This is a decommissioned version of ERA which is running to enable completion of migration processes. All new collections and items and all edits to existing items should go to our new ERA instance at https://ualberta.scholaris.ca - Please contact us at erahelp@ualberta.ca for assistance!
- 663 views
- 1503 downloads
Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations – A review
-
- Author(s) / Creator(s)
-
Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and “clean label” ingredients to improve the taste of other food products.
-
- Date created
- 2016-11-01
-
- Subjects / Keywords
-
- Type of Item
- Article (Draft / Submitted)