• Author / Creator
    Kwan, Jonathan K
  • Sensor technologies profoundly impact all aspects of our everyday lives. Advances have led to smaller devices, faster response times, reduced costs, higher specificity and sensitivity, and even new sensing technologies. Surface acoustic wave (SAW) technology, which has been around for many decades already, is an example of a newer sensing technology that has begun to be studied for sensing applications. Many advantages of SAW sensors have been identified, in particular the high sensitivity, low cost and wireless capability. However, as the technology is still in its infancy for sensing applications, many improvements and refinements on the platform have yet to be explored. With the arrival of nanotechnology, many existing technologies have benefited from integrating with the new findings that nanotechnology has brought forth. This thesis investigates the enhancement of existing SAW sensors using nanostructured films fabricated by a thin film deposition process known as glancing angle deposition (GLAD). The GLAD technique is a highly flexible and precise thin film fabrication method that is able to create high-surface-area thin films. This high-surface-area characteristic of these films is the driving motivation in their utilization to enhance the performance of SAW sensors. This thesis first demonstrates that dense, extremely high surface area films can be deposited on SAW sensors without adversely affecting device performance. These modified sensors were then studied as humidity sensors to demonstrate improved sensitivity with the addition of the GLAD films. Before the sensors with GLAD films could be tested in a liquid environment, ion-milling was investigated as a method of eliminating the clustering of the individual structures typically seen after exposure to liquids. These modified films were extended for use on the SAW sensors to investigate liquid sensing performance. The performance of SAW devices with clustered films was also studied for comparison. Both types of films were shown to increase sensitivity greatly over the reference SAW device. The success of these results validates the ability of GLAD films to enhance the sensitivity of not only SAW devices, but potentially other sensing technologies as well.

  • Subjects / Keywords
  • Graduation date
    Spring 2013
  • Type of Item
  • Degree
    Doctor of Philosophy
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
  • Institution
    University of Alberta
  • Degree level
  • Department
  • Specialization
    • Microsystems and Nanodevices
  • Supervisor / co-supervisor and their department(s)
  • Examining committee members and their departments
    • Brett, Michael (Electrical and Computer Engineering)
    • Wang, Xihua (Electrical and Computer Engineering)
    • Sit, Jeremy (Electrical and Computer Engineering)
    • Hiebert, Wayne (Physics)
    • Stoeber, Boris (Mechanical Engineering)
    • Tsui, Ying (Electrical and Computer Engineering)