, an edge is added from one component to another, decreasing the number

of components by one. This happens qi − 1 times, so we get qi − (qi − 1) = 1

components. Therefore, Ti is connected, and is a spanning tree of Ci.

Now, we will show that ∆(Ti) is equivalent to the value stated in the lemma. By

Lemma 3.2, after the first loop all vertices in Ti have degree dpi
qi
e or bpi

qi
c. So after

PartMDST, ∆(Ti) ≥ dpiqi e.

We have that degTi(x) ∈ {1, 2} for all x ∈ Xi, and since any spanning tree

of Ci must have maximum degree ≥ 2, any increase in the maximum degree of Ti

must come from a vertex in Yi.

Case 1: Exactly one vertex in Yi after the first loop has degree dpi
qi
e, and dpi

qi
e 6=

bpi
qi
c. Thus, pi ≡ 1 mod qi, and so dpi

qi
e × qi = pi + qi − 1.

By Lemma 3.2, we know that degTi(y1) = dpi
qi
e, and degTi(yk) = bpi

qi
c, 1 <

k ≤ qi. The second loop of PartMDST will then start at y2 and will add one edge

incident to each of y2, ..., yqi . This gives degTi(y) = dpi
qi
e for all y ∈ Yi. Since we

have shown ∆(Ti) ≥ dpiqi e, and now that no vertex in Yi will have degree < dpi
qi
e,

we have ∆(Ti) = dpi
qi
e.

Case 2: More than one vertex in Yi has degree dpi
qi
e in Ti, or dpi

qi
e = bpi

qi
c.
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We must add qi − 1 edges to the vertices in Yi. By the generalized pigeonhole

principle, we see that we must force at least one vertex with degree dpi
qi
e to increase

to dpi
qi
e+ 1. But since Ci is a chain graph, we do not have to add more than 1 edge

to each y ∈ Yi. Therefore, ∆(Ti) = dpi
qi
e+ 1.

By the generalized pigeonhole principle, ∆(Ti) must be at least dpi
qi
e. In Case 1,

we have this value exactly, and in Case 2, we are forced to increase ∆(Ti) by one

in order to get a connected tree.

Therefore, the lemma holds.

Theorem 3.4. The ChainGraphMDST algorithm constructs a spanning tree T of a

chain graph G with

∆(T ) =

{
dp1
q1
e if p1 = p, q1 = q, dp1

q1
e × q = p+ q − 1 ,

dp1
q1
e+ 1 otherwise .

Proof. Let T = ChainGraphMDST(G). We need to show that T is a spanning tree

of G, and that ∆(T ) = dp1
q1
e or dp1

q1
e+ 1.

First, we will show that T is a spanning tree of G. ChainGraphMDST assigns T

to contain the vertices of G, and, if r is the number of parts made by the algorithm,

we have
r∑
i=1

|E(Ti)|+r−1 =
r∑
i=1

(pi+qi−1)+r−1 =
r∑
i=1

(pi+qi)−r+r−1 =

p + q − 1 edges in T . Each Ti is the spanning tree constructed for each part Ci

of G, and the second loop of the ChainGraphMDST algorithm adds r − 1 edges to

connect these parts. Note that if r = 1, then C1 = G and T1 is a spanning tree of

G. We now assume r > 1.

We know that each Ti is connected, so we just need to show that this second

loop connects all Ti, and that the edges used to connect exist in G.

Consider G drawn in the way we described for chain graphs in the beginning

of this chapter. See Figure 3.6 as an example. Recall that for some Ci, we may

have that X(Ci) ⊂ X(G) and Y (Ci) ⊂ Y (G), and for other Ci we may have that

X(Ci) ⊂ Y (G) and Y (Ci) ⊂ X(G).

This example is partitioned in Figure 3.7, and each Ti has been constructed. The

vertices in X(G), x1, ..., xp = Y1, Y3, X4, X2 and the vertices in Y (G), y1, ..., yq =

Y2, Y4, X3, X1, because of how the parts were chosen in this particular chain graph.
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Figure 3.6: A chain graph.

Consider the vertices from each distinct part separately. The edges added between

parts are from the highest indexed vertex in Y (G) ∩ Ci to the vertex indexed one

lower in X(G) than the lowest indexed vertex in X(G)∩Ci. We define an ordering

C to be the ordering of parts from left to right. We denote the part at position j in

C as C[j]. For Figure 3.7, C = C2, C4, C3, C1, and C[1] = C2.

Figure 3.7: The chain graph from Figure 3.6, partitioned and with each Ti con-
structed as in PartMDST.

In Figure 3.8, we can see that each edge added in the final step (the bold edges)

will cross exactly one gap between parts, so each adjacent C[j] and C[j + 1] will

be connected by an edge with one vertex in each part. So T will be connected with

p+ q − 1 edges and therefore is a spanning tree of G.

As defined in ChainMDST, for a given Ci, xa is the lowest indexed vertex in
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Figure 3.8: The final edges connecting each Ti from Figure 3.7 to form a spanning
tree. The vertices xa and yb are labeled in each part, and the bold edge is (xa−1, yb).

X(G) ∩ Ci and yb is the highest indexed vertex in Y (G) ∩ Ci.

In order to add the edges (xa−1, yb) to T , we must show this edge is in E(G).

Since G is a chain graph, it has the nested neighbourhood ordering, and x1 is a

dominating vertex of Y . Each Ti is connected, and so (xa′ , yb) ∈ E(Ti) for some

xa′ ≥ xa. Since xa′ , x1 ∈ NG(yb) and the neighbourhood of yb is consecutive in the

ordering, then xa−1 ∈ NG(yb). So the edges used to connect exist in G.

Therefore, T is a spanning tree of G. It remains to be shown that ∆(T ) = dp1
q1
e

or dp1
q1
e+ 1

By Lemma 3.3, ∆(Ti) = dpi
qi
e or dpi

qi
e + 1 for each Ci. Since Ti connects the

vertices in Xi to Yi, we just need to connect these Ti to form a spanning tree T of

G with ∆(T ) as one of the values stated in the theorem. Now we will show that the

final connecting loop will only increase the maximum ∆(Ti) if it is necessary.

By how the parts are chosen, we know that p1
q1
≥ pi

qi
for all i. By Lemma 3.3,

we know that ∆(T1) = dp1
q1
e if p1 = p, q1 = q, dp1

q1
e × q = p+ q − 1, and dp1

q1
e+ 1

otherwise. It remains to be shown that ∆(T ) = ∆(T1). If p1 = p and q1 = q, then

C1 = G, and so T1 is a spanning tree of G. We assume p1 < p and q1 < q.

Case 1: First, assume ∆∗G ≥ 3. Each edge added in the final loop is incident on

the highest indexed vertex in Y (G)∩C[j] and the vertex indexed one lower than the

lowest indexed vertex in X(G)∩C[j]. This vertex is the highest indexed vertex in

X(G)∩C[j + 1].
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We now consider two cases for xa−1 in C[j + 1]. Let Tl be the spanning tree

produced by PartMDST for C[j + 1]).

Subcase 1a: xa−1 ∈ X(C[j + 1])

As observed in the proof of Lemma 3.3, after PartMDST(C[j+1])), degTl(x) =

1 or 2, for all x ∈ X(Tl). So after this edge is added, degT (xa−1) = 2 or 3. Since

∆∗G ≥ 3, adding the edge (xa−1, yb) does not make degT (xa−1) > ∆(T1).

Subcase 1b: xa−1 ∈ Y (C[j + 1])

Let pj = |X(C[j+1])| and let qj = |Y (C[j+1])|. By Lemma 3.2, the maximum

degree of a vertex in Tl after the first loop in PartMDST is dpj
qj
e. By Lemma 3.3,

the maximum degree of a vertex in Tl after PartMDST is dpj
qj
e+ 1. However, since

only qj − 1 edges are added, at least one vertex in Y (C[j + 1]) has degree in Tl less

than ∆(Tl), or every vertex in Y (C[j + 1]) has the same degree.

In the first case, by Lemma 3.2, we know this is the highest indexed vertex in

Y (C[j + 1]). In this subcase, that vertex is xa−1, and so adding the edge (xa−1, yb)

does not make degT (xa−1) > ∆(T1). If all vertices in Y (C[j + 1]) have the same

degree, then a degree increase is required since, by how a part of chosen, X(C[j +

1]) has no neighbours in C[j], and therefore an edge connecting C[j] to C[j + 1]

must be have an edge incident on a vertex in Y (C[j + 1]).

Equivalent arguments can be made for the subcases that yb ∈ X(C[j]) and

yb ∈ Y (C[j]).

Case 2: Now assume ∆∗G = 2. This means thatG satisfies one of the conditions

from Theorem 3.1.

Subcase 2a: p = q and degG(xp) = degG(yp) = 1.

Partitioning G will give two parts, C1 and C2, with X1 = {xp, ..., x2} and

Y1 = {y1, ..., yp−1}, and X2 = {yp}, Y2 = {x1}.

PartMDST(C1) returns T1, which will be a path xp, y1, xp−1, y2, ..., x2, yp−1. T2

will contain only the edge (x1, yp). So the degree in T1 is 1 for xp, yp−1, x1, yp, and

2 for the other vertices. The algorithm will then add the edge (yp−1, x1), which will

not increase ∆(T ). Now ∆(T ) = ∆(T1) = 2, and T is a spanning tree of G.

Subcase 2b: p = q and at least one of degG(xq), degG(yp) > 1 OR p = q + 1.

G will be partitioned into just one part, C1. By Lemma 3.3, T1 is a spanning
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tree of C1 with the ∆(T ) as defined in this theorem. C1 = G, so T1 = T and no

further edges are added.

Therefore, ChainGraphMDST returns a spanning tree T ofGwith ∆(T ) = dp1
q1
e

if p1 = p, q1 = q, dp1
q1
e × q = p+ q− 1, and dp1

q1
e+ 1 otherwise. Thus, the theorem

holds.

3.3 Solving the Minimum Degree Spanning Tree Prob-
lem on Chain Graphs

Theorem 3.5. Let G = (X, Y,E) be a chain graph with nested neighbourhood

ordering x1, ..., xp and y1, ..., yq. Recall the values k, l, ai, αi, bi, βi, as defined in

Section 3.2.1, as well as the ratios fX(i, G) and fY (i, G).

Fix c such that c ∈ {1, ..., k}, fX(c,G) ≥ fX(i, G) for 1 ≤ i < c, and

fX(c,G) > fX(i, G) for c < i ≤ k. Fix d such that d ∈ {1, ..., l}, fY (d,G) ≥

fY (i, G) for 1 ≤ i < d, and fY (d,G) > fY (i, G) for d < i ≤ l.

We now define a part C of G. If c ≥ d, let X(C) = {x ∈ X |degG(x) ≤ ac},

and Y (C) = NG(X(C)). If d > c, let X(C) = {y ∈ Y |degG(y) ≤ bd}, and

Y (C) = NG(X(C)). We note that X(C) and Y (C) may correspond to vertices in

Y (G) and X(G) respectively.

Let p1 and q1 be the sizes of X(C) and Y (C) respectively. Then,

∆∗G =

{
dp1
q1
e if p1 = p, q1 = q, dp1

q1
e × q = p+ q − 1 ,

dp1
q1
e+ 1 otherwise .

Proof. By Theorem 3.4, there exists a spanning tree T of a chain graph G such that

∆(T ) =

{
dp1
q1
e if p1 = p, q1 = q, dp1

q1
e × q = p+ q − 1 ,

dp1
q1
e+ 1 otherwise .

Therefore, ∆(G) ≤ ∆(T ).

We now show that, unless p = p1, q = q1 and dp
q
e×q = p+q−1, ∆∗G ≥ d

p1
q1
e+1.

We note that if p1 < p, then we must have q1 < q, otherwise the graph G− C1

is not connected.
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If p > p1, and q > q1, then C1 is a proper subset of G. Connecting each vertex

in X1 to exactly one vertex in Y1 creates q1 components. We must now add q1 − 1

edges to connect these components, plus one edge to connect this part to the rest of

the graph. Therefore, there are p1 + q1 edges incident on Y1, and by the generalized

pigeonhole principle, at least one vertex in Y1 has degree ≥ dp1+q1
q1
e = dp1

q1
e + 1.

Thus in this case, ∆∗G ≥ d
p1
q1
e+ 1.

If p = p1 and q = q1, then we must add p + q − 1 edges to the vertices in Y

to create a spanning tree. Connecting the vertices in X to the vertices in Y gives

at least one vertex in Y with degree ≥ dp
q
e. If there is exactly one vertex in Y

with degree ≥ dp
q
e after connecting the vertices in X , then adding the remaining

q − 1 edges can be done without increasing the degree. This case only occurs if

dp
q
e × q = p + q − 1. Otherwise, two or more vertices have degree ≥ dp

q
e after

connecting the vertices of X , and adding q − 1 more edges will give at least one

vertex with degree ≥ dp
q
e+ 1. Thus, unless dp

q
e × q = p+ q − 1, ∆∗G ≥ d

p1
q1
e+ 1.

Therefore, this formula gives ∆∗G for any chain graph G.

Theorem 3.6. The ChainGraphMDST algorithm produces an MDST of a given

chain graph G in O(n2) time.

Proof. By Theorem 3.4, ChainGraphMDST produces a spanning tree T of G such

that

∆(T ) =

{
dp1
q1
e if p1 = p, q1 = q, dp1

q1
e × q = p+ q − 1 ,

dp1
q1
e+ 1 otherwise .

By Theorem 3.5,

∆∗G =

{
dp1
q1
e if p1 = p, q1 = q, dp1

q1
e × q = p+ q − 1 ,

dp1
q1
e+ 1 otherwise .

Therefore, ChainGraphMDST produces a spanning tree T ofG such that ∆(T ) =

∆∗G.

The algorithm Partition calls ComputeRatios, which checks the ratios for G′,

which in the worst case has k = p and l = q, and so ComputeRatios runs in

O(|G′|) ∈ O(n) time. Partition then adds some number of vertices to the new part,

which isO(n), and thus Partition runs inO(n) time. The PartMDST algorithm adds

one edge for each vertex in Ci, and so runs in O(n) time.
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The ChainGraphMDST algorithm calls Partition and PartMDST once for each

part in the partition of G. The upper bound on the number of parts r is q, since at

least one vertex from each of X and Y must be in a part. Thus, in the worst case,

the first loop of ChainGraphMDST runs in q ∗ (O(n) + O(n)) ∈ O(n2) time. The

second loop of ChainGraphMDST runs in O(r) time.

Therefore, the ChainGraphMDST algorithm runs in O(n2) time.
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Chapter 4

Bipartite Permutation Graphs

We present results related to the minimum degree spanning tree problem for bi-

partite permutation graphs. First, we give some structural results regarding longest

paths in bipartite permutation graphs. We then show that there exists a crossing-

free MDST for every connected bipartite permutation graph, and one that contains

a longest path.

We combine these to show that for every connected bipartite permutation graph

G, there exists a spanning tree T of G such that T is a caterpillar, T contains a

longest path of G, T has no edge crossings, and ∆(T ) = ∆∗G.

Finally, we present a polynomial time algorithm that uses dynamic program-

ming to solve the minimum degree spanning tree problem and the minimum degree

spanning tree construction problem on connected bipartite permutation graphs.

Let G = (X, Y,E) be a bipartite permutation graph with strong ordering

x1, ..., xp and y1, ...yq. We will consider G drawn with the vertices of X and Y

in rows, sorted as in a strong ordering, as in Figure 4.1. We consider a vertex xi to

be to the left of a vertex xj , xi, xj ∈ X , if i < j, and to the right if i > j. The same

holds for yi, yj ∈ Y .

We define some order on a set of edge crossings in a strongly ordered bipartite

permutation graph. Consider a set of edges F such that every edge in the set forms a

crossing with at least one other edge. Let xi1 , xi2 , ..., xik and yj1 , yj2 , ..., yjh , ordered

as in the strong ordering, be the vertices contained in the edges in F . We define the

leftmost edge crossing as the pair of edges (xi1 , y
′) and (x′, yj1), where y′ is the

leftmost neighbour in F of xi1 and x′ is the leftmost neighbour in F of yj1 . This
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Figure 4.1: A bipartite graph with X and Y ordered as in a strong ordering of G.

pair of edges will form a crossing, since (xi1 , yj1) will not be contained in F , and

so xi1 < x′ and yj1 < y′.

Since a graph must be connected in order to have a spanning tree, we restrict our

attention to connected bipartite permutation graphs in this chapter. Thus, all graphs

in this chapter are assumed to be connected and we further assume that each graph

has three or more vertices.

4.1 Properties of Longest Paths

In this section, we discuss some previous results about Hamiltonian path and

longest path problems on bipartite permutation graphs, and present some new work

regarding the structure of these paths.

Theorem 4.1. [52] Let G = (X, Y,E) be a connected bipartite permutation graph

with strong ordering x1, ..., xp and y1, ...yq. Assume without loss of generality that

there exists a longest path P inG such that the leftmost endpoint of P is inX . Then

there is a longest path P of G with P = (xi1 , yj1 , xi2 , yj2 , ...) such that xik < xik+1

and yjk < yjk+1
for each k.

By our definition of zig-zag and Theorems 2.7 and 4.1, we see that if a bipartite

permutation graph has a Hamiltonian path, then it has a Hamiltonian path that is

a zig-zag, and that every bipartite permutation graph has a longest path that is a

zig-zag.
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We now present some results regarding the edges (x1, y1) and (xp, yq) in longest

paths of G.

Theorem 4.2. [1] Let G = (X, Y,E) be a biconvex graph with convex orderings

x1, ..., xp and y1, ..., y1. Then G is a bipartite permutation graph if and only if

(x1, y1), (xp, yq) ∈ E.

Lemma 4.3. Let G = (X, Y,E) be a connected bipartite permutation graph with

strong ordering x1, ..., xp and y1, ..., y1. Then at least one of x1, y1 is in every zig-

zag longest path in G.

Proof. Assume there exists a longest zig-zag path P in G such that neither x1 or

y1 are in P . Assume without loss of generality P = (xi, yj, ...), i > 1, j > 1. We

have stated that we are only dealing with connected graphs, so there exists a path

in G from xi to x1. If there exists a path in G from xi to x1 that contains (xi, yk),

yk /∈ P , then P is not a longest path in G, as it could be extended by adding the

edges in the (xi, x1)-path. So yj is on the (xi, x1)-path in G. If this path is longer

than length 1, replacing (xi, yj) with this path would give a path inG longer than P .

So (x1, yj) ∈ E. But replacing (xi, yj) with (x1, yj), (x1, y1) gives a longer zig-zag

path.

Therefore, any zig-zag longest path in G must contain at least one of x1, y1.

Lemma 4.4. Let G = (X, Y,E) be a connected bipartite permutation graph with

strong ordering x1, ..., xp and y1, ..., y1. Then there exists a zig-zag longest path P

in G such that (x1, y1) ∈ P .

Proof. By Lemma 4.3, at least one of x1, y1 is in every zig-zag longest path of G.

Assume for all zig-zag longest paths of G, we have exactly one of x1, y1 in each

path. By Theorem 4.2, we have (x1, y1) ∈ E.

Let P be an arbitrary zig-zag longest path of G. Assume without loss of gen-

erality that x1 ∈ V (P ) and y1 /∈ V (P ). Since P is a longest path, x1 must have

degree two in P , otherwise we could add (x1, y1) to P to extend the path. So

P = (yj, x1, ...) for some yj .
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Let P ′ = (V (P ) − {yj} ∪ {y1}, E(P ) − {(x1, yj)} ∪ {(x1, y1)}). But P ′ is a

zig-zag longest path in G. So there exists a longest path in G that contains the edge

(x1, y1).

The proof of this lemma also shows that a path that does not contain (x1, y1)

can be used to construct a path that contains this edge.

Corollary 4.5. LetG = (X, Y,E) be a connected bipartite permutation graph with

strong ordering x1, ..., xp and y1, ..., y1. Let P be a zig-zag longest path in G with

its leftmost endpoint in one side of the graph (either X or Y ) that does not contain

the edge (x1, y1). Then there exists a zig-zag longest path in G, P ′, that has its

leftmost endpoint in the same side of the graph as P , contains the edge (x1, y1),

and is equivalent to P in positions 2, ..., r.

Let P = v1, v2, ..., vk be a zig-zag longest path of a strongly ordered connected

bipartite permutation graph G. P is a leftmost longest path if for each vi, there does

not exist a longest path P ′ such that the vertex at index i in P ′ is lower indexed than

vi. A bipartite permutation graph has either one or two leftmost longest paths. If it

has two, one has its leftmost endpoint in X and the other has its leftmost endpoint

in Y .

Lemma 4.6. Let G = (X, Y,E) be a connected bipartite permutation graph with

strong ordering x1, x2, ..., xp, y1, y2, ..., yq, and let P be a leftmost longest path in

G. Then P contains the edge (x1, y1).

Proof. Let P be a leftmost longest path inG that does not contain the edge (x1, y1),

and assume without loss of generality that the leftmost endpoint of P is in X .

Therefore, P contains some edge (xi, y1) such that i > 1. So P = (xi, y1, ...).

By Lemma 4.4, there exists some zig-zag longest path P ′ that contains (x1, y1).

So P ′ = (x1, y1, ...). By the definition of leftmost longest path, we get a contradic-

tion.

Therefore, (x1, y1) is in every leftmost longest path of G.
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We have shown that there must exist zig-zag longest paths containing specific

vertices. Now, we consider what other vertices must be included in longest paths in

bipartite permutation graphs.

Lemma 4.7. Given a connected bipartite permutation graph G = (X, Y,E) with

strong ordering x1, ..., xp and y1, ...yq and a longest zig-zag path P , if v is not in P ,

then the neighbourhood in G of v is contained in P , for all v ∈ V (G).

Proof. We consider three different cases for |P |:

Case 1: |P | = 2. Let P = (x, y). If there exists some v ∈ G, v /∈ P , then there

exists a longer path containing two edges. So P is not a longest path.

Case 2: |P | = 3. Let P = (xi1 , yj1 , xi2). If there exists some v ∈ Y , v /∈ P ,

then since G is connected there exists a (yj1 , v)-path containing at most one of

xi1 , xi2 . But then we can extend P , and so it is not a longest path. Assume without

loss of generality that v ∈ X , for all v /∈ P . Then Y = {yj1}, and since G is

connected N(v) = {yj1}. So we have that for all v /∈ P , N(v) ⊂ P .

Case 3: |P | > 3. Assume without loss of generality that v ∈ X . We first

consider the case where v is between xi and xj ∈ P in the strong ordering, with

i < j, and xi, yk, xj are consecutive in P . Assume there exists u ∈ NG(v), u /∈ P .

Figure 4.2: The edges in G if a vertex v /∈ P has some neighbour u /∈ P .

In the strong ordering of G, we have either u < yk as in Figure 4.2(a), or

yk < u as in Figure 4.2(b), and therefore either (xi, u) or (xj, u) ∈ E(G), respec-

tively. From the strong ordering, we also get that (v, yk) ∈ E(G). We can replace
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(xi, yk, xj) ∈ P with either (xi, u, v, yk, xj) or (xi, yk, v, u, xj). But P is a longest

path. Therefore NG(v) ⊂ P .

Now consider the case that v is not between two path vertices in the strong

ordering. We will say that v is on an end of G; that is for XP being the set of

vertices in X that are in P , we have v < w, for all w ∈ XP , or v > w, for

all w ∈ XP . Consider the set of vertices U = {u|u ∈ NG(v), u /∈ P and u is

not between two path vertices in the strong ordering}. U is also on an end of G,

and therefore the vertices of U are consecutive in the strong ordering of G. The

subgraph of G induced by {v} ∪ U ∪ {p}, where p ∈ P with degP (p) = 1 and the

distance in G between v and p is minimized, is a bipartite permutation graph where

both X and Y are non-empty and no vertices other than p are in P . Since v and U

are on the ends of G, there exists a path from v to p that contains no vertices in P

other than p. Adding this path to P gives us a longer path. But P is a longest path,

so v cannot have such a subset U in its neighbourhood.

Therefore, for any vertex v /∈ P , we have that NG(v) ⊂ P .

Lemma 4.8. Let G = (X, Y,E) be a connected, strongly ordered bipartite permu-

tation graph. For all v ∈ G, if degG(v) ≥ 2, then v is on some longest path in

G.

Proof. Let P be an arbitrary longest zig-zag path of G. Let v be a vertex with

degG(v) ≥ 2 that is not in V (P ). Assume without loss of generality that v ∈ X .

From Lemma 4.7, we have that NG(v) ⊂ V (P ). Choose two neighbours of v,

ui, uj such that ui, uj ∈ P , ui, uj ∈ Y , and no vertex of P is between them in the

strong ordering of Y . By the adjacency property of bipartite permutation graphs,

we have two vertices that satisfy this requirement. Therefore in P we have ui, w, uj

consecutively for some w ∈ X . By replacing w in P by v gives another longest

path.

Therefore, any vertex v with degG(v) ≥ 2 is on some longest path of G.

We now show that the existence of certain zig-zag longest paths in a bipartite
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permutation graph give more information about the graph. More specifically, if a

bipartite permutation graph G has zig-zag longest paths beginning in both X and

Y , this tells us the value of ∆∗G.

Let P be a zig-zag longest path of a strongly ordered connected bipartite per-

mutation graph G. Let r be the size of a longest path in G, and P = v1, v2, ..., vr.

We refer to the index i of vi ∈ P as the position of vi in P . Let the leftmost endpoint

of P be v1 and the rightmost endpoint of P be vr.

In the remainder of this section, we consider G = (X, Y,E), a strongly ordered

bipartite permutation graph that has zig-zag longest paths with leftmost endpoints

in both X and Y . Let PX and PY be zig-zag longest paths of G, PX with leftmost

endpoint inX and PY with leftmost endpoint in Y . By Lemma 4.4, we can fix these

paths to both contain the edge (x1, y1). Assume both paths contain this edge, which

means that the leftmost endpoint of PX is x1, and the leftmost endpoint of PY is y1.

We now introduce some definitions related to PX and PY . Let pos(v, P ) be the

position in zig-zag path P of vertex v. The leftmost endpoint has position 1, etc. A

vertex v ∈ PX ∪ PY satisfies the Position Condition if one of the following holds:

• v ∈ X(PX ∩ PY ) and pos(v, PX) < pos(v, PY ), or
• v ∈ Y (PX ∩ PY ) and pos(v, PY ) < pos(v, PX), or
• v /∈ PX ∩ PY

We define front(P, v) to be the set of vertices in a zig-zag path P that have po-

sition less than pos(v, P ) and back(P, v) to be the set of vertices in P that have po-

sition greater than pos(v, P ). A vertex u is to the left of v ∈ P if u ∈ front(P, v).

A vertex u is to the right of v ∈ P if u ∈ back(P, v). For a vertex w /∈ P , consider

the subpath u1, v, u2 in P such that u1 < w < u2 in the strong ordering of the

original bipartite permutation graph. We define vertices to the left and right of w to

be those to the left and right of v.

Lemma 4.9. Let xi1 , yj1xi2 , yj2 be a subpath of PX such that the Position Condition

holds for these vertices and all vertices to their left in PX . Then (xi1 , yj2) ∈ E(G).

Proof. Assume that for all four vertex subpaths of PX beginning in X to the left of

xi1 , yj1 , xi2 , yj2 , there exists an edge in G between the first and fourth vertices in the
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subpath. Therefore, xi1 , yj1 , xi2 , yj2 is the leftmost such subpath of PX where we

don’t know if this edge exists.

By Lemma 4.7, at least one of xi1 , yj1 is in PY . We consider the following cases.

Case 1: Assume xi1 , yj1 ∈ PY . Let y′ be the rightmost neighbour of xi1 in

PY . If y′ ≥ yj2 , then by the adjacency property, (xi1 , yj2) ∈ G. Therefore, assume

y′ < yj2 .

If y′ ≤ yj1 , let a = pos(xi1 , PX) and b = pos(xi1 , PY ). By our assumption,

a < b. We have pos(y′, PY ) = b+ 1 and pos(yj1 , PX) = a+ 1. Because y′ is to the

left of yj1 in PY and the Position Condition holds for yj1 , we have that b+1 ≤ a+1

implies b ≤ a, a contradiction.

Now assume yj1 < y′ < yj2 . Since PX is a zig-zag, we know y′ /∈ PX . We

now show we can build a longer path containing y′ and the vertices of PX to get a

contradiction.

If xi1 , yj1 = x1, y1, let P ′ = y1, x1, y
′, xi2 , yj2 , α, where α is the rest of PX

following yj2 . P ′ is longer than PX , but PX is a longest path and so we have a

contradiction.

Otherwise, let P ′ = PX , and then for each four-vertex subpath xi3 , yj3 , xi4 , yj4 in

P ′ to the left of xi1 , remove the edge (xi4 , yj3) and add the edge (xi3 , yj4). Remove

(xi2 , yj1) and add (xi1 , y
′), (xi2 , y

′). Now P ′ is a longer path than PX and we get a

contradiction.

Case 2: Assume xi1 ∈ PY and yj1 /∈ PY . Let y′ be the rightmost neighbour of

xi1 in PY . If y′ ≥ yj2 , then by the adjacency property, (xi1 , yj2) ∈ G.

If y′ < yj1 , we can use the fact that the Position Condition holds for xi1

to get a longer path. We see that |front(PY , xi1)| > |front(PX , xi1)|, and so

|back(PX , xi1)| > |back(PY , xi1)|. Since y′ < yj1 , and PX and PY are zig-zags, we

have that front(PY , xi1) ∩ back(PX , xi1) = ∅. Therefore, we can obtain a longer

path P ′ = front(PY , xi1) ∪ {xi1} ∪ back(PX , xi1), a contradiction.

Now, assume yj1 < y′ < yj2 . We know y′ /∈ PX and so we can construct a

longer path containing y′ and the vertices of PX as in Case 1.

Case 3: Assume xi1 /∈ PY and yj1 ∈ PY . Let x′ be the rightmost neighbour of

yj1 in PY .
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Subcase 3.a: Assume x′ < xi1 and let y′ be the rightmost neighbour of x′

in PY . If y′ ≥ yj2 , then by the adjacency property, (xi1 , yj2) ∈ G. Otherwise,

yj1 < y′ < yj2 and y′ /∈ PX , and we can construct a longer path P ′ that contains y′

and the vertices of PX as in Case 1.

Subcase 3.b: If x′ > xi2 and xi2 /∈ PY , by Lemma 4.7, we know that we must

have yj2 ∈ PY . We have that front(PX , yj2) ∩ back(PY , yj2) = ∅, and because the

Position Condition holds for yj2 , we can build a longer path P ′ = front(PX , yj2)∪

{yj2} ∪ back(PY , yj2), a contradiction.

Subcase 3.c: If x′ > xi2 and xi2 ∈ PY , let a = pos(yj1 , PX) and b =

pos(yj1 , PY ), and so b < a because the Position Condition holds for yj1 . Now

pos(xi2 , PY ) ≤ b − 1 and pos(xi2 , PX) = a + 1. Because the Position Condition

holds for xi2 , we have a+1 < b−1, which gives us a+2 < b, and so a+2 < b < a,

a contradiction.

Subcase 3.d: Assume x′ = xi2 . By the Position Condition, we have pos(yj1 , PY )

< pos(yj1 , PX). The edge (xi2 , yj1) is in both PX and PY , so we get pos(xi2 , PY ) =

pos(yj1 , PY ) + 1 and pos(xi2 , PX) = pos(yj1 , PX) + 1. This means pos(xi2 , PY ) <

pos(xi2 , PX), which contradicts our assumption that the Position Condition holds

for xi2 .

Subcase 3.e: Assume xi1 < x′ < xi2 . If the rightmost neighbour y′ of x′ in PY is

to the left of yj2 , then y′ /∈ PX and we can construct a longer path P ′ that contains y′

and the vertices of PX as in Case 1. Otherwise, by our assumptions in this case, and

because PX and PY are zig-zags, we have that front(PX , yj1)∩ back(PY , yj1) = ∅,

and because the Position Condition holds for yj1 , we can build a longer path P ′ =

front(PX , yj1) ∪ {yj1} ∪ back(PY , yj1), a contradiction.

Therefore, if the Position Condition holds for a subpath xi1 , yj1 , xi2 , yj2 in PX

and all vertices to the left of this subpath, then (xi1 , yj2) ∈ G.

Corollary 4.10. Consider PX as defined above in a bipartite permutation graph

G. If there exists a vertex y ∈ Y (G) with y /∈ PX , and if the Position Condition is

satisfied for all vertices in PX that are to the left of y, then there exists a path that

is longer than PX . Therefore, when the Position Condition holds in PX , there are
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no vertices in Y (G) − Y (PX). Equivalently, when the Position Condition holds in

PY , there are no vertices in X(G)−X(PY ).

Proof. The proof of Lemma 4.9, Case 1 shows how if such a vertex in Y (G) −

Y (PX) exists, we can construct a path that is longer than PX .

Corollary 4.11. Using an equivalent argument as in the proof of Lemma 4.9, we can

show that for any subpath yj1 , xi1 , yj2 , xi2 ∈ PY such that the Position Condition

holds for these vertices and all vertices to their left in PY , then (yj1 , xi2) ∈ G.

Lemma 4.12. The Position Condition holds for all vertices in PX ∪ PY .

Proof. First, since PX starts in X and alternates between X and Y along its length,

and PY starts in Y , we can never have a vertex occupying the same position in both

paths. In PX , all odd vertices are in X and all even vertices are in Y . The reverse is

true for PY . This means we don’t have to worry about equality.

PX begins with x1 then y1, and PY begins with y1, then x1. We can see the

lemma holds here.

Assume that the Position Condition holds in PX up to some vertex. We first

assume this vertex is x′ ∈ X(PX), and then that it is y′ ∈ Y (PX).

Let x′ ∈ X be the leftmost vertex in PX where the Position Condition does

not hold. Then we must have x′ ∈ PX ∩ PY and pos(x′, PX) > pos(x′, PY ). If

front(PX , x
′)∩ back(PY , x

′) = ∅, then we can get a longer path P ′ = front(PX , x
′)

∪ {x′} ∪ back(PY , x
′).

Assume front(PX , x′) ∩ back(PY , x
′) 6= ∅. Let this non-empty set be Q. Let

y′′ be the rightmost neighbour of x′ in PY . Since Q is non-empty, y′′ must be to the

left of the rightmost neighbour of x′ in PX .

Case 1: Assume y′′ ∈ NPX
(x′). Here we have two options: y′′ can be the left

neighbour of x′ in PX or it can be the right neighbour. First, assume y′′ is the left

neighbour of x′ in PX . By our assumptions, the Position Condition holds for y′′.

That is, pos(y′′, PY ) < pos(y′′, PX). Because PX and PY share the edge (x′, y′′),

we have that front(PX , y′′) ∩ back(PY , y
′′) = ∅. Therefore, we can build P ′ =

front(PX , y
′′) ∪ {y′′} ∪ back(PY , y

′′), which is a longer path, a contradiction.
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Now assume y′′ is the right neighbour of x′ in PX . Then the edge (x′, y′′) is in

both PX and PY and in both cases, y′′ is the rightmost neighbour of x′. Since these

paths are zig-zags, this shows that front(PX , x′) ∩ back(PY , x
′) = ∅, a contradic-

tion.

Case 2: Assume y′′ is to the left of the leftmost neighbour of x′ in PX and

y′′ ∈ PX . By our assumptions, the Position Condition holds for y′′, so pos(y′′, PY )

< pos(y′′, PX). The rightmost neighbour of y′′ in PY is to the right of x′, so

front(PX , y
′′) ∩ back(PY , y

′′) = ∅, and so we can build a longer path P ′ =

front(PX , y
′′) ∪ {y′′} ∪ back(PY , y

′′), a contradiction.

Case 3: Assume y′′ /∈ PX and y′′ is between the two neighbours of x′ in PX or

y′′ is to the left of the leftmost neighbour of x′ in PX . Let xi1 , yj1 , xi2 be the subpath

of PX such that yj1 is the nearest vertex in PX to the left of y′′. By Lemma 4.9, for

each four vertex subpath of PX starting in X to the left of x′, the edge between the

first and fourth vertices is in G. Let P ′ = PX . For each four vertex subpath of P ′

starting in X such that all vertices in the subpath are to the left of xi2 , remove the

edge connecting the second and third vertices and add an edge connecting the first

and fourth. Remove (xi2 , yj1) and add (xi1 , y
′′), (xi2 , y

′′). Now P ′ is a longer path

in G containing y′′ and the vertices of PX , a contradiction.

These cases prove that all vertices in X(PX) must satisfy the Position Condi-

tion.

Now, let y′ ∈ Y be the leftmost vertex in PX where the Position Condition does

not hold. Let a = pos(y′, PY ) and let b = pos(y′, PX). We have a > b. Since PX

and PY are paths in a bipartite graph that start in X and Y respectively, then a is

odd and b is even. The number of vertices in Y in the (y1, y
′)-subpath of PY is da

2
e.

The number of vertices in Y in the (x1, y
′)-subpath of PX is b

2
.

Since a is odd, b is even, and a > b, then da
2
e > b

2
. Therefore, there exists

some ȳ ∈ PY such that ȳ /∈ PX and y1 < ȳ < y′. Let xi1 , yj1 , xi2 be the subpath

of PX such that yj1 is the nearest vertex in PX to the left of ȳ. By Lemma 4.9, for

each four vertex subpath of PX starting in X to the left of y′, the edge between the

first and fourth vertices is in G. Let P ′ = PX . For each four vertex subpath of P ′

starting in X such that all vertices in the subpath are to the left of xi2 , remove the
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edge connection the second and third vertices and add an edge connecting the first

and fourth. Remove (xi2 , yj1) and add (xi1 , ȳ), (xi2 , ȳ). Now P ′ is a longer path in

G containing y′′ and the vertices of PX , a contradiction.

In each case we get a contradiction to our initial assumption that there exists a

vertex in PX where the Position Condition does not hold. Therefore, the Position

Condition holds for every vertex in PX . We can make a symmetrical argument for

PY , and so therefore the Position Condition holds for all vertices in PX ∪ PY .

Corollary 4.13. PX contains all vertices in Y (G) and PY contains all vertices in

X(G).

Proof. By Corollary 4.10, when the Position Condition holds PX skips no vertices

in Y and PY skips no vertices in X . Then by Lemma 4.12, we get that V (PX) ⊃

Y (G) and V (PY ) ⊃ X(G).

Lemma 4.14. If a strongly ordered, connected bipartite permutation graph G =

(X, Y,E) has at least one zig-zag longest path that starts in X and another zig-zag

longest path that starts in Y , then G has exactly these two zig-zag longest paths,

and they contain exactly the same vertices. More specifically, if PX = v1, v2, ...,

vr−1, vr, then PY = v2, v1, ..., vr, vr−1. That is, for each ordered pair of vertices

vi, vi+1 in PX with i odd, then vi+1, vi is an ordered pair in PY .

Proof. First, we show that r is even, and so PX has its rightmost endpoint in Y , and

PY in X .

Assume that r is odd. Since G is bipartite, we have |X(PX)| = |Y (PX)|+ 1 =

|X(PY )|+ 1 = |Y (PY )|. Then there exists some x in X(PX) such that x /∈ PY .

By Corollary 4.13, X(G) ⊂ V (PY ).

Therefore, r must be even.

Assume that PX and PY contain the same alternating vertices up to xi1 , yj1 , and

after these vertices is the first place they differ. Let PX = x1, y1, ..., xi1 , yj1 , xi2 ,

yj2 , ... and PY = y1, x1, ..., yj1 , xi1 , yj3 , xi3 , .... Now we want to show that xi2 = xi3

and yj2 = yj3 .

First, consider yj3 . By Corollary 4.13, yj3 ∈ PX . Assume yj3 6= yj2 . Since PX

is a zig-zag, then yj2 < yj3 . Since PY is a zig-zag, this means yj2 /∈ PY . Since r
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is even, if there is some vertex in Y (PX − PY ), then there is also some vertex in

Y (PY − PX). But this contradicts Corollary 4.13 as PX cannot skip any vertices in

Y (G), and so we must have that yj2 = yj3 .

Now consider xi3 . Assume xi2 6= xi3 . By Corollary 4.13, xi2 ∈ PY . Since PY

is a zig-zag, then xi3 < xi2 . Since PX is a zig-zag, this means xi3 /∈ PX . Since r

is even, if there is some vertex in X(PY − PX), then there is also some vertex in

X(PX −PY ). But this contradicts Corollary 4.13 as PY cannot skip any vertices in

X(G). Therefore, we must have that xi2 = xi3 .

We assumed that PX and PY differed after xi1 , yj1 . Therefore, the lemma holds

by contradiction.

Corollary 4.15. If G has PX and PY , then G has no other zig-zag longest paths

and ∆∗G = 2.

Proof. By Corollary 4.13, the symmetry of the strong ordering of bipartite permu-

tation graphs, and because we have shown that PX has its rightmost endpoint in Y

and PY has its rightmost endpoint in X , we have that PX and PY can not skip any

vertex in either X(G) or Y (G). Therefore, they are both Hamiltonian paths.

4.2 Crossing-Free Minimum Degree Spanning Trees

In the previous section, we looked at longest paths in bipartite permutation graphs

that contain no edge crossings. Now, we consider crossing-free spanning trees and

MDSTs in bipartite permutation graphs.

Theorem 4.16. [20] A bipartite graph with a vertex ordering x1, ..., xp, y1, ..., yq

contains no edge crossings only if each connected component is a caterpillar.

Lemma 4.17. Let G = (X, Y,E) be a connected bipartite permutation graph with

strong ordering x1, ..., xp and y1, ..., y1. Then any spanning tree of G with no edge

crossings contains the edges (x1, y1) and (xp, yq).

Proof. Assume the edge (x1, y1) is not in a crossing-free spanning tree of G. Then

x1 must be adjacent to some vertex y′ such that y′ > y1, and y1 must be adjacent to

63



some vertex x′ > x1. The edges (x1, y
′), (x′, y1) are in the spanning tree. But since

x1 < x′ and y1 < y′, this is an edge crossing, a contradiction. Therefore, the edge

(x1, y1) is in the crossing-free spanning tree.

An equivalent argument can be made for (xp, yq).

Therefore, (x1, y1) and (xp, yq) are in any crossing-free spanning tree of a bi-

partite permutation graph G.

Theorem 4.18. Let G = (X, Y,E) be a strongly ordered, connected bipartite per-

mutation graph. Then G has an MDST with no edge crossings.

Proof. Let x1, ..., xp and y1, ...yq be a strong ordering of G. If ∆∗G = 2, then G

has a Hamiltonian path. By Theorem 2.7 G has a Hamiltonian path with no edge

crossings.

Assume ∆∗G ≥ 3 and that there does not exist an MDST of G that contains no

edge crossings. Let T be an MDST of G such that the leftmost edge crossing in T

is furthest to the right over all MDSTs of G.

Let the leftmost edge crossing in T be (xi1 , yj2), (xi2 , yj1). This edge crossing

will be referred to as the original crossing. T will match one of the following cases,

and we will show that there exists an MDST T ′ of G such that all edge crossings of

T ′ are further right than the original crossing in T .

The figures below show an example of a crossing for each case. Black vertices

in the figures have degree ∆∗G, or have unknown degree. White vertices are known

to have degree less than ∆∗G. Note that each figure only shows the vertices and

edges in T and T ′ that are relevant in each case. Other vertices and edges in the

graph are not included. Curved edges represent paths containing at least one vertex

not shown.

Case 1: (xi1 , yj1) ∈ T and degT (xi2) < ∆∗G or degT (yj2) < ∆∗G, as in Figure

4.3 (a). Assume without loss of generality we have the case that degT (xi2) < ∆∗G.

Let T ′ = (X ∪ Y,E(T ) − {(xi1 , yj2)} ∪ {(xi2 , yj2)}), as in Figure 4.3 (b). Since

(xi1 , yj2), (xi2 , yj1) is a crossing, we know that (xi2 , yj2) ∈ G. Removing the edge
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from T disconnects the tree into two components, one containing xi1 , yj2 and one

containing xi2 . Adding (xi2 , yj2) reconnects the tree. The degree of each vertex in

T ′ is the same or less than in T , except for xi2 . The degree of xi2 increases by one,

but since it was originally less than ∆∗G in T , ∆(T ′) = ∆∗G. So T ′ is an MDST of

G.

Figure 4.3: An MDST with leftmost crossing further right is constructed for Case
1.

The original edge crossing in T has been removed from T ′, and any new edge

crossings are introduced further to the right, and so all edge crossings in T ′ are fur-

ther right that the original crossing in T . So we get a contradiction.

Case 2: (xi1 , yj1) ∈ T and degT (xi2) = degT (yj2) = ∆∗G. Let Tx be the subtree

of T containing all vertices v such that xi2 ∈ (yj1 , v)-path in T , and let Ty be the

subtree of T containing all vertices v such that yj2 ∈ (xi1 , v)-path in T . Note that

xi2 ∈ Tx and yj2 ∈ Ty. Tx and Ty are vertex disjoint, as (xi1 , yj1) ∈ T and there are

no cycles in a tree. Since the original crossing is leftmost, we get that xi′ ≥ xi2 and

yj′ ≥ yj2 , for all xi′ , yj′ ∈ Tx ∪ Ty.

We show that there exists an MDST T ′ of G that has its leftmost edge crossing

to the right of the original crossing by finding an edge in G that could connect

the disjoint subtrees Tx and Ty so T ′ remains connected if (xi1 , yj2) or (xi2 , yj1) is

removed, or by finding a way to decrease the degree of either xi2 or yj2 to give us

Case 1.

For the following subcases, we will assume without loss of generality u1, u2 ∈

X and v1, v2 ∈ Y , u1 < u2, v2 < v1, and that (u1, v1) ∈ Tx and (u2, v2) ∈ Ty. In

the other cases, a symmetric argument can be made.
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Subcase A: There exists a crossing (u1, v1), (u2, v2) such that (i) degT (u1) <

∆∗G and degT (v2) < ∆∗G, or (ii) degT (u2) < ∆∗G and degT (v1) < ∆∗G. Assume

without loss of generality that we have (i), as in Figure 4.4 (a). Let T ′ = (X ∪

Y,E(T ) − {(xi1 , yj2)} ∪ {(u1, v2)}), as in Figure 4.4 (b). Since (u1, v1), (u2, v2)

is a crossing, (u1, v2) ∈ G. Adding (u1, v2) to T creates a cycle containing the

edges (xi1 , yj1), (xi1 , yj2), (xi2 , yj1) and the paths from xi2 to u1 and from yj2 to v2.

Removing the edge (xi1 , yj2) from the cycle makes T ′ a spanning tree. The only

degrees in T ′ that have increased from T are u1, v2, which we defined as being less

than ∆∗G, and so ∆(T ′) = ∆∗G and T ′ is an MDST of G.

Figure 4.4: An MDST with leftmost crossing further right is constructed for Case
2, Subcase A.

The original edge crossing in T has been removed from T ′, and any new cross-

ings created are to the right of the original crossing, and so all edge crossings in T ′

are further right that the original crossing in T . So we get a contradiction.

Subcase B: There exists a crossing (u1, v1), (u2, v2), such that (i) degT (u1) =

degT (v1) = ∆∗G, degT (u2) < ∆∗G, and degT (v2) < ∆∗G, or (ii) degT (u2) =

degT (v2) = ∆∗G, degT (u1) < ∆∗G, and degT (v1) < ∆∗G. Assume without loss

of generality that we have (i), as Figure 4.5 (a). Let T ′ = (X ∪ Y,E(T ) −

{(u1, v1), (xi1 , yj2)} ∪ {(u1, v2), (u2, v1)}), as in Figure 4.5 (b). Since (u1, v1),

(u2, v2) is a crossing, (u1, v2), (u2, v1) ∈ G.

Removing (u1, v1) disconnects Tx into 2 components, one containing u1, and

the other containing v1. Adding (u1, v2), (u2, v1) connects both components of Tx

to Ty and creates a cycle containing the paths in Tx and Ty from the original crossing

to the (u1, v1), (u2, v2) crossing. Removing the edge (xi1 , yj2) from the cycle makes
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Figure 4.5: An MDST with leftmost crossing further right is constructed for Case
2, Subcase B.

T ′ a spanning tree. Only u2, v2 have higher degree in T ′ than T , but since they were

defined to have degree less than ∆∗G, ∆(T ′) = ∆∗G and so T ′ is an MDST of G.

The original edge crossing in T has been removed from T ′ and so all edge cross-

ings in T ′ are further right that the original crossing in T . So we get a contradiction.

Subcase C: For all crossings (u1, v1), (u2, v2), we have that degT (u1) = degT (u2)

= degT (v1) = degT (v2) = ∆∗G. Consider Tx and Ty as previously defined. Since T

is a tree, both Tx, and Ty must have at least one leaf. Let v′ be a leaf of Tx and, by

the definition of this case, we know its incident edge (u′, v′) is contained in no edge

crossing. Therefore, all vertices in Ty must be to the left of u′, v′ in the ordering of

G. Let v′′ be a leaf of Ty. We know v′′ < v′, and so (u′′, v′′) ∈ Ty must be crossed

by some edge in Tx. But this gives a crossing containing a vertex with degree less

than ∆∗G. Therefore, this case does not occur.

Subcase D: There does not exist a crossing as in Subcase A or B. There-

fore, there exists some edge crossing (u1, v1), (u2, v2) with either (i) degT (u1) =

degT (u2) = ∆∗G and at least one of degT (v1), degT (v2) < ∆∗G, or (ii) degT (v1) =

degT (v2) = ∆∗G and at least one of degT (u1), degT (u2) < ∆∗G. Assume without

loss of generality that we have (i).

Fix (u1, v1), (u2, v2) to be the crossing nearest to xi2 and yj2 that meets the

criteria of either Subcase D.1 or D.2 as stated below. That is, there does not exist a

crossing that meets either set of criteria such that distT (u1, xi2) or distT (v2, yj2) is

less than the chosen crossing.
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We show that such a crossing exists: Since we do not have Subcase A or B, the

degree constraints for either Subcase D.1 or D.2 must be satisfied. It remains to

show that the restriction on vertices in paths will hold. Assume we have a cross-

ing as in Subcase D.1, but v1 ∈ (xi2 , u1)-path. But then since xi2 < u1, there

must be some edge on the (xi2 , v1)-path that crosses (u2, v2). We would choose

that edge instead of (u1, v1). Next, assume we have a crossing as in Subcase D.2,

but v2 /∈ (yj2 , u2)-path. But then since yj2 < v2, there must be some edge on the

(yj2 , u2)-path that crosses (u1, v1). We would choose that edge instead of (u2, v2).

Subcase D.1: The nearest crossing in Subcase D has degT (u1) = degT (u2) =

∆∗G, degT (v2) < ∆∗G, and v1 /∈ (xi2 , u1)-path, as in Figure 4.6 (a).

If u1 6= xi2 , take (u1, v3) ∈ (xi2 , u1)-path. Let T ′ = (X∪Y,E(T )−{(u1, v3)}∪

{(u1, v2)}). We know (u1, v2) ∈ G because (u1, v1), (u2, v2) is a crossing. Remov-

ing (u1, v3) disconnects the spanning tree by splitting Tx into 2 components, one

containing xi2 and one containing u1. By adding (u1, v2), all vertices in Tx that had

u1 on their path to xi2 are now part of Ty. The degree of u1 remains the same, the

degree of v3 decreases, and the degree of v2 increases by 1. But in this case we

chose degT (v2) < ∆∗G. So ∆(T ′) = ∆∗G. So T ′ is an MDST of G, and T ′ has a

nearer valid crossing for this subcase than T , or it may now match Subcase A or B.

A nearer crossing for this subcase is shown in Figure 4.6 (b).

If T ′ matches Subcase A or Subcase B, we get a contradiction. If T ′ has a further

left crossing as in Subcase D, there exists T ′′ that can be constructed from T ′ that

either matches Subcase A or B, or matches Subcase D with a further left crossing.

Since G is finite, if these transformations of T ′ never produce another MDST that

matches Subcase A or B, eventually there will be an MDST with degree of xi2 or

yj2 less than ∆∗G, as in Case 1. In any case, we can get a new MDST with leftmost

edge crossing further to the left of T and a contradiction.

Otherwise, if u1 = xi2 , let T ′ = (X ∪ Y,E(T ) − {(xi2 , yj1)} ∪ {(xi2 , v2)}.

We know (xi2 , v2) ∈ G because (u1, v1), (u2, v2) is a crossing. Removing (xi2 , yj1)

disconnects Tx from the original crossing, and adding (xi2 , v2) reconnects the Tx

component to Ty. So T ′ is connected. Since degT (v2) < ∆∗G, we have that ∆(T ′) =
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∆∗G and so T ′ is an MDST of G.

Figure 4.6: A nearer crossing is created in Case 2, Subcase D.

The original edge crossing in T has been removed from T ′ and so all edge cross-

ings in T ′ are further right that the original crossing in T . So we get a contradiction.

Subcase D.2: The nearest crossing in D has degT (u1) = degT (u2) = degT (v2)

= ∆∗G and degT (v1) < ∆∗G, and v2 ∈ (yj2 , u2)-path, as in Figure 4.7 (a).

Let T ′ = (X∪Y,E(T )−{(u2, v2)}∪{(u2, v1)}), as in Figure 4.7 (b). We know

(u2, v1) ∈ G because (u1, v1), (u2, v2) is a crossing. Removing (u2, v2) disconnects

Ty into two components, one containing v2, yj2 and the original crossing, and the

other containing u2, and decreases the degree of u2 and v2 by 1. Adding (u2, v1)

connects the component not connected to the original crossing to Tx, and since

degT (v1) < ∆∗G, ∆(T ′) = ∆∗G. So T ′ is an MDST of G.

In this case, if v2 = yj2 , then T ′ matches Case 1, and we get a contradiction.

Otherwise, if v2 6= yj2 , we have created a new crossing between Tx and Ty that

is nearer to the original crossing and contains a vertex with degree less than ∆∗G.

This crossing is the edge on the (yj2 , v2)-path that contains v2, and an edge on the

(xi2 , v1)-path, and meets the criteria for one of Subcases A, B, or D.1.

If T ′ matches Subcase A or Subcase B, we get a contradiction. If T ′ has a further

left crossing as in Subcase D, there exists T ′′ that can be constructed from T ′ that

either matches Subcase A or B, or matches Subcase D with a further left crossing.

Since G is finite, if these transformations of T ′ never produce another MDST that

matches Subcase A or B, eventually there will be an MDST with degree of xi2 or

yj2 less than ∆∗G, as in Case 1. In any case, we can get a new MDST with leftmost

edge crossing further to the left of T and a contradiction.
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Figure 4.7: A nearer crossing is created for Case 2, Subcase D.

Case 3: (xi1 , yj1) /∈ T and degT (xi1) < ∆∗G or degT (yj1) < ∆∗G as in Figure

4.8 (a). We have selected the leftmost crossing in T , and so we know that the path

between xi1 and yj1 does not contain a vertex v such that v < xi1 or v < yj1 .

Figure 4.8: Case 3 can be reduced to Case 1 or Case 2, depending on the degrees of
xi2 and yj2 .

Let (u, v) be the edge on the (xi1 , yj1) path in T containing whichever of xi1 ,

yj1 has the highest degree in T . Let T ′ = (X ∪ Y,E(T )− {(u, v)} ∪ {(xi1 , yj1)})

as in Figure 4.8. The removal of (u, v) disconnects the tree into 2 components, one

containing xi1 and one containing yj1 . Adding edge (xi1 , yj1) connects the com-

ponents and creates a new spanning tree. After removing (u, v) we know that both

degT (xi1) < ∆∗G and degT (yj1) < ∆∗G. Therefore ∆(T ′′) = ∆∗G and T ′ is an MDST

of G. T ′ contains (xi1 , yj1) and so matches either Case 1 or Case 2. In both these

cases, we get a contradiction.

Case 4: (xi1 , yj1) /∈ T and degT (xi1) = degT (yj1) = ∆∗G. Since we have se-

lected the leftmost edge crossing, only one of xi1 , yj1 can have neighbours that are

to the left of the crossing. If both xi1 and yj1 have neighbours y′ and x′ respec-

tively, with y′ < yj1 and x′ < xi1 , then this is a crossing that is further left than the
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original crossing. Assume without loss of generality that xi1 is that vertex, and so

∀ v ∈ NT (yj1), v ≥ xi2 .

Subcase A: (xi2 , yj2) /∈ T and xi2 /∈ (yj1 , yj2)-path in T , as in Figure 4.9 (a). Let

T ′ = (X ∪ Y,E(T )− {(xi2 , yj1), (xi1 , yj2)} ∪ {(xi1 , yj1), (xi2 , yj2)}) as in Figure

4.9 (b).

The removal of (xi2 , yj1) divides the tree into 2 components, one containing yj1

and yj2 and one containing xi2 , and reduces the degree of yj1 and xi2 by 1. Remov-

ing (xi1 , yj2) further disconnects the tree into 3 components, the first containing xi1 ,

the second yj1 and yj2 , and the third xi2 , and decreases the degree of xi1 and yj2 .

Adding (xi2 , yj2) connects the first and second components, and adding (xi1 , yj1)

connects the second and third, and since all these vertices had an edge removed,

∆(T ′) = ∆∗G. So T ′ is a minimum degree spanning tree.

Figure 4.9: A new MDST with leftmost edge crossing further right can be con-
structed in Case 4, Subcase A.

The original edge crossing in T has been removed from T ′ and so all edge cross-

ings in T ′ are further right that the original crossing in T . So we get a contradiction.

Subcase B: (xi2 , yj2) ∈ T . Let Tx be the subtree of T containing all vertices v

such that xi2 ∈ (yj1 , v)-path, and let Ty be the subtree of T containing all vertices v

such that for some u ∈ NT (yj1)− {xi2}, u ∈ (yj1 , v)-path. So xi2 , yj2 ∈ Tx but not

Ty, and yj1 ∈ Ty.

We proceed with Tx and Ty as in the subcases of Case 2, and construct T ′′. We

have two possibilities for the construction of T ′: first, in Case 2 we are able to

find an edge to add between this Tx and Ty that creates a cycle in T and does not
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increase ∆(T ). Let T ′ = (X ∪ Y,E(T ) − {(xi2 , yj1)} ∪ {e}), where e is the edge

that can be added between Tx and Ty. An example of this is shown in Figure 4.10.

Adding e creates a cycle that contains (xi2 , yj1) and so removing that edge makes

T ′ a spanning tree of G. Since e was chosen as in Case 2, ∆(T ′) = ∆∗G. So T ′ is an

MDST of G.

Figure 4.10: A new MDST with leftmost edge crossing further right can be con-
structed in Case 4, Subcase B if an edge can be added between Tx and Ty.

The original edge crossing in T has been removed from T ′ and so all edge cross-

ings in T ′ are further right than the original crossing in T . So we get a contradiction.

The second possibility is that between Tx and Ty, every pair of edge crossings

contains only one vertex with degree less than ∆∗G, as in Subcase 2.D. In Subcase

2.D, we showed there either exists an MDST with a crossing as in Subcase 2.A or

Subcase 2.B, and we can obtain a contradiction, or there exists an MDST T ′ with

the degree of the leftmost vertex in T ′x or T ′y less than ∆∗G. In the latter case, we

have either degT ′(xi2) = degT (xi2)−1 < ∆∗G or degT ′(yj1) = degT (yj1)−1 < ∆∗G.

Note that instead of checking for v2 = yj2 in Subcase D.2, in this case we want to

check for v2 = yj1 .

First assume degT ′(yj1) = degT (yj1)− 1 < ∆∗G. We have reduced T ′ to Case 3

as in Figure 4.11, and so we know we have a contradiction.

Now assume degT ′(xi2) = degT (xi2)− 1 < ∆∗G, as in Figure 4.12. The degree

of xi2 is decreased in T ′ by moving some vertex from NT (xi2) ∩ Tx to Ty. Let yj3

be that vertex, with xi3 as its new neighbour in T ′y. We have that xi2 < xi3 since the

original crossing is leftmost.

Let T ′′ = (X ∪ Y,E(T ′) − {(xi1 , yj2), (xi2 , yj1), (xi3 , yj3)} ∪ {(xi1 , yj1),

(xi2 , yj3), (xi3 , yj2)}). We know that (xi3 , yj2) ∈ G because (yj1 , xi3), (xi2 , yj2)
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Figure 4.11: In Case 4, Subcase B, if the degree of yj1 is decreased, we have reduced
this case to Case 3.

is a crossing. Removing (xi1 , yj2), (xi2 , yj1), (xi3 , yj3) creates 4 components of T ′,

the first containing xi1 , the second xi2 , yj2 , the third xi3 , yj1 , and the fourth yj3 .

(xi1 , yj1) connects the first and third components. (xi2 , yj3) connects the second

and fourth, and (xi3 , yj2) connects these 2 remaining components. Therefore, T ′′ is

a spanning tree of G. Each vertex that has one edge added to it in T ′′ also has one

edge removed from it that was in T ′. Therefore ∆(T ′′) = ∆∗G.

Figure 4.12: A new MDST with leftmost edge crossing further right can be con-
structed in Case 4, Subcase B if the degree of xi2 can be decreased.

Removing (xi1 , yj2) and (xi2 , yj1) eliminates the original crossing and only

(xi1 , yj1) is added back between those four vertices. The original edge crossing

in T has been removed from T ′′ and so all edge crossings in T ′′ are further right

that the original crossing in T . So we get a contradiction.

Subcase C: (xi2 , yj2) /∈ T and xi2 ∈ (yj1 , yj2)-path in T . Let Tx be the subtree

of T containing all vertices v such that xi2 ∈ (yj1 , v)-path and v /∈ (yj1 , yj2)-path,

and also containing xi2 . Let Ty be the subtree of T containing all vertices v such

that for some u ∈ NT (yj1)− {xi2}, u ∈ (yj1 , v)-path, plus yj1 . So xi2 is part of Tx

but not Ty, and yj1 ∈ Ty.
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We proceed with Tx and Ty as in the subcases of Case 2, and construct T ′′. We

will have one of two possibilities: first, between this Tx and Ty is a crossing as

in Subcase 2.A or Subcase 2.B, and an edge can be added as shown in Figure 4.13

between Tx and Ty as in these subcases. Let e be the edge. Let T ′ = (X∪Y,E(T )−

{(xi2 , yj1)}∪{e}). Adding e connects Tx to Ty and removing (xi2 , yj1) disconnects

Tx from the original crossing. So T ′ is a spanning tree. Since e was selected as in

Subcase 2.A or 2.B, ∆(T ′) = ∆∗G. The original edge crossing is also removed, so

T ′ is an MDST of G. The original edge crossing in T has been removed from T ′

and so all edge crossings in T ′ are further right that the original crossing in T . So

we get a contradiction.

Figure 4.13: A new MDST with leftmost edge crossing further right can be con-
structed in Case 4, Subcase C if an edge can be added between Tx and Ty.

Alternatively, all crossings between Tx and Ty are as in Subcase 2.D. As we

have seen in Case 2, in this case either we have an MDST that satisfies Subcase

2.A or 2.B, and can obtain a contradiction as above, or we have an MDST T ′′ with

degT ′′(xi2) = degT (xi2)− 1 < ∆∗G or degT ′′(yj1) = degT (yj1)− 1 < ∆∗G.

Assume first that degT ′′(xi2) < ∆∗G. Fix xi3 such that (xi3 , yj2) ∈ (xi2 , yj2)-

path. By the definition of this subcase, xi2 6= xi3 . Let T ′ = (X ∪ Y,E(T ′′) −

{(xi3 , yj2)} ∪ {(xi2 , yj2)}). Removing (xi3 , yj2) disconnects T ′′ into a component

containing xi1 and yj2 and a component containing yj1 , xi2 , and the rest of the ver-

tices on the former (xi2 , yj2)-path. Adding (xi2 , yj2) connects these two compo-

nents. Since we had that degT ′′(xi2) < ∆∗G, and we removed an edge from yj2 , then

∆(T ′) = ∆∗G. So T ′ is an MDST of G. The original edge crossing still exists, but

(xi2 , yj2) ∈ T ′, so we have reduced this to Subcase 4.B, as is shown in Figure 4.14.

In Subcase 4.B, we get a contradiction.
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Figure 4.14: If the degree of xi2 can be decreased in Case 4, Subcase C, then this
case can be reduced to Case 4, Subcase B.

Now assume degT ′′(yj1) = degT (yj1) − 1 < ∆∗G. We have reduced T ′′ to Case

3, in the same way shown for Subcase B in Figure 4.11, and as in Case 3 we get a

contradiction.

We have shown that each case gives a contradiction. Therefore, there exists an

MDST for any bipartite permutation graph G that has no edge crossings.

Corollary 4.19. LetG be a strongly ordered connected bipartite permutation graph.

Then there exists an MDST of G that is a caterpillar with no edge crossings.

Proof. By Theorem 4.18, there exists an MDST T of G that has no edge crossings.

By Theorem 4.16, T is a caterpillar.

4.3 Longest Paths in Minimum Degree Spanning Trees

In previous sections, we have seen that, given a bipartite permutation graph G,

there exists a longest path in G that contains no edge crossings, and an MDST of G

that contains no edge crossings. Now, we explore MDSTs of bipartite permutation

graphs that contains longest paths.

Theorem 4.20. Let G = (X, Y,E) be a connected bipartite permutation graph

with strong ordering x1, ..., xp and y1, ...yq and let T be an MDST of G that is a

caterpillar. Then G has an MDST that is a caterpillar in which no edges cross, and

with spine of size greater than or equal to the size of the spine of T .
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Proof. Let T be an MDST of G that is a caterpillar with maximum degree ∆(T )

and let TS be the spine of T . That is, TS is the set of all vertices in T that are not

leaves.

The following steps allow us to transform an MDST of G that is a caterpillar

into an MDST of G that is a caterpillar with no edge crossings without decreasing

the size of the spine. Figures accompany each step, with spine edges in bold and

leaf edges unbolded. Vertices that are leaves prior to each transformation are black,

and spine vertices are white. Each figure is an example for each case, and there are

many symmetric cases not shown.

Step 1: Assume TS contains edge crossings, as in Figure 4.15 (a). We can

remove all such crossings of two edges (xi1 , yj1) and (xi2 , yj2) ∈ V (TS), or spine

edges, and create a new MDST T that contains no crossings in TS . This new TS

will be a zig-zag.

Consider the subgraph GTS of G, which is the subgraph induced by the vertices

in TS plus two leaf vertices, one adjacent to each endpoint of TS . GTS is a bipartite

permutation graph and TS is a Hamiltonian path in it. From [51] we know that if

we have a Hamiltonian path, we have a zig-zag Hamiltonian path. By definition, a

zig-zag Hamiltonian path has no edge crossings. Replace the edges of TS with the

edges a zig-zag Hamiltonian path of GTS . An example of this uncrossing is given

in Figure 4.15 (b).

Figure 4.15: Edge crossings in TS can be removed by constructing a zig-zag Hamil-
tonian path on the subgraph of G induced by TS .

The degrees of vertices in TS either remain the same, decrease (if a degree 2

vertex becomes a leaf), or increase by 1. A vertex whose degree increases will go

from 1 to 2 in TS , but this means it was a leaf initially and so had no other neigh-
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bours outside of TS . Therefore, ∆(T ) = ∆∗G.

Step 2: If T contains an edge crossing containing two leaf vertices, we con-

struct a new MDST T such that there are fewer crossings of this type. That is, we

remove crossings involving two leaf edges, which are edges that contain a vertex

not in V (TS). We consider crossings with one leaf in X and one leaf in Y separate

from crossings where both leaves are in either X or Y .

Step 2a: Remove all crossings involving edges (xi1 , yj1) and (xi2 , yj2) where

xi1 , yj2 ∈ V (TS) and xi2 , yj1 /∈ V (TS). We show how to construct a new caterpillar

T ′ from T such that this crossing is removed and the size of T ′S is greater than the

size of TS:

Assume without loss of generality that xi1 < xi2 and yj2 < yj1 . Consider

T ∪ (xi2 , yj1), as in Figures 4.16 and 4.17.

Case 1: There exists some edge in TS that forms a crossing with (xi2 , yj1).

If only one edge in TS crosses (xi2 , yj1), let that edge be (x′, y′). Assume

without loss of generality that x′ < xi2 , y′ > yj1 . Let T ′ = (X ∪ Y, E(T ) −

{(xi1 , yj1), (xi2 , yj2), (x′, y′)} ∪ {(x′, yj1), (xi2 , yj1), (xi2 , y′)}. The edges removed

disconnect T into four components, one containing x′, one containing y′, and the

two isolated vertices yj1 and xi2 . Adding (x′, yj1) connects the first component and

one isolated vertex, (xi2 , y
′) connects the second component to the other isolated

vertex, and(xi2 , yj1) connects these two components. We have also now added yj1

and xi2 to T ′S , and so |T ′S| = |TS| + 2. T ′ has two fewer leaf vertices than T , and

since only spine edges were added, no new leaf edge crossings were introduced.

No new leaf vertices were added to previous leaf vertices, and TS ⊂ T ′S , and so

T ′ is a caterpillar. All vertex degrees decreased or stayed the same except for xi2

and yj1 , which both increased by one. Since these were leaves of T , we have that

∆(T ′) = ∆∗G. Therefore, T ′ is a caterpillar MDST of G with fewer leaf edge

crossings and a longer spine than T .

Otherwise, if multiple spine edges cross (xi2 , yj1), let (x′, y′′) be the rightmost
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Figure 4.16: An example of a crossing of two leaf edges, removed as in Step 2a,
Case 1.

edge that crosses (xi2 , yj1) in T ∪ (xi2 , yj1) and let (x′′, y′) be the leftmost.

First, assume that x′, x′′ > xi2 . An example is given in Figure 4.16 (a). Let

T ′ = (X ∪ Y, E(T ) - {(xi1 , yj1), (xi2 , yj2), (x′′, y′), (x′, y′′)} ∪ {(xi2 , y′), (xi2 , y
′′),

(x′′, yj1), (x′, yj1)}), as in Figure 4.16 (b). The edges removed disconnects T into

five components, one containing x′, one containing y′, one containing x′′ and y′′,

and the two isolated vertices xi2 and yj1 . Adding (xi2 , y
′), (xi2 , y

′′) connects the

second and third components through xi2 , and adding (x′′, yj1), (x
′, yj1) connects

the first and third components through yj1 . So T ′ is a spanning tree. No new leaves

are created and xi2 and yj1 are in T ′S . So T ′ is a caterpillar with |T ′S| > |TS|, and

T ′S is still a zig-zag. The degrees of all vertices decreased or stayed the same in T ′,

except for xi2 and yj1 . These were leaves in T , and degT ′(xi2) = degT ′(yj1) = 2,

so ∆(T ′) = ∆∗G. Therefore, T ′ is a caterpillar MDST of G with a longer spine than

T and with fewer edge crossings of two leaf edges.

Now assume that x′, x′′ < xi2 . Let T ′ = (X ∪ Y, E(T ) - {(xi1 , yj1), (xi2 , yj2),

(x′′, y′), (x′, y′′)} ∪ {(xi2 , y′), (xi2 , y
′′), (x′′, yj1), (x′, yj1)}), the same as defined

above. The edges removed disconnects T into five components, one containing x′′,

one containing y′′, one containing x′ and y′, and the two isolated vertices xi2 and

yj1 . Adding (xi2 , y
′′), (xi2 , y

′) connects the second and third components through

xi2 , and adding (x′′, yj1), (x
′, yj1) connects the first and third components through

yj1 . So T ′ is a spanning tree. No new leaves are created and xi2 and yj1 are in T ′S .

So T ′ is a caterpillar with |T ′S| > |TS|, and T ′S is still a zig-zag. The degrees of

all vertices decreased or stayed the same in T ′, except for xi2 and yj1 . These were

leaves in T , and degT ′(xi2) = degT ′(yj1) = 2, so ∆(T ′) = ∆∗G. Therefore, T ′ is a
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caterpillar MDST of G with a longer spine than T and with fewer edge crossings of

two leaf edges.

In this case, it is possible that T ′ contains edge crossings between edges added

to the spine. However, from Step 1 we know there exists another MDST that is a

caterpillar with the same spine as T ′ that contains no spine edge crossings.

Case 2: No edge in TS forms a crossing with (xi2 , yj1). Recall our assumption

that xi1 < xi2 and yj2 < yj1 . Since TS is a zig-zag after Step 1, then xi2 or yj1 must

be adjacent in G to the rightmost endpoint of TS (or leftmost if we had assumed

xi1 > xi2). Note that an endpoint of TS is not a leaf in T . Assume without loss of

generality that the rightmost endpoint of TS is in Y . Let yj3 be this endpoint.

If yj2 = yj3 , let T ′ = (X ∪ Y,E(T ) − {(xi1 , yj1)} ∪ {(xi2 , yj1)}. yj1 is now

an endpoint of T ′S and xi2 is now in T ′S as a middle vertex. Since xi2 was an end-

point, T ′ is also a caterpillar. After removing (xi1 , yj1), yj1 becomes an isolated

vertex. Adding (xi2 , yj1) reconnects it to the graph. All vertex degrees decrease or

remain the same, except for yj1 . Since degT (yj1) = 1, we get degT ′(yj1) = 2 and

so ∆(T ′) = ∆∗G. Therefore T ′ is a caterpillar MDST of G with one fewer edge

crossing involving two leaf vertices, and |T ′S| > |TS|.

Otherwise yj2 < yj3 , as in Figure 4.17 (a). Since yj3 is the endpoint of TS and

has degree at least 2, and we have completed Step 1, we know that yj3 must have at

least one leaf in T that does not cross any edge in TS . Let xi3 be this leaf. We have

two cases for the ordering of xi2 , xi3 .

If xi3 < xi2 , then let T ′ = (X ∪ Y, E(T ) − {(xi1 , yj1), (xi2 , yj2)} ∪ {(xi3 , yj1),

(xi2 , yj1)}, as in Figure 4.17 (b). Since (xi3 , yj3) does not cross any other spine

edges, we must have that (xi3 , yj3), (xi1 , yj1) is an edge crossing in T . Therefore

we know that (xi3 , yj1) ∈ E(G). xi3 was a leaf of an endpoint of TS , and so adding

yj1 as its neighbour makes it a new endpoint of the spine with yj1 as a leaf. Simi-

larly, yj1 becomes an endpoint with xi2 as a leaf. So T ′ is a caterpillar. Additionally,

a crossing of two leaf edges has been removed. Removing (xi1 , yj1), (xi2 , yj2) dis-

connects T into three components, two of which are the isolated vertices xi2 , yj1 .

Adding (xi3 , yj1) connects yj1 to the rest of the tree, and adding (xi2 , yj1) connects

79



xi2 . So T ′ is a spanning tree of G. Each vertex in T ′ has less than or equal to its

degree in T , except for xi3 and yj1 . But these vertices were leaves in T and have

degree 2 in T ′, so ∆(T ′) = ∆∗G. Therefore T ′ is a caterpillar MDST of G with one

fewer edge crossing involving two leaf vertices, and |T ′S| > |TS|.

Figure 4.17: In Step 2a, Case 2, if yj2 < yj3 , we can extend the spine.

Otherwise, if xi2 < xi3 , then let T ′ = (X ∪ Y, E(T ) − {(xi1 , yj1), (xi2 , yj2),

(xi3 , yj3)} ∪ {(xi2 , yj3), (xi2 , yj1), (xi3 , yj1)}. Since (xi3 , yj3) does not cross any

other spine edges, we must have that (xi3 , yj3), (xi1 , yj1) is an edge crossing in T .

Therefore we know that (xi3 , yj1) ∈ E(G). We also know since no edge of TS

crosses (xi2 , yj1) in G, that (xi2 , yj3) ∈ E(G). T ′S is extended from TS to have

xi2 , yj1 added from the endpoint yj3 , with xi3 now a leaf of yj1 . So T ′ is a cater-

pillar. The edge crossing (xi1 , yj1), (xi2 , yj2) has been eliminated. Additionally, no

new edge crossings in T ′S have been introduced. The edges of T removed to form T ′

disconnect T into four components, with the isolated vertices xi2 , xi3 , yj1 . Adding

(xi2 , yj3) connects xi2 to the rest of the tree, adding (xi2 , yj1) connects yj1 to the tree,

and adding (xi3 , yj1) makes T ′ a spanning tree of G. Each vertex in T ′ has less than

or equal to its degree in T , except for xi2 and yj1 . But these vertices were leaves in

T and have degree 2 in T ′, so ∆(T ′) = ∆∗G. Therefore T ′ is a caterpillar MDST of

G with one fewer edge crossing involving two leaf vertices, and |T ′S| > |TS|.

If an MDST exists with an edge crossing as defined in this step, there exists

an MDST with one fewer such edge crossing, with no edge crossings between two

spine edges, and with a spine that is no shorter. Let T be an MDST with no such

edge crossings, constructed as detailed above.

80



Step 2b: Next, if T contains an edge crossing that involves two leaf vertices that

are either both in X or both in Y , we construct a new MDST T that contains fewer

such crossings. That is, we will remove crossings involving two edges (xi1 , yj1)

and (xi2 , yj2) where xi1 , xi2 ∈ V (TS) and yj1 , yj2 /∈ V (TS), or xi1 , xi2 /∈ V (TS) and

yj1 , yj2 ∈ V (TS).

Figure 4.18: A crossing of two leaves both in X is removed in Step 2b.

Assume i1 < i2 and j1 > j2, as in Figure 4.18 (a). Then, (xi1 , yj2), (xi2 , yj1) ∈

E(G). Replace (xi1 , yj1) and (xi2 , yj2) with (xi1 , yj2) and (xi2 , yj1) in T , as in

Figure 4.18 (b).

The degrees of all vertices remain the same, the crossing is removed, T is still a

spanning tree, and the size of TS does not change.

Using this transformation of T , we get a new MDST with one fewer of these

edge crossings. So there exists an MDST constructed from T that contains no edge

crossings containing two leaf edges or two spine edges, and has a spine no shorter.

Let T be this MDST.

Step 3: Next, consider crossings in T containing a leaf edge that is involved

in more than one distinct crossing. Assume without loss of generality that this leaf

vertex is in Y . We remove these crossings, where an edge (xi1 , yj1) with xi1 ∈

V (TS) and yj1 /∈ V (TS), is contained in two distinct crossings.

Assume without loss of generality that yj1 /∈ TS . Fix yj2 ∈ TS such that |j2 −

j1| is minimized and yj2 is in a crossing with (xi1 , yj1). Assume without loss of

generality that yj2 < yj1 .

We first show that two spine edges (xi2 , yj2), (xi3 , yj3) with distinct endpoints

that cross (xi1 , yj1) must exist: We have removed all crossings involving two leaf
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edges, and so if (xi1 , yj1) crosses multiple edges, these edges must be spine edges.

Let y′ be the rightmost neighbour of xi1 in TS and x′ the rightmost neighbour of

y′ ∈ TS . Since we have assumed yj2 < yj1 , and because TS has no edge crossings,

we have y′ < yj1 as well. xi1 is the leftmost neighbour in TS of y′, and so xi1 < x′.

Therefore, (x′, y′) forms a crossing with (xi1 , yj1). Since (xi1 , yj1) crosses multiple

spine edges, and TS is a zig-zag, then (xi1 , yj1) is also crossed by (x′, y′′), where

y′′ is the rightmost neighbour of x′ ∈ TS . Since we have removed all crossings

between leaf edges, y′′ must have another neighbour x′′ ∈ TS , and because TS is a

zig-zag, (x′′, y′′), (xi1 , yj1) is a crossing. So we have at least two edges with distinct

vertices that form a crossing with (xi1 , yj1).

Now, we keep yj2 as previously fixed, and redefine xi2 , xi3 , yj3 .

Case 1: yj2 has no leaf in T , as in Figure 4.19 (a). Let xi2 , xi3 be the neigh-

bours of yj2 in TS . Let T ′ = (X ∪ Y,E(T ) − {(xi1 , yj1), (xi2 , yj2), (xi3 , yj2)} ∪

{(xi1 , yj2), (xi2 , yj1), (xi3 , yj1)}), as in Figure 4.19 (b). T ′S contains yj1 instead of

yj2 , and yj2 is a leaf in T ′. Since yj2 had no leaves in T , then T ′ is still a caterpillar.

Replacing yj2 with yj1 in T ′S implies |TS| = |T ′S|. We have that (xi1 , yj1) crosses

both (xi2 , yj2) and (xi3 , yj2) in T . Since G is a bipartite permutation graph, we

know that the edges we added to T ′ must be in G.

Figure 4.19: If yj2 has no leaves, T ′ has fewer crossings of leaf and spine edges.

Removing (xi1 , yj1), (xi2 , yj2), (xi3 , yj2) disconnects T into four components,

one containing xi1 and xi2 , one containing xi3 , and the two isolated vertices yj1

and yj2 . Adding (xi1 , yj2), (xi2 , yj1) to construct T ′ connects the isolated vertices to

the first component and adding (xi3 , yj1) connects the first and second components.

Therefore T ′ is a spanning tree of G. degT ′(v) ≤ degT (v) for all vertices v 6= yj1 .
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Since yj1 was a leaf in T , we get ∆(T ′) = ∆∗G. Therefore T ′ is an MDST of G.

Case 2: yj2 has at least one leaf in T . Fix xi2 as the rightmost such leaf. Since

we have no edge crossing involving two leaf vertices, we have that xi2 < xi1 . Let

xi3 be the rightmost neighbour of yj2 in TS and let yj3 be the leftmost neighbour of

xi1 in TS , as labeled in Figure 4.20 (a). Consider the subpath PS of TS between yj3

and xi3 . Label the vertices in this subpath (a1, b1, a2, b2, ..., ak, bk), with a1 = yj3

and bk = xi3 . The edges in this subpath are (ai, bi), 1 ≤ i ≤ k, and (bi, ai+1),

1 ≤ i < k. Label yj1 as ak+1 and xi2 as b0. These labels are shown in Figure 4.20

(b), which shows the same subgraph of T as Figure 4.20 (a).

Let T ′ = (X ∪ Y,E(T ) − {{(ai, bi)|1 ≤ i ≤ k}, (xi1 , yj1), (xi2 , yj2)} ∪

{{(ai+2, bi)|0 ≤ i ≤ k − 1}, (xi3 , yj1), (xi2 , yj3)}. This part of T ′ is shown in

Figure 4.20 (c), and also in Figure 4.20 (d), with both labelling schemes.

Figure 4.20: If yj2 has a leaf, T ′ has a longer spine than T .

Because we have (xi1 , yj1) crossing multiple spine edges, we know that bi is

adjacent in G to at least the vertices ai, ..., ak+1. So the edges added to T ′ are in G.

No new leaves are created in T ′, and two leaf vertices in T are now in T ′S . So T ′ is

a caterpillar with a longer spine than T .

The number of edges removed from T equals the number of edges added to
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construct T ′. After removing the edges from T and adding {(ai+2, bi)|0 ≤ i ≤

k − 1}.which forms a path (b0, a2, b1, a3, ..., ak, bk−1, ak+1), we have three compo-

nents. One containing yj3 , one containing xi3 , and one containing this path. Adding

(xi3 , yj1) and (xi2 , yj3) connects these components. degT ′(v) ≤ degT (v) for all ver-

tices v 6= yj1 or xi2 . Since yj1 and xi2 were leaves in T and are now in T ′S with no

leaves, degT ′(yj1) = degT ′(xi2) = 2. So ∆(T ′) = ∆∗G. Therefore, T ′ is an MDST

of G.

We have shown that if there exists an MDST of G with a leaf edge that crosses

multiple spine edges, there exists an MDST of G with one fewer such crossing. So

there exists an MDST of G with no leaf edges crossing multiple spine edges. Let T

be this MDST, constructed as detailed above.

Step 4: Remove crossings that allow the spine of T to be extended. That is,

given a subpath (xi1 , yj1 , xi2 , yj2) ∈ TS with xi1 < xi2 , yj1 < yj2 , if there ex-

ist crossings (xi1 , yj1), (xi2 , yj3) and (xi2 , yj2), (xi3 , yj1) such that xi3 , yj3 /∈ TS ,

we show how to extend the spine. If either xi2 or yj1 has multiple leaves, then

choose xi3 such that |i2 − i3| is minimized, and choose yj3 such that |j1 − j3| is

minimized. We assume without loss of generality that we have this particular case

where our subpath starts in X on the left, however there is a symmetric case with

(yj1 , xi1 , yj2 , xi2) as the subpath.

Since we have completed Steps 2 and 3, we know that we have no leaf edges

crossing and that (xi2 , yj3) and (xi3 , yj1) are involved in only one crossing, as shown

in Figure 4.21 (a) . Therefore, we know that xi2 < xi3 and yj3 < yj1 . G is a bipartite

permutation graph, so we have (xi1 , yj3), (xi3 , yj2) ∈ E(G).

Let T ′ = (X ∪ Y,E(T ) − {(xi1 , yj1), (xi2 , yj2)} ∪ {(xi1 , yj3), (xi3 , yj2)}, as in

Figure 4.21 (b). The subpath (xi1 , yj1 , xi2 , yj2) ∈ TS is extended to (xi1 , yj3 , xi2 ,

yj1 , xi3 , yj2) ∈ T ′S . No new leaf vertices are created and TS ⊂ T ′S , so T ′ is a

caterpillar with a longer spine than T . Removing (xi1 , yj1) and (xi2 , yj2) discon-

nects T into three components, one containing xi1 , one containing yj2 , and one

containing xi2 , xi3 , yj1 , yj3 . Adding (xi1 , yj3) connects the first and third compo-
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Figure 4.21: Two adjacent spine vertices with leaves imply the spine can be ex-
tended.

nents in T ′, and (xi3 , yj2) connects the second and third. So T ′ is a spanning tree.

degT ′(v) ≤ degT (v) for all vertices v 6= xi3 or yj3 . Since xi3 , yj3 were leaves in

T and are now in T ′S with no leaves, degT ′(xi3) = degT ′(yj3) = 2. Therefore

∆(T ′) = ∆∗G and T ′ is an MDST of G.

We have shown that if there exists an MDST T with the edges crossings de-

scribed in this case, we can construct an MDST T ′ that has one fewer such edge

crossing, and a longer spine than T . So there exists an MDST with none of this

type of edge crossing. Let T be that MDST, constructed as described above.

Step 5: We have eliminated all edge crossings involving two spine edges, two

leaf edges, or a leaf edge that crosses multiple spine edges. All remaining crossings

in T involve one spine edge and one leaf edge, (xi1 , yj1), (xi2 , yj2), with xi2 or yj2 /∈

V (TS), and the rest in V (TS). Assume without loss of generality that xi1 < xi2 ,

yj2 < yj1 , and that yj2 /∈ V (TS) as shown in Figure 4.22 (a). We now construct a

new MDST that has fewer edge crossings than T .

Consider the leftmost such crossing. Since (xi2 , yj2) only crosses one spine

edge, and TS is a zig-zag, we have that NTS(yj1) = {xi1 , xi2}. Assume yj1 has a

leaf xi3 ∈ T . If xi3 < xi2 , then (xi2 , yj2), (xi3 , yj1) is a crossing in T . But T has no

crossings of two leaf edges. So xi3 > xi2 . If xi3 is in a crossing with an edge of TS ,

then because (xi2 , yj2) is a leaf edge, it would have been dealt with in Step 4. But if

it does not cross an edge in TS then TS is not a zig-zag, or xi2 is an endpoint of TS .

So yj1 has no leaf in T .

Construct a new tree T ′ = (X ∪ Y,E(T ) − {(xi1 , yj1)} ∪ {(xi1 , yj2)}), as in
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Figure 4.22 (b). The crossing is removed, so all crossings in T ′ are further right. A

new leaf is created in T ′, but we know yj1 had no leaf in T . We created a new leaf

yj1 , but it was replaced in T ′S by yj2 . So |TS| = |T ′S|. So T ′ is a caterpillar with its

spine the same size as T .

Figure 4.22: By Step 5, crossings of one spine edge and one leaf edge can be
eliminated.

Removing (xi1 , yj1) disconnects T into two components, one containing xi1 and

one containing yj1 , xi2 , and yj2 . Adding (xi1 , yj2) in T ′ connects these components.

degT ′(v) ≤ degT (v) for all vertices v 6= yj2 . Since yj2 was a leaf in T , we have

degT ′(yj2) = 2. So ∆(T ′) = ∆∗G. So T ′ is an MDST of G.

We have shown that if there exists an MDST that contains only edge crossings

involving one leaf edge and one spine edge, as described in this case, there exists

an MDST that contains one fewer such crossing, has no other edge crossings, and

has a spine no shorter.

Therefore, we have shown that if there exists an MDST ofG that is a caterpillar,

there exists an MDST ofG that is a caterpillar with a spine that has size greater than

or equal to the size of the original spine, and that has no edge crossings.

We have shown that, given an MDST of G that contains edge crossings, there

exists an MDST of G that contains no edge crossings and has a spine at least as

long as the original MDST. Equivalently, the second MDST contains fewer leaves

than the first. With this result, if we can show there exists some MDST of G that

contains a longest path, we then know there exists some MDST of G that contains

a longest path and has no edge crossings.
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Let G = (X, Y,E) be a strongly ordered, connected bipartite permutation

graph. Let P be the set of all zig-zag longest paths in G. Let T be a crossing-free

caterpillar MDST of G, and let P ∗ be the longest path in T that contains (x1, y1)

and (xp, yq). By Lemma 4.4, we know T contains these edges, and that they are

leaf edges on the endpoints of the spine of T . Therefore, such a P ∗ exists.

Lemma 4.21. Let G be a strongly ordered, connected bipartite permutation graph,

and let P ∗ be a zig-zag path inG that contains the edges (x1, y1) and (xp, yq). Then

the vertices in P ∗, V (P ∗), are contained in some zig-zag longest path in G.

Proof. If P ∗ itself is a longest path in G, then the lemma holds. Assume P ∗ is not

a longest path in G. Assume there does not exist a longest path in G that contains

V (P ∗). By Lemma 4.4 we know there exists some longest path in G that contains

the edges (x1, y1) and (xp, yq). Let P be the set of all such longest paths. Fix P ∈ P

such that the number of consecutive vertices of P ∗ that are in P starting from the

left is as large as possible. That is, choose P such that the first vertex in P ∗ − P is

positioned as far right in P ∗ as possible.

Assume without loss of generality that x ∈ X(P ∗) is the leftmost (in P ∗) vertex

in P ∗ − P . We know x is not an endpoint, or adjacent to an endpoint, in either P

or P ∗, since the edges (x1, y1) and (xp, yq) are in both paths. Fix yj1 , yj2 to be the

neighbours of x in P ∗ with yj1 < yj2 . By Lemma 4.7 we have yj1 , yj2 ∈ P .

Now consider the (yj1 , yj2)-subpath of P . Let Q be this subpath.

Case 1: There exists some x′ in Q such that x′ ∈ P − P ∗ or x < x′. In this

case, we will show how to build another zig-zag longest path P ′ that matches P ∗

up to some vertex further right than x.

If Q = yj1 , x
′, yj2 , let P ′ = (V (P ), E(P ) − {(x′, yj1), (x′, yj2)} ∪ {(x, yj1),

(x, yj2)}). Now P ′ is a zig-zag longest path that contains the vertices of P ∗ from

the left up to yj2 instead of just to yj1 , a contradiction.

Now consider when |Q| > 3. Fix xi1 , xi2 such that Q = yj1 , xi1 , ..., xi2 , yj2 .

Let y′, y′′, y′ < y′′, be the neighbours of x′ in P . By the adjacency property,

Y (Q) ⊆ NG(x). Let P ′ = (V (P ), E(P )− {(x′, y′), (x′, y′′)} ∪ {(x, y′), (x, y′′)}).

We now have P ′ as a longest path that contains V (P ∗) further right than P . We
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may have introduced edge crossings in P ′, but we know there exists a crossing-free

path containing the same vertices as P ′, since G is a bipartite permutation graph,

any subgraph of a bipartite permutation graph is also a bipartite permutation graph,

and P ′ is a Hamiltonian path in the bipartite permutation subgraph of G induced

by its vertices. Now we have a zig-zag longest path that contains the vertices of P ∗

from the left up to yj2 instead of just to yj1 . If x′ ∈ P ∗, we have x < x′, and so now

x′ could be the leftmost vertex in P ∗ − P , a contradiction.

Case 2: X(Q) ∈ P ∗ and X(Q) ≤ x. In this case, we want to find some x′ such

that x′ < x and x′ ∈ P − P ∗ and build a new path P ′ that contains x instead of x′.

First, we show that in this case, there must exist x′ ∈ P − P ∗. Since we have

assumed that P ∗ is not contained in any longest path ofG, then ∆∗G ≥ 3. By Lemma

4.14, we can assume that zig-zag longest paths in G all start in X or all start in Y .

Assume that there does not exist such an x′ (that is, all X vertices in P that are to

the left of x are also in P ∗), and consider the left endpoint of P .

Subcase 2a: Assume P starts in X . By our choice of P, then P starts at x1.

Since G is bipartite, the (x1, yj2)-subpath of P has even size. Let k be the number

of vertices in X in this subpath. Then there are also k vertices in Y in this subpath.

Then |P | = 2k + |back(P, yj2)|.

The (v1, yj2)-subpath of P ∗, where v1 = x1 or y1, contains x and so has one

more vertex in X than the subpath in P . Since yj2 ∈ Y is an endpoint of this

subpath, it must contain at least one more vertex in Y than P .

We also have that front(P ∗, yj2) ∩ back(P, yj2) = ∅, otherwise we would have

Case 1. Let P ′ = front(P ∗, yj2) ∪ {yj2} ∪ back(P, yj2). Now |P ′| = 2(k + 1) +

|back(P, yj2)| > |P |. We said P was a longest path, so this gives a contradiction.

Subcase 2b: Assume P starts in Y . By our choice of P, then P starts at y1.

Since G is bipartite, the (y1, yj2)-subpath of P has an odd number of vertices. Let

k be the number of vertices in X in this subpath. Then there are also k + 1 vertices

in Y in this subpath. Then |P | = 2k + 1 + |back(P, yj2)|.

The (v1, yj2)-subpath of P ∗, where v1 = x1 or y1, contains x and so has one

more vertex in X than the subpath in P . Since yj2 ∈ Y is an endpoint of this

subpath, it must contain at least one more vertex in Y than P .
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We also have that front(P ∗, yj2) ∩ back(P, yj2) = ∅, otherwise we would have

Case 1. Let P ′ = front(P ∗, yj2) ∪ {yj2} ∪ back(P, yj2). Now |P ′| = 2(k + 1) +

|back(P, yj2)| > |P |. We said P was a longest path, so this gives a contradiction.

Therefore, there exists some x′ ∈ P−P ∗ with x′ < x. Fix x′ to be the rightmost

such vertex and let y′ be the leftmost neighbour of x′ in P . We will now show how

to construct another zig-zag longest path P ′ that contains the vertices of P ∗ further

right than P .

Let Xr = xr0 , xr1 , ..., xri with rj < rj+1 be the vertices in X(P ) between x′

and x, where xr0 = x′, and x /∈ Xr. Let Yr = yr0 , yr1 , ..., yri+1
be the neighbours

of XP in P such that the leftmost neighbour of xrj in P is yrj and the rightmost

neighbour of xrj in P is yrj+1
. Let yr0 = y′ and yri+1

= yj2 . By our choices of x

and x′, we know that all vertices in P ∗ between x′ and x, and between y′ and yj2

are in XP ∪ YP .

Constructing P ′ requires that we show (xrj , yrj−1
) ∈ E(G) for 1 ≤ j ≤ i.

Define left(v, P ) to be the leftmost neighbour of v in zig-zag path P and define

right(v, P ) to be the rightmost neighbour in zig-zag path P . Since G is a bipartite

permutation graph and has the adjacency property, we can show these edge are in

E(G) by showing that left(v, P ∗) < left(v, P ) for all v ∈ XP .

First consider xri . Since xri is on the (yj1 , yj2)-subpath in P , we have left(xri , P )

≥ yj1 . We have that yj1 = left(x, P ∗), and since xri < x, and our paths are zig-

zags, then left(xri , P
∗) < yj1 ≤ left(xri , P ).

Next, for the rest ofXr, we know that for xrj and xrk with xrj <xrk , left(xrj , P )

= yrj < left(xrk , P ) = yrk and there are exactly as many vertices in Xr between

xrj and xrk as there are between yrj and yrk in Yr. Now consider left(xrj , P
∗)

and left(xrk , P
∗). Moving from right to left, we know that the distance between

left(xrj , P ) and left(xrk , P ) is the same as the distance between xrj and xrk . How-

ever, since V (P ∗) ⊂ V (P ) in this subpath, but Yr is not necessarily contained in

P ∗, then the distance between left(xrj , P
∗) and left(xrk , P

∗) is at least the dis-

tance between xrj and xrk . Therefore, since we already had that left(xri , P
∗) <

left(xri , P ), for each xrj ∈ Xr, we have that left(xrj , P
∗) < yj1 ≤ left(xrj , P ).

So (xrj , yrj−1
) ∈ E(G) for 1 ≤ j ≤ i.
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Let EL = {(xrj , yrj−1
)}, for 1 ≤ j ≤ i, and let ER = {(xrj , yrj+1

)} for 1 ≤

j ≤ i.

Now, let P ′ = (V (P ), E(P )− {ER, (x′, y′), (x′, right(x′, P ))} ∪ {EL, (x, yri),

(x, yj2)}). The edges between each xrj and its rightmost neighbour in P are re-

moved, as well as the edges containing x′. The edges added in EL connect each xrj
to the vertex in Y (P ) immediately left of its leftmost neighbour. We showed above

that these edges are in G. This results in two subpaths, one from the left up to yri ,

which is now right(xri , P
′), and the other beginning at yj2 and going to the right.

We know (x, yj2) ∈ E(G) because it is in P ∗. We also know that yri ≥ yj1 . By

the adjacency property, (x, yri) ∈ E(G). Adding these edges connects the two path

components. Therefore P ′ is a path.

Each edge added between xrj and yrj−1
will not introduce any edge crossings

because the only edge in P it would cross is (xrj−1
, yrj), which is in ER. Therefore,

P ′ contains no edge crossings and is a zig-zag.

P ′ contains all vertices of P except for x′, and it instead contains x. Therefore,

P ′ is a zig-zag longest path that contains the vertices of P ∗ further to the right than

P , a contradiction.

Therefore, there must exist a zig-zag longest path in G that contains the vertices

of P ∗.

Theorem 4.22. Let G = (X, Y,E) be a strongly ordered, connected bipartite per-

mutation graph. Then there exists a crossing-free caterpillar MDST of G that con-

tains a longest path of G.

Proof. Assume that no MDST of G contains a longest path. That is, for every

MDST T of G, the longest path P ∗ in T has size less than the size of a longest path.

Choose T to be a crossing-free MDST of G and let P ∗ be the spine of T .

By Lemma 4.21, there is some longest path that contains the vertices of P ∗. Fix

P to be such a zig-zag longest path. Let E ′ be the set of edges in T that contain a

vertex in V (P ).

Let T ′ = (V (T ), E(T )− E ′ ∪ E(P ). First, we show that T ′ is a spanning tree.

The subgraph of T induced by E ′ contains the spine of T and some leaves. Since
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V (P ∗) ⊂ V (P ), this subgraph contains only spine vertices and leaves in T that are

also on P . If a vertex is not in E ′, then it is not in P . Therefore, |E ′| = |P | − 1.

Since P is a path, |E(P )| = |P |−1 as well, and so T ′ contains the same number of

edges as T . Removing the edges of E ′ from T produces components that are either

isolated vertices, which were either leaves in T that were on P , or spine vertices

in T that were only adjacent to other vertices that were in P , or are K2, containing

one vertex from P ∗ and another vertex from T −P . Since each component contains

exactly one vertex from P , adding the edges from P connects the tree.

Now consider the degrees of vertices in T ′. For all vertices in T −P , the degree

remained the same. Vertices in P − P ∗ were leaves in T and are on the spine of

T ′. However, since we removed the one edge containing these vertices from T and

only added path edges back, vertices in P − P ∗ will have degree at most 2 in T .

Vertices in P ∗ have degree at least 2 in T . In T ′, some of these vertices will

have leaves removed, if these leaves were in P − P ∗. Then, each vertex in P ∗ has

its two incident spine edges removed, and replaced with two path edges from P .

Therefore, degT ′(v) ≤ degT (v), for all v ∈ P ∗. Therefore, T ′ is an MDST of G.

It is possible that edge crossings were introduced in the construction of T ′. If

T ′ contains edge crossings, by Theorem 4.20, there exists another MDST of G that

contains no edge crossings and has a spine at least as long as T ′. Since T ′ contains

a longest path, this other MDST will also contain a longest path.

Therefore, by contradiction, there exists a crossing-free MDST of G that con-

tains a longest path.

4.4 An Algorithm for ∆∗G of a Bipartite Permutation
Graph

We now present a dynamic programming algorithm to solve the minimum degree

spanning tree problem on and construct an MDST of a bipartite permutation graph.

Let G = (X, Y,E) be a connected bipartite permutation graph with strong or-

dering x1, ..., xp, y1, ..., yq. We define [i, j] to be the induced subgraph of G con-
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taining the vertices xi, ..., xp, yj, ..., yq.

Lemma 4.23. Let G = (X, Y,E) be a connected bipartite permutation graph with

strong ordering x1, ..., xp, y1, ..., yq, and for all 1 ≤ i ≤ p, 1 ≤ j ≤ q, let

∆∗x[i, j] =


∞ if [i, j] is not connected
∆([i, j]) if [i, j] is a tree with xi as a leaf
∞ if N[i,j](yj) = {xi}
mink{max{k + 1,∆∗y[i+ k, j]}} for 1 ≤ k ≤ |N[i,j](yj)| − 1 otherwise

and

∆∗y[i, j] =


∞ if [i, j] is not connected
∆([i, j]) if [i, j] is a tree with yj as a leaf
∞ if N[i,j](xi) = {yj}
mink{max{k + 1,∆∗x[i, j + k]}} for 1 ≤ k ≤ |N[i,j](xi)| − 1 otherwise

Then for all i, j, (1) ∆∗x[i, j] is the minimum maximum degree of a crossing-free

spanning tree of [i, j] with xi as a leaf, and (2) ∆∗y[i, j] is the minimum maximum

degree of a crossing-free spanning tree of [i, j] with yj as a leaf.

Proof. Let i = p and j = q. By Theorem 4.2, the edge (xp, yq) is in every bipartite

permutation graph. Therefore, the subgraph [p, q] consists of just that edge, which

is a tree with both xp and yq as leaves. So ∆∗x[p, q] = ∆([p, q]) = 1 and ∆∗y[p, q] =

∆([p, q]) = 1.

Assume the claim holds for all [i, j] such that i > a and j ≥ b, or i ≥ a and

j > b.

Now consider ∆∗x[a, b]. If [a, b] is not connected, then it does not have a spanning

tree, and ∆∗[a,b] = ∆∗x[a, b] = ∞. If [a, b] is a tree with xa as a leaf, then there is

exactly one spanning tree of [a, b], and by Theorem 4.16, we know it is crossing-

free. Thus, in this case ∆∗x[a, b] = ∆([a, b]). If [a, b] is a tree without xa as a leaf,

then N[a,b](yb) = xa. If N[a,b](yb) = xa, there is no crossing-free spanning tree of

[a, b] with xa as a leaf, since in this case any crossing-free spanning tree must have

yb as a leaf of xa. Thus, in this case ∆∗x[a, b] =∞.
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In all other cases, we claim that ∆∗x[a, b] = mink{max{k + 1,∆∗y[a + k, b]}}

for 1 ≤ k ≤ |N[a,b](yb)| − 1. In all crossing-free spanning trees of [a, b] with xa

as a leaf, xa must be a leaf of yb, and yb can have between one and |N[a,b](yb)| − 1

leaves in such a crossing-free spanning tree, plus one non-leaf (spine) neighbour.

Thus, the degree of yb in a crossing-free spanning tree of [a, b] is k + 1 where k is

the number of leaves of yb.

Let ∆′x be the minimum maximum degree of a crossing-free spanning tree of

[a, b] with xa as a leaf. First, assume ∆′x > ∆∗x[a, b]. Then all crossing-free spanning

trees of [a, b] with xa as a leaf must have maximum degree ≥ ∆′x. Let l be the

value of k that minimizes max{k + 1,∆∗y[a + k, b]}. So ∆′x > l + 1 and ∆′x >

∆∗y[a + l, b]. Let Ty be a crossing-free MDST of [a + l, b]. Let T = (V (Ty) ∪

{xa, ..., xa+l−1}, E(Ty) ∪ {(x′, yb) |xa ≤ x′ ≤ xa+l−1}). Now T is a crossing-free

spanning tree of [a, b] with xa as a leaf and ∆(T ) = max{l+ 1,∆∗y[a+ l, b]} < ∆′x,

a contradiction.

Now assume ∆′x < ∆∗x[a, b]. Let T be a crossing-free spanning tree of G with

xa as a leaf, such that ∆(T ) = ∆′x. Since T is crossing-free, yb has between one and

|N[a,b](yb)|−1 leaves in T . Let l be the number of leaves yb has in T . Then ∆(T ) ≥

l+1. Since ∆∗x[a, b] is too large, then when k = l, we must have ∆∗y[a+l, b] > ∆′x ≥

l + 1. Let Ty = (V (T ) − {xa, ..., xa+l−1}, E(T ) − {(x′, yb) |xa ≤ x′ ≤ xa+l−1}).

Now Ty is a crossing-free spanning tree of [a+l, b] with yb as leaf, and ∆(Ty) ≤ ∆′x.

Therefore, ∆(Ty) < ∆∗y[a + l, b]. But by our inductive hypothesis, ∆∗y[a + l, b] is

the minimum maximum degree of a crossing-free spanning tree of [a+ l, b] with yb

as a leaf, a contradiction. Therefore, ∆′x = ∆∗x[a, b].

Therefore, (1) holds. An equivalent argument can be made for (2), and so the

lemma holds.

Theorem 4.24. For a strongly ordered, connected bipartite permutation graph G,

∆∗G can be found in O(n3) time.

Proof. By Corollary 4.19, every crossing-free spanning tree of a bipartite permu-

tation graph is a caterpillar. By Lemma 4.17, if [i, j] is connected then the edge
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(xi, yj) is in any crossing-free spanning tree of [i, j]. If G has two or fewer vertices,

then eitherG has no edges orG has at most one edge and that edge is a crossing-free

spanning tree of G. We now assume that G contains at least three vertices.

If both xi and yj are in the spine, then they each have a leaf, y′ and x′ respec-

tively such that xi < x′ and yj < y′. Then (xi, y
′), (x′, yj) is an edge crossing.

Therefore, at least one of xi, yj must be a leaf. By the definition of a caterpillar,

leaf vertices are only adjacent to spine vertices so at most one of xi, yj is a leaf

vertex.

Therefore, in any crossing-free spanning tree, either xi is a leaf or yj is a leaf.

Then the minimum maximum degree of crossing-free spanning trees of [i, j] can

be expressed as the minimum of the minimum maximum degree of crossing-free

spanning trees of [i, j] with xi as a leaf and the minimum maximum degree of

crossing-free spanning trees of [i, j] with yj as a leaf.

By Lemma 4.23, we know that ∆∗x[i, j] is the minimum maximum degree of a

crossing-free spanning tree of [i, j] with xi as a leaf, and ∆∗y[i, j] is the minimum

maximum degree of a crossing-free spanning tree of [i, j] with yj as a leaf. There-

fore, min{∆∗x[i, j],∆∗y[i, j]} gives the minimum maximum degree of a crossing-free

spanning tree of G. By Theorem 4.18 there exists an MDST of all bipartite permu-

tation graphs that is crossing free, and so ∆∗[i,j] = min{∆∗x[i, j],∆∗y[i, j]}.

When i = 1, j = 1, then [i, j] = G. Therefore, ∆∗G = min{∆∗x[1, 1],∆∗y[1, 1]}

for a bipartite permutation graph G.

An algorithm based on the formulas of the lemma constructs two p by q tables

for ∆∗x[i, j] and ∆∗y[i, j], for a total of 2 × p × q ∈ O(n2) entries. For each entry,

k ≤ max{p, q} ≤ n. Thus, the algorithm finds ∆∗G in O(n3) time.

Theorem 4.25. For a strongly ordered, connected bipartite permutation graph G,

an MDST of G can be constructed in O(n3) time.

Proof. Using the tables produced by the algorithm, we can construct a crossing-

free spanning tree T of each [i, j] where ∆∗x[i, j] is finite such that xi is a leaf in T

and ∆(T ) = ∆∗x[i, j]. If [i, j] is a tree, then [i, j] is a crossing-free spanning tree
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of itself. Otherwise, we can construct T by choosing a value of k that minimizes

max{k+ 1,∆∗y[i+ k, j]} and adding xi, ..., xi+k−1 as leaves of yj to a crossing-free

spanning tree T ′ of [i+ k, j] with ∆(T ′) = ∆∗y[i+ k, j] that has yj as a leaf.

Similarly, we can construct a crossing-free spanning tree T of each [i, j] where

∆∗y[i, j] is finite such that yj is a leaf in T and ∆(T ) = ∆∗y[i, j]. If [i, j] is a tree,

then [i, j] is a crossing-free spanning tree of itself. Otherwise, we can construct

T by choosing a value of k that minimizes max{k + 1,∆∗x[i, j + k]} and adding

yj, ..., yj+k−1 as leaves of xi to a crossing-free spanning tree T ′ of [i, j + k] with

∆(T ′) = ∆∗x[i, j + k] that has xi as a leaf.

By Theorem 4.24, we know ∆∗G = min{∆∗x[1, 1],∆∗y[1, 1]}, and so we can use

this method to construct a crossing-free MDST of G.

Therefore, the theorem holds.
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Chapter 5

Conclusion

We now summarize the work presented in this thesis, and discuss some directions

for future work.

5.1 Summary

In this thesis, we explored the minimum degree spanning tree problem on bipartite

permutation graphs and their subclasses.

Chain graphs are a subclass of bipartite permutation graphs, and we give an

algorithm to construct an MDST on a given chain graph, as well as a formula to

find ∆∗G for a chain graph G in O(n2) time.

For bipartite permutation graphs, we build on work done on the Hamiltonian

path and longest path problems to get a number of structural results for longest

paths and MDSTs on this class. We show which vertices must be in a zig-zag

longest path in a bipartite permutation graph, and that certain longest paths can

only exist in a bipartite permutation graph with a Hamiltonian path.

We generalize the idea of zig-zag paths to show that every bipartite permutation

graph has an MDST that has no edge crossings, and so is a caterpillar. We also

show that every bipartite permutation graph has an MDST with no edge crossings

that contains a longest path.

We present a dynamic programming algorithm that solves the minimum degree

spanning tree problem for bipartite permutation graphs by finding ∆∗G and con-

structing an MDST of G in O(n3) time.
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Therefore, we have shown that the minimum degree spanning tree problem can

be solved in polynomial time for bipartite permutation graphs and their subclasses.

5.2 Future Work

There are a number of improvements that could be made based on the results pre-

sented in this thesis.

We initially conjectured that every longest path in a bipartite permutation graph

G was contained in some caterpillar MDST of G. However, the graph and longest

path in Figure 5.1 is a counterexample to this conjecture.

Figure 5.1: The longest path on the left is not contained in any MDST of the graph.
On the right is a spanning tree with maximum degree three and so ∆∗ ≤ 3.

By Theorem 4.22, we know that some longest paths are contained in crossing-

free MDSTs and, by the counterexample above, we know some are not. Finding a

characterization of the zig-zag longest paths that are contained in crossing-free MD-

STs could help lead to a more efficient algorithm to solve the problem. Since these

paths can be found in linear time, we may be able to find a linear time algorithm for

the minimum degree spanning tree problem.

There is some room for improvement on the running time of the algorithm in

Theorem 4.24. One possible improvement is to add checks for a Hamiltonian path

in [i, j] when computing ∆∗x and ∆∗y. Another is that once k exceeds the minimum

max{k+1,∆∗y[i+k, j]} or max{k+1,∆∗x[i, j+k]} value found so far, considering

the case where there are k leaves will always give a higher maximum degree than

optimal, and so these higher k values do not need to be calculated.

The results for bipartite permutation graphs introduce a number of structural

features of some MDSTs in chain graphs. Combining these results with the nested
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neighbourhood properties of chain graphs, it may be possible to improve on our

result for finding an MDST in a chain graph. In particular, it is worth considering

the possibility that an MDST can be constructed for an arbitrary chain graph in

linear time.

The results in this thesis could also be generalized to superclasses of bipartite

permutation graphs. Biconvex graphs have an ordering that generalizes the strong

ordering of bipartite permutation graphs [1]. The properties of this ordering may

allow our results on bipartite permutation graphs to be generalized to this class of

graphs.

We use the nested neighbourhood ordering property of chain graphs in our al-

gorithm to solve the minimum degree spanning tree problem on these graphs. The

nested neighbourhood ordering also appears in the independent set in the partition

of a threshold graph, and so these results may be transferable to threshold graphs as

well.

In this thesis, we focus on the Hamiltonian path and longest path problems

as starting points to solve the minimum degree spanning tree problem. However,

there are other related problems that may also be helpful in solving this problem

on other graph classes. One potential area for exploration is the dominating path

problem. This problem can be solved in linear time on AT-free graphs [13]. A

dominating path can be used to easily construct a spanning caterpillar of a graph,

by adding all vertices not on the path as leaves. In a crossing-free MDST of a

bipartite permutation graph, the spine of the caterpillar is a dominating path in the

graph. It is worth exploring if a relationship exists between the dominating path

problem and the minimum degree spanning tree problem.
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